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Abstract—Predicting the weather is dependent on the initial
states specified in the computer model used to make the pre-
diction. The data assimilation (DA) schemes are state-estimation
techniques to generate an appropriated initial states for numerical
models. DA deals with observations and data from the nonlinear
dynamical models, both data set are very large in use on
operational weather centers. The output from the DA procedure
is called analysis. Some DA techniques become computationally
intensive. The artificial neural networks (NN) can be employed
to improve the computational performance. Two DA schemes
are analized here: the Local Ensemble Transform Kalman Filter
[17], and a version of a variational assimilation method [2]
named the representer method. The EnKF was applied to a 3D
atmospheric global spectral model (SPEEDY model), while the
representer scheme was applied to the 2D shallow-water model –
for simulating the ocean circulation. These DA techniques were
emulated by multilayer perpectron neural network (MLP-NN).
The goal of this paper is to show the speed up for the DA
computer performance in comparison to the methods emulated.
The data assimilation process by NN preserves the analysis
quality of the former DA techniques. In our experiments, the
NN applied to DA on the SPEEDY model was 75 times faster
than EnKF.

I. INTRODUCTION

Geophysical fluid dynamics models are comprised of fun-
damental concepts (laws) and parameterizations of physical,
biological, and chemical components of the atmospheric and
ocean systems. These concepts and parameterizations are ex-
pressed as mathematical equations, averaged over time and
grid volumes in four dimensions (3 space dimensions, and
one time dimension). The equations describe the evolution
of many meteorological variables, and define the state of
the physical system. These equations are then codified to a
programming language, defining their possible interacting with
other formulations, so that they can be solved on a computer
and integrated forward in discrete time steps, attempting to
solve a problem by repetitive calculations (iterations), before
moving on to solving the next problem. These programs are
called numerical models. All numerical models are based
upon the set of governing equations, describing a number of
known physical principles. Such formulation is mathematically
described as an initial value problem.

For running any numerical model, it requires to compute
the initial condition. Depending on the model type, it may also
need of boundary conditions. In numerical weather prediction,
the initial condition is obtained from a balanced analysis,
incorporating observations describing the current state of the
system. Data assimilation (DA) is the process where observa-

tions are embedded into models, and to ajust them in real time
as new data becomes available. The results of DA process is a
consistent model with the observed data and itself forecasting
(also called background, which is initial condition to next
model prediction period.

Global models work by calculating the system state at a
number of discrete points on the Earth’s atmosphere/ocean.
These points are laid out as a mesh covering the surface of the
Earth, and the vertical profiles of the atmosphere, dividing the
domain into several little boxes. The number of boxes defines
how finer is the model resolution. The computational effort
is determined by the model resolution. The prediction period
is calculated by time integration, starting from a set of initial
conditions for the atmosphere and/or ocean, by using several
discrete time-steps ahead. Large amount of data are employed
during the DA cycle. In the operational weather prediction
centers, usually state variables are of order O(107−9), and the
number of observations of order O(105−7) for a period of
6 hours.The observations have great variability on time and
space. A significant increase in the number of observations is
expected to be as much as six orders of magnitude during
the first decades of the 21 century. Typing DA as a big
data issue, overwhelming data systems and computational
resources. Therefore, it is important to develop new techniques
for dealing with DA in near future [28].

Some advanced assimilation techniques require cycles of
interaction between the model and statistical analysis, enhanc-
ing the computational effort [28].

There is an operation time-window to produce the fore-
casting. Many strategies can be adopted to fit the intensive
computation with the operation period: the use of advanced
computing, reduction of problem dimension to obtain a com-
puter code feasible to run in real time. The computational
complexity involved in data assimilation have been presented
in the literature [22]. Modern DA techniques, like Ensemble
Kalman filter (EnKF) [9], [18] and particle filter (PF) [20],
are Bayesian techniques, represent a computational challenge,
even with the use of parallel computing with thousands of pro-
cessors. The algorithms are constantly updated and improved
in its performance. One example is the version of the EnKF
with small areas (local) for observation influence: the Local
Ensemble Kalman filter (LEKF) [27].

Artificial neural network was employed on data assimi-
lation by Nowosad and co-authors [26], using all points in
the domain as input for Multilayer Perceptron (MLP). This
approach was improved by [14] and [15], where the perfor-



mance the MLP and Radial Basis Function, and two recurrent
NN (Elman and Jordan) (see [16]) were analyzed. [15] use
neural networks at each grid point. Such modification allowed
to reduce the computational processing. Continuing the in-
vestigations, [11] evaluated the neural network performance
to emulate the particle filter and the variational method for
data assimilation applied to Lorenz chaotic system. In [5], this
technique was aplied to emulate Local Ensemble Transform
Kalman Filter (LETKF) as a method for data assimilation to
the SEEDY (Simplified Parameterizations PrimitivE-Equation
Dynamics) model. Recently, [13] applied this technique to
emulate the representer variational (R-Var) method, simulating
ocean data using with a 2D shallow-water model.

The use of artificial neural networks preserves the qual-
ity of the analysis emulating different methods. This paper
presents the results of data assimilation applying NN approach
to improve the computational performance of forecast systems.

A. Data Assimilation Techniques

The purpose of data assimilation is to reconstruct as accurately
as possible the state of the system using all available appropri-
ate information: observations and the physical laws governing
the system, available from the numerical models.

In present-day, two data assimilation techniques can be
distinguished in numerical weather prediction. These are vari-
ational methods, of which the dominant one is the 4D-
Var method [29], and the ensemble schemes, like Ensemble
Kalman Filter [9] and Particle filters [21]. Variational assimi-
lation searches for a minimum of a cost function [7], and its
adoption involve by the need to develop and coding of adjoint
model. In ensemble techniques, ensemble forecasts are used
to evaluate the probability distribution.

The Kalman Filter equations are obtained from an analyt-
ical solution from setting the gradient of the cost function to
zero, considering recursive least square and the assumption of
the Gaussian probability density functions. A brief description
for Kalman filter algorithm could expressed below:

1. Forecast model for state vector:

xfn+1 = Mn(xan) .

2. Up-date the covariance matrix:

P f
n+1 = MnP

a
nM

T
n +W b

n .

3. Compute Kalman gain:
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T
n+1

[
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4. Compute the analysis:

xan+1 = xfn+1 +Kn+1

[
xObs
n+1 −Hn+1x

f
n+1

]
.

5. Up-date the analysis covariance:

P a
n+1 =

[
I −Gn+1H

T
n+1

]
P f
n+1 .

The matrices M and H represent the dynamical system and
observation system, respectively. The covariance matrix W b

identifies the modeling error.

One interesting approach to estimate the covariance matrix
W b was the development of the Ensemble Kalman Filter

(EnKF) by Evensen [8], [9]. The nonlinear evolution problem
for the error covariance is calculated by sampling from the
posterior pdf and propagating the samples, the model states,
forward in time with the fully nonlinear model equations. At
any time the samples can be used to calculate an approximate
mean and error covariance. The best implementation is in
localization, in which spurious correlations are eliminated by
applying a cut-off radius of influence for each observation.
This is the Local Ensemble Kalman Filter (LEnKF) ( [27],
[17]). The LEnKF algorithm capture the space of forecast
uncertainties, formulated by ensemble-based Kalman filter
scheme.

1) Local Ensemble Transform Kalman Filter: The LETKF
algorithm is an EnKF-based scheme, in which the analysis
ensemble members are constructed by a linear combination of
the forecast ensemble member [23]. The ensemble transform
matrix, composed of the weights of the linear combination,
is computed for each local subset of the state vector inde-
pendently. The local subset depends on the error covariance
localization [24].

The idea of LETKF is to perform analysis at each grid point
simultaneously using the state variables and all observations
in the region centered at given grid point. Each member of
the ensemble gets its forecast: {xfn−1}(i) : i = 1, 2, 3, · · · , k ,
where k is the total members at time tn, to estimate the state
vector x̄f of the reference model. The ensemble is used to cal-
culate the forecasting by the average x̄f ≡ k−1

∑k
i=1{xf}(i)

and the model error covariance matrix is given by:

P f = (k − 1)−1
k∑

i=1

({xf}(i) − x̄f )({xf}(i) − x̄f )T (1)

The analysis must determine not only an state estimate
x̄a) and covariance P a, but also an ensemble {xan−1}(i) :
i = 1, 2, 3, · · · , k with the appropriate sample mean x̄a ≡
k−1

∑k
i=1{xa}(i) and covariance:

P a = (k − 1)−1
k∑

i=1

({xa}(i) − x̄a)({xa}(i) − x̄a)T (2)

DA problems are often limited by the high dimensionality
of states created by spacial discretization over large high-
resolution grids and the extensive spacial structure of obser-
vations. LETKF are suitable for such problems, promising
computational efficiency and accurance in localization method.

2) Representer variational method: The representer varia-
tional system minimizes the effort required for 4D-Var. The
minimization algorithm for the R-Var system is the iterated,
indirect representer algorithm. First, the system solves an itera-
tion that yields a sequence of linear systems of Euler–Lagrange
(EL) equations, for the minimize the penalty. Secondly, it
solves an indirect solution of each linear system [3].

Considering jointly the forward ocean circulation computer
code and the data assimilation scheme based on the R-Var
approach, this set expresses the Inverse Ocean Modeling (IOM)
system [2]. In the R-Var system, a penality functional to be
minimized is formulated for the assimilation problem, defining
a fixed-interval smoothing problem. The penalty is quadratic
for the residuals. The tangent linear version to the model is



considered. There are tangent linearization of the constraints
that render the penalty. The procedure starts by solving the
Green function associated to the EL equations. The previous
solution combined with the model covariance matrix error
provides the computation of representers. The posterior error
covariance matrix at the end of smoothing interval becomes
the prior error covariance matrix at the beginning of the next
time period [2].

The representer algorithm is employed to find in the data
subspaces, calculating all the representers as a linear basis
for the inovation vector for each assimilation cicle. Given a
background field xf and weighted residual λ, the linear EL to
be solved is obtained by using the Representer method:

−∂λ
∂t

=

[
∂M(xf )

∂x

]T
(λ)−HTWoo(d−Hx̂) (3)

with the optimal linearized forward dynamical system given
by:

∂x̂

∂t
= M(xf ) +

∂M(xf )

∂x
(x̂− xf ) + Cqq.λ (4)

x̂(0) = xf + Ciiλ(0) .

In the above equations, x̂ is the optimal solution. The weights
Wj (j = oo, qq, ii) are defined as the inverses of the respec-
tive covariance error matrices: Coo, Cqq, Cii for observations,
modeling, and initial condition, respectively. At each step t,
M(xf ) is the model dynamics. The representer expansion to
the inovation for uncoupling Eqs. (3)–(4) is

x̂(t) = xf (t) +

M∑
m=1

βmrm(t) . (5)

Here the background xf (i.e., the trajectory around which the
model is linearized) is also taken as the first guess (the solution
that the assimilation will correct). The representer functions rm
(m = 1, . . . ,M ) are computed from two steps. First:

−∂αm

∂t
=

[
∂M(xf )

∂x

]T
(αm)−HT δ(t− tm) (6)

αm(T ) = 0 .

Secondly, combining the solution from the above equation
weighted by the modeling error covariance matrix:

∂rm
∂t

=
∂M(xf )

∂x
(rm) + Cqq.αm (7)

rm(0) = Ciiαm(0) .

The representer expansion coefficients βm (m = 1, . . . ,M),
in Eq. (5), are grouped in the vector β = [β1 . . . βM ]T , and
this vector is the solution of the linear system [2]:

[Re +W−1
oo ]β = d−Hxf , (8)

where Re is the representer matrix:

Re =

[ | | |
r1 r2 . . . rM
| | |

]
obtained by evaluating the representer functions at the mea-
surements sites (i.e., the m-th column of Re is Hrm), and the
observations are writing by d = Hx+ ε, where ε is the vector
of measurement errors. More details about the method can be
found in [2].

B. Artificial Neural Networks

Gardner [10] did a survey on applications of the Artificial
Neural Networks (ANN) in meteorology and oceanography.
It also cites the applications in the atmospheric sciences
looking at prediction process for air-quality, surface ozone
concentration, dioxide concentrations, severe weather, Indian
monsoon, Brazilian rainfall anomalies, solar radiation. The
survey also mentioned other applications exploring the other
properties from the ANN, as function approximation and
pattern classication.

ANN is a computational system with parallel and dis-
tributed processing. It has the ability to learn and store the
experimental knowledge. This arragement is composed of
simple processing units (nodes or neurons) that computes cer-
tain mathematical functions (usually nonlinear). Each artificial
neuron is constituted by one or more inputs and one output.
They have a principle of nonlinear, parallel, local processing,
and adaptation. ANN can be devised in two phases: the training
phase (learning process) and the run phase (activation or
generalization). The training phase is an iterative process for
adjusting the weights for the best performance of the network
associated with a learning rule. Mathematically, the ith neuron
can be described as the following form:

Input summation: ui =
∑p

j=1 wijxj (9)
neuron output: yi = ϕ(ui) (10)

where x0, x1, . . . , xp are the inputs; wi1, . . . , wip are the
synaptic weights; ui is the output of linear combination; ϕ(·)
is the activation function, and yi is the neuron output. The
use of units with nonlinear activation functions generalizes the
delta rule, to solve nonlinear problems. The overall idea is to
treat the neural network as a function of the weights wij , Eq.
(9), instead of the inputs. The goal is to minimize the error
between the actual outputs yi and the target outputs in training
data.

The set of procedures to adjust the weights is the learning
algorithm. A scheme called back-propagation, performs the
delta rule, Eq. (9). The back-propagation training is a super-
vised or teaching learning. The adjustments on the weights
are conducted by back propagating algorithm, considering
the difference between the ANN calculated output and the
target output (the expected response to the input vector). Once
trained, the weights are fixed and new inputs can be presented
to the network, that calculates the corresponding outputs based
on training, this phase is called the generalization.

Multilayer Perceptron (MLP) is an ANN topology where
the interconnections of the inputs to the output layer have at
least one intermediate layer of neurons: a hidden layer ( [10],
[16]). As mentioned before, the back-propagation algorithm
can be used for training the MLP-NN. ANN are able to solve
nonlinear problems, if nonlinear activation functions are used
for the hidden and/or the output layers.

The experiments for data assimilation were performed
using multilayer perceptron neural network (MLP-NN), with
back propagation algorithm. The MLP-NN configuration
(number of layers, nodes per layer, activation function, and
learning rate parameter) was defined by empirical tests.



C. Models

1) Linear 2D shallow-water: The shallow water equations
provide the fundamental description of free surface hydrody-
namics in water or other incompressible fluids. This modeling
is applied when the aspect ratio between the vertical length
scale and the horizontal length scale is much smaller than
one. Shallow water equations can also be used to model wave
propagation. In such case, the underlying assumptions is that
the depth of the basin, where the fluid is moving, is smaller
than to the wave length of the disturbance.

The equations are derived from the principles of conserva-
tion of mass and momentum for fluids, the hyperbolic Navier-
Stokes equations, from depth-integrating. The independent
variables are time (t), and two space coordinates (x, y). The
dependent variables are the fluid height or depth H , and the
two-dimensional fluid velocity components (u, v). The force
acting on the fluid is gravity, represented by g.

Considering the linear shallow-water equations on a rotat-
ing planet, the equations are expressed as (where: (x, y) ∈ Γ):

∂u

∂t
+ f k̂× u = −g∇(q − q̄)− ruu/H, (11)

∂q

∂t
+∇ · (Hu) = 0 . (12)

where f is the local value of Coriolis parameter, k̂ is a unit
vector in the direction perpendicular to the velocity vector,∇ is
the two-dimensional nabla operator, u is the two-dimensional
velocity vector, q = q(x, y, t) is the sea-level disturbance, H =
H(x, y) is the mean depth of the ocean, r is the bottom drag
coefficient, and q̄ = q̄(x, y, t) is the unperturbed height of the
shallow layer of fluid.

Coordinates (x,y) are the Cartesian ones, where x and y are
directed to eastward and northward, respectively. The velocity
vector u = (u, v) has the eastward direction (u) and the
northware direction (v) components. The Coriolis parameter
is defined by the f -plane: f = 2Ω sinφ0, where φ0 is a mean
latitude, Ω is the Earth rotation speed. If q ≡ q̄, then the ocean
is in hydrostatic balance [2]: this is the equilibrium tide of
Newton. The scalar form of these vetorial equations, discretiza-
tion procedure, inicial and boundary conditions, forcings, and
model parameters applied to this linear shallow-water model
can be found in [13] and [2, page 197].

2) SPEEDY model: The Simplified Parameterizations
PrimitivE-Equation Dynamics (SPEEDY) is an atmospheric
general circulation model (AGCM) of intermediate complexity,
based on a spectral primitive-equation dynamical core, and
a set of simplified physical parametrization schemes. The
computer code was developed to study global-scale dynamics
and testing new approaches for numerical weather prediction.
The dynamic variables on a set of nonlinear differential equa-
tions that are used to approximate global atmospheric flow,
i.e.,consisting of a form of the Navier-Stokes equations (con-
servation of momentun), thermal energy equation, continuity
equation (conservation of mass), consistuting into the primitive
equations. These equations are integrated by spectral method in
the horizontal, at each vertical level [4]. The SPEEDY model
has a simplified set of physical parameterization schemes,
but they are similar to realistic weather forecasting numerical
models. The goal of this model is to obtain computational

efficiency, while maintaining characteristics to the state-of-the-
art AGCM with complex physics parametrization [25].

The model is global with spectral resolution T30L7 (hor-
izontal truncation with 30 wave members, and seven vertical
levels), corresponding to regular grid with 96 zonal points
(longitude), 48 meridian points (latitude), and 7 vertical pres-
sures levels (100, 200, 300, 500, 700, 850, 925 hPa). The
prognostic variables of input and output model are the absolute
temperature (T ), surface pressure (ps), component of zonal
wind (u), component of meridional wind (v), and an additional
variable and specific humidity (q).

The error of upper levels and surface covariance matrices to
run LETKF system, as well as the SPEEDY model’s boundary
conditions data and physical parametrizations, are the same as
used by [23].

II. METHODOLOGY

Similar quality for the analysis (initial condition for NWP)
procuded for LETKF and R-Var was found by Cintra (2010)
and Furtado (2012) applying the NN to emulate these tech-
niques. Furtado [13] worked with a 2D ocean model Eq. (11),
originally codified using R-Var. Cintra [5] employed NN as
a method for data assimilation to emulate the LETKF to
the SPEEDY model. This NN approach uses the supervised
back propagation algorithm. Data set for learning phase was
generated by using synthetic observations under R-Var and
LETKF assimilation schemes.

This paper presents the computational performance of
MLP-NN to emulate LETKF scheme with SPEEDY model
for two experiments: Conv, and Sate. MLP-NN to emulate R-
Var method was evaluated by the SW2D experiment. A brief
description on the experiments is given bellow.

Conv: Conventional observational experiment, where the
observation grid has five meteorological variables
(u, v, T , q, ps), simulating a world rawinsonde
network, and the 3D grid model has (48 × 96 ×
7) grid points, for latitude, longitude, and vertical
directions, respectively;

Sate: Satellite observational experiment, with tempera-
ture retrievals, where a dense network (one point
at each two model grid) for the observation points
was considered – the model grid points was the
same as above;

SW2D: Two-dimensional linear shallow-water model,
where three state variables (u, v, q) were applied
at one grid point. The grid model was (20×11) for
x and y coordinates. The model had a prediction
interval with 20 time-steps.

All experiments use synthetic observations. They were
generated from control model fields, adding Gaussian random
noise (white noise). The control model fields to the assimila-
tion method is obtained from the integration of models without
noise.

The configuration MLP-NN of experiments are described
in table (I). All neural networks has one hidden layer, and the
activation function is the hyperbolic tangent:

ϕ(v) =
1− exp(−av)

1 + exp(−av)
,



for hidden and output layers. The input/output vectors have
individual values for a grid point for each time-step.

TABLE I. MLP-NN PARAMETERS: LETKF–SPEEDY FOR CONV AND
SATE EXPERIMENTS, R-VAR TO THE LINEAR SHALLOW-WATER (SW2D)

MODEL.

MLP-NN Conv Sate SW2D
input nodes 2 2 ∗
output nodes 1 1 ∗

hidden neurons 11 6 ∗
learning rate 0.001 0.005 0.005

Those parameters with (∗) in the table I are different to each
variable of MLP-NN: different MPL-NNs were necessary to
emulate the analysis from the representer variational scheme,
because there are several properties to be estimated (initial
condition – for next time-integration interval, boundary con-
dition, and model forcing). For each property to be estimated
with the R-Var technique, one MLP-NN was designed [13].

A. Training/Generalization process

The training procedure was made with the back-propagation
algorithm. The best set of weights was obtained when the error
between the analysis calculated by the network and the target
analysis was smaller than a fixed small value.

1) Experiments Conv and Sate: The training process was
conducted with the forecast from the SPEEDY model, with
LETKF as the data assimilation method.

Different NNs were applied to different regions of the
world. The globe was divided into six regions of 90o × 120o.
In the Conv experiment, a set of 30 NN (see Table I), where
one MLP-NN was designed to each meteorological variable:
5 variables × 6 regions. This division has homogeneous size
regions, but the number of observations is distinct. The Sate
experiment were designed by six MLP-NN, to assimilate
temperature for each region. The number of observations is
equal for all regions.

Three first months were collected from the years 1982,
1983, and 1984 for the training process. The NN topology is
the same for all regions, but with different connections weights.
The MLP-NN analysis is calculated to each grid point.

The MLP-NN generalization was performed during one
month of time integration, with four data assimilation cicles per
day. The experiment was carried out in the period: Jan/01/1985
(at 00 UTC) up to Jan/31/1985. The Fig. 1 shows an example
of MLP-NN analysis close to LETKF analysis to SPEEDY
model for ps field at 09/01/2013; and Fig. 2 shows an example
of (v) Zonal Wind field MLP-NN analysis similar to R-var
analysis to SW2D model at time step= 10.

2) Experiment SW2D: The differential equations are dis-
cretized with Arakawa C-grid, and a forward-backward
scheme for time stepping [1]. The model was integrated with
40 time-steps, for each prediction interval. For the first interval,
the boundary conditions, (x, y) ∈ ∂Γ, were north and south
rigid walls (v(x, 0, t) = v(x, Y, t) = 0), while all fields
were periodic on the x−direction. The model forcings were
Fu = −Cdρau

2
a/(Hρw), and Fv = 0, with initial condition

equal zero for all variables in the internal domain, (x, y) ∈ Γ.

Fig. 1. LETKF (red line) and MLP-NN (blue line) analyses of Surface
Pressure (hpa) at 09/01/1985 at 12UTC, for SPEEDY model.

Fig. 2. Representer (blue line) and MLP-NN (green line) analyses of Zonal
Wind Component, at time step 10 for SW2D model.

The training process uses 20 prediction intervals, where
each interval is executed with 40 time-steps, performing 800
time-steps for learning data set. In this data assimilation pro-
cedure/experiment, several properties are estimated: forcings
(fu, fv , fq), initial condition for u, v, q, boundary condition:
v(x, 0, t) and v(x, Y, t). Eight MLP-NNs were defined (3
variables + 3 forcings + 2 boundaries). For initial condition and
forcing terms, the input is the observations and model variables
(uObs,Mod, vObs,Mod, qObs,Mod). For the boundary condition
identification, observations and model variable vObs,Mod are
used as the input.

B. Computer Performance Results

The analysis quality of LETKF and R-Var were evaluated by
experts and the results are published in the literature [3], [19].
The similar quality analysis, to the former data assimilation
methods cited, were obtained with MLP-NN [5], [6], [13].

In this paper, the comparative results for the computer
performance amoung different methodologies is presented,
by using the CPU-time. The same observations and time
prediction period are run for all methods.

1) Experiments Conv and Sate : The SPEEDY model were
run with LETKF initial condition for same period of MLP-NN
generalization for both experiments. The experiment consists
of one month for time integration, with four assimilation cicles



per day (at 00, 06, 12, 18 UTC). The experiment starts at
01/Jan/1985. The results are shown in Table II.

TABLE II. ONE MONTH EXPERIMENT FOR DATA ASSIMILATION
(ANALYSIS AND FORECASTING) – CPU-TIME: HOUR:MIN:SEC.

Experiment cycles MLP-NN LETKF
Conv 112 00:02:53 04:20:39
Sate 124 00:05:00 05:00:00

2) SW2D Experiment: IThe 2D Shallow-water model were
run with the R-Var scheme to estimate initial condition,
forcing, and boundary conditions values. During the 40 time-
steps (the prediction period), there are observations on the the
time-step 10 up to time-step 39. The analysis is computed
by R-Var and MLP-NN using the collected observation on
these 20 time-steps. This correspond the SW2D experiment,
and results are shown in Table (III)

TABLE III. DATA ASSIMILATION SW2D EXPERIMENT (ANALYSIS) –
CPU-TIME: MIN:SEC.

Experiment DA MLP-NN R-Var
2swe 3 obs 04:00 00:02

III. CONCLUSION

These applications of MLP-NN produced significant reduction
for the computational effort compared to LETKF and R-Var
data assimilation schemes.

In the SPEEDY model experiment, with conventional ob-
servations, the MLP-NN scheme presented a speed-up 75 times
related to the performance of the LETKF. For the SPEEDY
experiment with satellite observations, the MLP-NN for the
data assimilation was 87 times faster than the LETKF. The
computer performance for the 2D shallow water experiment by
using the MLP-NN had a speed up 113 times more efficient
than the analysis computed by R-Var method.

The MLP-NN with the supervised learning approach
achieved a better computational performance with similar
quality for the analysis obtained with other formulations, i.e.,
from the computational point of view, the ANN is an efficient
data assimilation process.
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2008.

[12] H. C. M. Furtado, H. F. Campos Velho and E.E. Macau Data assmilation
by neural network emulating representer method applied to the wave
equation. Proceedings:International Symposium on Uncertainty Quan-
tification and Stochastic Modeling , 1, Maresias, SP, Brazil, 2012.

[13] H.C. Furtado Redes neurais para assimilação de dados em um modelo
de circulação ocen̂ica. 173 p. Thesis (D.Sc. on Applied Computing),
National Institute for Space Research. São José dos Campos, 2012.
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