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without any major maneuver. After obtaining the trajecto-
ries, the criterion of Tisserand is used to validate the tra-
jectories found. Then, a verification of the accuracy of the 
“patched-conics” method for the Earth–Moon system is 
made.
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approach maneuvers · Space trajectories

1  Introduction

In aerospace engineering, depending on the purpose of the 
mission, the trajectory of the spacecraft can be controlled 
by several physical forces. In the present research, the 
focus is on missions that use the close approach maneuver 
to act in part of the trajectory. It is well known that, when 
a close approach occurs in the neighborhood of a massive 
body (a planet or a natural satellite), the spacecraft experi-
ences physical forces which depend on the relative velocity 
between the spacecraft and the planet and also on the dis-
tance separating the two of them at the point of the closest 
approach.

This idea appeared in the space program to find alterna-
tives to reduce the fuel expenditure in interplanetary mis-
sions. The standard approaches to solve problems related 
to orbital maneuvers, without the use of close approaches, 
assume that the spacecraft has an engine that can deliver a 
force to the spacecraft to control its motion. This force may 
have a low magnitude that is applied during a finite time or 
a high magnitude that is applied during a negligible time. 
The first option is called “continuous thrust approach” and 
references [4, 14, 20–22, 40] show some details on that 
approach. The second alternative uses the idea of an impul-
sive thrust, where the force is assumed to have an infinity 
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magnitude. This is very popular in the literature and many 
references used this approach, starting with [17]. Some 
other examples are [13, 15, 16, 19, 31, 35–38].

Looking again in the literature, searching for researches 
considering close approaches as an alternative for orbital 
maneuvers, there are several studies and missions using 
this technique, including researches as early as Ref. [18], 
from 1961. From several missions, we can mention an 
important example, occurred in December 1973, with the 
encounter of the Pioneer 10 with the planet Jupiter. The 
description of this encounter is shown in the detailed eph-
emerides prepared by NASA’s Jet Propulsion Laboratory 
and Ames Research Center [1]. Ref. [2] also shows several 
aspects of this maneuver, as well as Ref. [3]. There are also 
several other studies that can be mentioned, like the study 
of transfer orbits to find trajectories linking the Lagrangian 
points and the primaries of the system [28, 30]. In terms of 
practical missions that use this technique, it is possible to 
mention [5–10, 23, 39, 41, 43] which show several appli-
cations of the close approach in orbital maneuvers. Some 
other studies considered variations of this problem, like the 
combination of impulsive or low thrust maneuvers during 
the close approach [26, 27, 32], the existence of an atmos-
phere during the swing-by [29], noncircular orbits for the 
primaries [33] or a three-dimensional swing-by [11].

The focus of the present paper is to find a series of 
close approaches with the Moon, which can be used to 
analyze possible missions to cover the space around the 
Earth–Moon system. It means that it is desired to make 
the spacecraft to have different values of apogees, to study 
larger areas of the space without the need of fuel consump-
tion. The orbital elements, energy, angular momentum 
and velocity of the spacecraft with respect to the Earth are 
changed by each of these close approaches. The dynami-
cal system given by the “patched conics” is used and the 
motion is assumed to be planar everywhere. A series of 
two-body problems are considered to generate analytical 
equations that describe the problem. The orbital elements 
of the spacecraft before and after this close encounter are 
calculated to detect the changes in the trajectories. The 
goal is to study the orbital characteristics (orbital elements, 
velocity, energy and angular momentum) after each close 
approach to know how this trajectory will evolve, to have 
a better understanding of the possible applications. A study 
with similar ideas was made by Strange and Longuski [23, 
25], where a graphical approach based on the criterion of 
Tisserand [24, 42] was developed to evaluate the poten-
tial of multiple swing-bys passing by different bodies of 
the Solar System. This research evaluates the swing-bys 
assuming that the celestial bodies are always in the cor-
rect position for the close approach, which is an excellent 
idea to evaluate the possibilities of the maneuvers. The pre-
sent paper adds the concern of finding resonant orbits for 

the sequence of trajectories, so making sure that the proper 
positions occur and the sequence of swing-bys found is real 
and not only potential.

The main motivation for this research is based on some 
applications of close approaches that have the goal of keep-
ing a spacecraft around the Earth, but making several pas-
sages by the Moon to allow the spacecraft to pass by dif-
ferent parts of the space near this system. This strategy has 
the goal of studying larger areas of the space without mak-
ing orbital maneuvers that require fuel consumption. The 
gravity of the Moon supplies the spacecraft with the energy 
required to change the location of the apogee of the orbit, 
making the spacecraft to cover a larger area of the space. 
This is an interesting problem, because there is a conflict 
of objectives. It is necessary to reach larger variations of 
energy, but those changes cannot be large enough to cause 
an earlier escape of the spacecraft from the Earth. One solu-
tion is to find a series of values for the closest approach dis-
tance for each passage by the Moon (assumed to be the only 
control variable), such that it generates a series of orbits that, 
by making successive variations in the energy of the space-
craft, keep it passing by different positions in space. Those 
variations need to be calculated in such a way that the orbits 
are all resonant with respect to the Moon, so a new close 
encounter will occur between the spacecraft and the Moon 
after a given time without the need of maneuvers based on 
fuel consumption. In the present paper, analytical equations 
are derived to solve this problem. Some references showing 
this type of application are [12, 23]. A geometric representa-
tion can be seen in Fig. 1, where the spacecraft is in orbit 
around the Earth and performing multiple close approaches 
with the Moon. It is shown that the apogee of the trajectory 
of the spacecraft around the Earth is changing, passing by 
the points A1, A2 and A3. Figure 1 shows the first three pas-
sages of a series that can be much longer. The perigee dis-
tance also changes, giving even more possibilities to study 
different areas of the space near the Earth.

Fig. 1   Overview of the orbital characteristics for some swing-bys
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Looking at those missions, some interesting questions 
appear: how many times can the spacecraft makes close 
approaches with the Moon before you have a passage that 
makes its orbit to become hyperbolic and then escape from 
the system? Also, during this process, which values of 
semi-major axis and eccentricities can be covered? Which 
of those trajectories can be used in practical applications, 
considering that the perigee of the orbit has to be above the 
surface of the Earth and that the closest distance during the 
passage by the Moon has to be above the lunar surface? So, 
in the present paper, a study of those questions is made. 
The intermediate orbits are also studied in some detail.

A more detailed analysis comparing the “patched-con-
ics” approach with the restricted three-body problem is 
made for the Earth–Moon system, with the goal of estimat-
ing the errors of the model and also showing the regions 
where the approximation is better.

2 � Mathematical model

It is well known that the “patched-conics” approximation 
offers an efficient procedure to study interplanetary trajec-
tories. By partitioning the overall trajectory in a series of 
two-body problems, it is possible to greatly simplify the 
mission analysis. The basic assumption of the “patched-
conics” approximation is that the trajectory of a space-
craft is determined by the gravitational field of the body 
that dominates the motion of the spacecraft in all phases 
of the mission. It also assumes that the dynamical system 
is dominated by two main bodies that are in circular orbits 
around their center of mass and the spacecraft is moving 
under the gravitational attraction of those two primaries. 
So, in this approach, this problem can be studied assum-
ing a system formed by three bodies: The Earth, as the 
main massive primary (M1), the Moon, as a secondary 
mass (M2) that is orbiting M1, and a spacecraft with infini-
tesimal mass (M3) that remains orbiting the primary and 
makes a close approach with M2. This close approach has 
the same effect of applying a single impulse with zero cost 
to modify the orbit of the spacecraft. Figure 2 explains the 
geometry involved in this close approach with the Moon. 
The spacecraft is initially in orbit around the Earth, cross 
the sphere of influence of the Moon and then it goes back 
to another orbit around the Earth. Point P1 represents the 
beginning of the approach and point P2 represents the end 
of the close approach in Fig. 2. In the real motion, there is 
no exact point where the spacecraft changes its orbit from 
around the Earth to around the Moon, but both bodies are 
acting all the time. The correct model to study this problem 
is the Restricted Three-Body Problem, but it does not allow 
closed form solutions. It means that there is a large zone 
where both bodies are acting at the same time. To simplify 

the analytical study, it is assumed that the point where the 
spacecraft reaches the Moon is at the Earth–Moon dis-
tance, which means that the Moon’s sphere of influence is 
neglected. A better model would choose a point somewhere 
between the sphere of influence and the surface of the 
Moon, much closer to the surface of the Moon. Using the 
two-body approximation it is not possible to determine this 
point. The accuracy of the present approximation is studied 
later in the present paper and it shows that it does not give 
results too far from the real ones.

An amplification of Fig. 2 can be seen in Fig. 3, which 
shows in more detail when the spacecraft crosses the sphere 
of influence of the Moon in a hyperbolic trajectory with 
respect to the Moon.

Figure  4 shows some of the variables that are used to 
identify one close approach trajectory: rap (the distance 
from the spacecraft to the center of M2 (the Moon) at the 
moment of the closest approach), �v−∞ and �v+∞ (velocity 
of M3 with respect to M2, before and after the swing-by, 
in the inertial frame), �v2 (velocity of M2 with respect to 
M1), δ (half of the angle of the curvature due to the close 
approach) and ψ (angle of approach).

Fig. 2   A close approach between a spacecraft and the Moon

Fig. 3   Detailed view of the close approach between a spacecraft and 
the Moon
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The velocity and orbital elements of the spacecraft are 
changed by the close approach with the Moon. The orbital 
elements (a =  semi-major axis, e =  eccentricity), energy 
(E) and angular momentum (C) of the spacecraft before the 
encounter with the Moon are obtained from the equations:

where rp is the perigee of the orbit of the spacecraft around 
the Earth, ra is the apogee of the orbit of the spacecraft 
around the Earth and µ is the gravitational parameter of the 
Earth = 3.98600× 105 km3/s2. To determine the velocity 
of the spacecraft with respect to the Moon in the moment 
that the close approach occurs, it is necessary to obtain the 
magnitude of the velocity of the spacecraft with respect to 
the Earth in that moment (vi), as well as the true anomaly 
of the spacecraft at this point. It is possible to do that using 
the following equations, all of them obtained using the 
above explained approximation of neglecting the sphere of 
influence of the Moon in the geometry of the encounter:

where rEM is the distance between the Earth and the Moon. 
Equation (6) has two solutions (θA and θB), that corresponds 

(1)a = ra + rp

2

(2)e = 1− rp

a

(3)E = − µ

2a

(4)C =
√

µa(1− e2)

(5)
∣

∣

−→
vi
∣

∣ =
√

µ

(

2

rEM
− 1

a

)

(6)θ = cos−1

[

1

e

(

a(1− e2)

rEM
− 1

)]

to the points A and B, respectively, as shown in Fig. 1. In 
this study, we will consider the solution given by the angle 
θA, which means that the spacecraft reaches the Moon’s 
orbit before it reaches the apogee of its orbit, considering 
a counterclockwise geocentric trajectory. The solution θB is 
not considered, because there is a symmetry in the system 
and the results are similar to the ones obtained by the solu-
tion for θA. From these values it is possible to calculate the 
angle γ between the inertial velocity of the spacecraft and 
the velocity of the body M2:

Therefore, the magnitude of the velocity of the spacecraft 
with respect to the Moon, in the moment that the approach 
starts (v∞), will be determined by:

when �v2 is the velocity of M2 with respect to M1 and �vi and �v0 
are the velocities of M3 with respect to M1, before and after 
the swing-by, respectively, in the inertial frame. This can 
be seen in Fig. 5, which shows how to obtain the ∆�v gener-
ated by the close approach. In Fig. 5, λ represents the angle 
between �vi and �v0, λf represents the angle between �v2 and �v0 
and θ represents the angle between �v2 and �v−∞. There are two 
possibilities for the spacecraft when passing by the Moon 

(7)γ = tan−1

[(

e sin θ

1+ e cos θ

)]

(8)v∞ =
√

v2i + v22 − 2viv2 cos γ

Fig. 4   Variables of the close approach

Fig. 5   Vectorial sum that explains the swing-by

Fig. 6   Possible rotations of the velocity vector
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(Fig.  6): the one assuming that the rotation of the velocity 
vector is in the counterclockwise sense (using point B of 
Fig. 6, giving the angle ψ1) and the one assuming that this 
rotation is in the clockwise sense (using point A of Fig. 6, 
giving the angle ψ2). These two values are obtained from:

where

µ is the gravitational parameter of the Moon. In this 
moment it is possible to obtain the variations of the two-
body energy and angular momentum in the system formed 
by the spacecraft and the Earth, from the equations [3]:

where ω  is the angular velocity of the motion of the pri-
maries, δ is half of the angle of deflection due to the close 
approach and E−, E+  are the energy before and after the 
swing-by, respectively. Finally, having determined the vari-
ation of energy and angular momentum after the swing-by, 
it is possible to obtain the semi-major axis and the eccen-
tricity after the close approach using the equations:

The next important step is to find the value of the dis-
tance that the spacecraft has to pass from the Moon (rap) 
to achieve an orbit that has a larger value for the apo-
gee (so, achieving the goal of making the spacecraft to 
pass by different positions in space), but also sending the 

(9)ψ1 = π + β + δ

ψ2 = 2π + β − δ

(10)β = cos−1

[

−v2i − v22 − v−
2

∞
2v2v

−∞

]

(11)δ = sin−1





1

1+
r
apv2∞
µ





(12)�v = |�v0| − |�v1| = 2|�v∞| sin δ
(13)�E = E+ − E− = −2v2v∞ sin δ sinψ

(14)�C = �E

ω

(15)
a = − µ

2E

(16)e =
√

1− C2

µa

spacecraft to an orbit that is resonant with the orbit of the 
Moon, such that a new encounter will occur between the 
spacecraft and the Moon, allowing a new swing-by. The 
approach used here to solve this question is to make a 
list of resonant orbits and then calculating the energy of 
each orbit. After that, this list is organized in the order of 
increasing values of energy. Based on that list, a search 
is made to find the value of rap for each passage that 
makes the orbits of the spacecraft to follow the desired 
sequence.

The first task is to obtain an equation that gives rap as a 
function of the variation in the energy desired. To complete 
this goal, it is necessary to calculate the value of δ (0 ≤ 
δ ≤ 90), half of the angle of deflection, due to the close 
approach. Considering Eq. (13) for the variation of energy:

where, from Eq. (9), we have ψ2.
Then

Through a trigonometric expansion, it is possible to get:

Considering now that sin(2δ) = 2 sin(δ) cos(δ), and defin-
ing the constants

we have:

Then the analytical solution is:

or, by simplification,

The distance of close approach is obtained by reorganizing 
Eq. (11) to give:

(17)�E = −2v2v∞ sin δ sinψ2

(18)�E = −2v2v∞ sin δ sin[2π + β − δ]

(19)
�E = −2v2v∞ sin(δ)[sin(2π + β) cos(δ)

− cos(2π + β) sin(δ)]

(20)
A = sin (2π + β)

2
; B = cos (2π + β);

C = − �E

2v2v∞

(21)A sin(2δ)− B sin2(δ) = C

(22)δ = ArcCos





1√
2

�

A2 + 2B(B+ C)− A

�

A2 − 4C(B+ C)

A2 + B2





(23)

(24)rap =
µ

v2∞

[

1

sin(δ)
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]

cos (δ) =
{

1

2

√

3+ Cos(2β)− D

}

D =
2

(

v2v∞�ECos(β)+
√

�E[v2v∞sin(β)]2[2v2v∞Cos(β)−�E]+ [v2v∞sin(β)]4
)
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where 0 ≤ δ ≤ 90.
A similar study can be made for the case where the 

angle of approach is ψ1 = π + β + δ. The final result is the 
same. This fact is expected, because a specific value for the 
variation in energy is required, there is only one solution 
for the problem.

3 � Tisserand’s Criterion

The Tisserand’s criterion is an important method that can 
be used in the study of gravity-assisted maneuvers. It was 
presented by the French astronomer Francois Felix Tis-
serand and can be obtained from the Jacobian constant by 
making the approximation of neglecting the mass of the 
secondary primary. A detailed explanation of this deri-
vation is available in Ref. [44], so the whole proof is not 
repeated here. It is an equation, developed in dimension-
less coordinates, based on the circular-restricted three-body 
problem model. This method can be used to find sequences 
of orbits similarly to what is done here, but it does not give 
the parameters required to obtain the sequence, as done 
by the present methodology. But, besides those limita-
tions, it is an important form to verify the results found in 
the present research, because it can validate the sequence 
of orbits. The method says that, for a spacecraft making a 
close approach with a celestial body, it has to nearly satisfy 
the equation [2, 6, 42]:

The subscripts indicate that, before the swing-by, the space-
craft has orbital elements ai, ei and ii and, after the swing-
by, it has orbital elements a0, e0 and i0.

4 � Numerical study

In this section, simulations are performed to analyze the 
orbital characteristics of a spacecraft that performs a 
series of close approaches with the Moon. It is assumed 
that the spacecraft starts its motion in a given orbit around 
the Earth. This orbit is specified by its perigee and apo-
gee distances. The “patched-conics” model is used and 
the procedure studies successive close approaches. To 
limit the number of swing-bys, a maximum number of 
revolutions for the Moon between two successive close 
approaches are specified. Several simulations were made 
and the number of a maximum of five revolutions for the 
Moon between two close approaches was chosen. This 
number generates a large number of potential swing-bys. 
The term “potential swing-bys” is used because some of 

(25)

1

ai
+ 2

√

ai
(

1− e2i

)

cos ii ≈
1

a0
+ 2

√

a0
(

1− e20

)

cos i0

the trajectories obtained may require a value smaller than 
the radius of the Moon for a periapsis distance for one of 
the passages of the spacecraft by the Moon, or an orbit 
with perigee below the surface of the Earth. Those trajec-
tories have to be excluded from the list of useful trajecto-
ries. A number higher than five would generate orbits with 
too large periods, which have little practical interest and 
that would be too much influenced by other perturbations. 
Those perturbations are not considered here, because the 
idea of the present paper is to study possible trajectories 
and not making final decisions on which orbit to use. This 
decision is left for a more detailed study of the trajecto-
ries, using better models for the dynamics. Table 1 shows 
the orbits, including the information of the number of 
periods of the Moon before the next close approach, the 
equivalent number of orbits of the spacecraft, the period 
(in days) of the orbit of the spacecraft, the respective 
semi-major axis (km), and the order of the resonance, that 
is the number of revolutions of the spacecraft followed by 
the number of revolutions of the Moon between two suc-
cessive encounters.

Based on Table 1, it is possible to order these orbits to 
have increasing values of the energy and then search for 
values of rap for each passage that can make the spacecraft 
to follow this series. After that, the energy, angular momen-
tum and orbital elements of the orbits are analyzed after 
each close approach, to show the histories of their evolu-
tion. The following assumptions are considered in those 
calculations:

(1)	 The close approach will be at the point A (Fig. 1);
(2)	 The Sun and the Earth (or any other perturbations) do 

not affect the motion of the spacecraft when it is close 
to the Moon;

(3)	 The energy (E) and angular momentum (C) will be 
analyzed after and before the swing-bys.

During these calculations, it is necessary to take into 
account that some orbits require a value for the perigee 
below the surface of the Earth, which means that they 
are not practical. One of the advantages of this analytical 
approach is exactly to show this situation, so it is possible 
to see the first orbit of the sequence that does not have this 
problem. Table  2 shows, from the results obtained, those 
impossible orbits, with the orbits classified in the order of 
increasing energy. It has the number of the swing-bys, the 
orbital period (days), the distance of the closest approach 
obtained from the algorithm (in units of radius of the 
Moon), semi-major axis (km), eccentricity, energy (km2/
s2), perigee distance (km), apogee distance (km), half of 
the deflection angle (rad), angle of approach (rad), order 
of the resonance and the time elapsed since the start of the 
sequence of swing-bys (days). Orbit number 9 has a perigee 
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Table 1   The resonant orbits for the spacecraft passing by the Moon

Number of revolutions  
of the Moon between two  
successive swing-bys

Number of revolutions of  
the spacecraft between two  
successive swing-bys

Period of the  
spacecraft (days)

Semi-major axis  
of the spacecraft (km)

Order of the 
resonance

1 1 27.3216 383,182 1:1

2 13.6608 241,390 2:1

2 1 54.6432 608,264 1:2

3 18.2144 292,423 3:2

5 10.9286 208,023 5:2

3 1 81.9647 797,052 1:3

2 40.9824 502,111 2:3

4 20.4912 316,310 4:3

5 16.3929 272,588 5:3

7 11.7092 217,815 7:3

8 10.2456 199,263 8:3

4 1 109.286 965,559 1:4

3 36.4288 464,192 3:4

5 21.8573 330,217 5:4

7 15.6123 263,864 7:4

9 12.1429 223,160 9:4

11 9.93512 195,217 11:4

5 1 136.608 1120,430 1:5

2 68.304 705,828 2:5

3 45.536 538,648 3:5

4 34.152 444,644 4:5

6 22.768 339,327 6:5

7 19.5154 306,187 7:5

8 17.076 280,108 8:5

9 15.1787 258,955 9:5

11 12.4189 226,529 11:5

12 11.384 213,762 12:5

13 10.5083 202,655 13:5

14 9.75771 192,886 14:5

Table 2   Orbits with perigee too low to be used in the sequence of swing-bys

Swing-by Orbital period 
(day)

rap (radius  
of the Moon)

a (km) e Energy rp (km) ra (km) δ (°) ψ (°) Resonance Time (days)

0 13.097 – 234,698.97 0.9592 −0.8492 9,579.55 459,818.4 36.97 358.88 – 0

1 9.7577 16.50 192,885.78 0.9980 −1.0333 377.58 385,393.98 8.70 357.67 14:5 136.61

2 9.9351 9.61 195,216.77 0.9969 −1.0209 606.73 389,826.80 13.55 357.48 11:4 245.89

3 10.2456 6.76 199,262.89 0.9944 −1.0002 1,114.32 397411.46 17.65 358.43 8:3 256.14

4 10.5083 5.19 202,654.70 0.9919 −0.9834 1,636.98 403,672.42 21.23 358.00 13:5 392.75

5 10.9286 4.03 208,023.42 0.9874 −0.9581 2,623.31 413,423.53 24.97 358.26 5:2 447.39

6 11.3840 3.37 213,762.45 0.9819 −0.9323 3,863.88 423,661.02 27.77 358.94 12:5 458.78

7 11.7092 2.93 217,814.97 0.9778 −0.9150 4,839.20 430,790.74 30.08 358.75 7:3 540.74

8 12.1429 2.61 223,160.45 0.9721 −0.8931 6,233.35 440,087.56 32.04 359.29 9:4 650.03

9 12.4189 2.14 226,528.98 0.9684 −0.8798 7,166.99 445,890.98 35.42 357.33 11:5 786.63
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above the surface of the Earth, but it is too close to the 
atmosphere (7,166.99 km from the center of the Earth), so 
it was also removed from this list of practical trajectories.

The remaining orbits are considered the possible ones 
for the sequence. They are shown in Table 3 and they rep-
resent the correct sequence of swing-bys, with respect to 
time, that keeps the spacecraft increasing energy, semi-
major axis and apogee distance. Table  3 shows the same 
quantities as shown in Table 2. They are all obtained start-
ing from a given initial orbit for the spacecraft around the 
Earth. The sequence of swing-bys presented corresponds to 
a single trajectory, so they all have similar values for the 
Tisserand’s parameter. This is the meaning of this param-
eter. For a single trajectory it is nearly constant. The rap, 
distance of the closest approach between the spacecraft 
and the Moon, is the key factor for the sequence, because 
it is assumed to be the only variable available to control 
the motion of the spacecraft. The radius of the Moon is 
called Rm, and it is assumed to have the value 1,737  km. 
The perigee distance of the initial orbit around the Earth 
is chosen to be rp = 9,579.55 km and the respective apo-
gee distance is ra = 459,818.40 km. This choice is a little 

arbitrarily. It was made based on the principles that it is 
necessary to have an initial orbit with a perigee distance 
that can be easily obtained by standard rockets and an apo-
gee distance that is a just above the lunar orbit. Those prin-
ciples generate orbits that can be reached without excessive 
fuel consumption. Some preliminary tests with similar val-
ues showed that this value has little influence in the results 
obtained, since, after the first encounter, the sequence of rap 
controls the motion of the spacecraft. In this way, there is 
no need to make too many simulations. Tests with higher 
differences were also made, and some interesting conclu-
sions are shown in the next session. Now, it is necessary 
to study the second restriction and see if the values of rap 
required are possible to reach, which means that it has to 
be larger than the radius of the Moon. Table 3 shows that 
the swing-bys are possible until the number 4. Swing-By 
number 5 has a value of rap = 0.97, so a passage below the 
surface of the Moon would be required. In this way, Figs. 7, 
8, 9, 10, 11, 12, 13, 14 show the results for the sequence of 
possible swing-bys that are the ones numbered from 1 to 4. 
The value of the criterion of Tisserand showed in the last 
column of Table 3 confirms that the method proposed here 

Table 3   Sequence of orbits performing close approaches with the Moon

Swing-by Orbital 
period  
(day)

rap (radius 
of the 
Moon)

a  
(103 km)

e Energy Rp  
(103 km)

Ra 
(103 km)

δ (°) ψ (°) Resonance Time 
(days)

Tisserand’s 
criterion

0 13.097 – 234.7 0.9592 −0.8492 9.56 459.82 36.97 358.88 – 0 1.0398

1 13.661 1.59 241.4 0.9516 −0.8256 11.68 471.1 40.55 357.54 2:1 27.32 1.0397

2 15.179 1.33 258.95 0.9321 −0.7696 17.58 500.32 43.60 359.41 9:5 163.93 1.0395

3 15.612 1.21 263.86 0.9269 −0.7553 19.30 508.43 45.17 359.03 7:4 273.22 1.0394

4 16.393 1.09 272.59 0.9179 −0.7311 22.39 522.78 46.91 359.23 5:3 355.18 1.0392

5 17.076 0.97 280.11 0.9105 −0.7115 25.08 535.13 48.81 358.86 8:5 491.79 1.0391

6 18.214 0.84 292.42 0.8991 −0.6815 29.51 555.33 51.08 358.88 3:2 546.43 1.0390
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Fig. 7   Energy of the spacecraft as a function of time
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Fig. 8   Semi-major axis of the spacecraft as a function of time
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Fig. 11   Apogee distance of the spacecraft as a function of time
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Fig. 12   Perigee distance of the spacecraft as a function of time
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found correct trajectories for the spacecraft, because the 
values are near constant, coherent with the level of approxi-
mation of the equations derived. The errors appear only in 
the fourth decimal digit.

Note that the spacecraft does not remain in every orbit 
the same amount of time. The times it stays in each orbit 
can be found in the plots, because the dots represent the 
instant of each swing-by. Those results show the expected 
evolution of the parameters and several interesting conclu-
sions. The energy (see Fig. 7), and so the angular momen-
tum (due to Eq.  14), the semi-major (axis) (see Fig.  8) 
and the apogee distance (see Fig.  11) increase after each 
swing-by. This characteristic is forced by the choice of 
the distance of the closest approach to the Moon, since 
the goal of the present research is to find this series. The 
energy goes from −0.8492 km2/s2 before the first pas-
sage to −0.7311 km2/s2 after the last possible swing-by, 
in increasing steps of smaller values, as shown in Fig.  7. 
This variation in energy causes the semi-major axis to go 
from 234,698.97 to 272,587.78 km (see Fig. 8), which cor-
responds to a variation of the apogee from 459,818.40 km 
(a little above the Lunar orbit) to 522,784.43 km, as shown 
in Fig. 11. The evolution of the perigee distance is shown 
in details in Fig. 12. It has larger increases, so making the 
spacecraft to pass by very different positions. The eccen-
tricity shows a decreasing sequence of values, also divided 
in smaller steps, as can be seen in more details in Fig. 9. 
The time span for this sequence is 355.18 days, very close 
to 1 year. The values of rap have a very interesting behav-
ior. It decreases from passage to passage. The reason for 
this fact is that it is necessary to compensate the increase of 
the velocity of the spacecraft. Equations (11) and (13) show 
that the variation of the energy depends on the velocity of 
approach and the periapsis distance of the close approach. 
The other parameters are all constants. So, since every pas-
sage increases the energy of the spacecraft and all passages 
have the same distance from the Earth (the Earth–Moon 
distance), the velocities of approach also increase from 

passage to passage. It means that the periapsis distance 
has to decrease to be able to give the required variation in 
energy. This is shown in Fig. 10 and Table 3. In fact, this is 
the reason why the sequence of trajectories ends at a certain 
point before an escape occurs. There is a point (swing-by 
number 5), where a value below the lunar surface would be 
required to give the necessary increase in energy. Figure 13 
shows the sequence of the angle of deflection, confirms 
these results, by showing that this quantity always increase 
to compensate the increase of the velocity of approach. Fig-
ure 14 complements this study, showing that the passages 
are always in front of the Moon, to increase the energy.

4.1 � Effects of the initial orbit

After studying the effects of the close approach distance, 
a study is made to verify the effects of the initial orbit of 
the spacecraft around the Earth in the sequence of close 
approaches. For values similar to the ones shown in the pre-
vious results, this change causes very little effects. The sit-
uation is a little bit different when the perigee is increased 
by larger values. The initial apogee distance is kept con-
stant, because increasing this value had no effects in the 
results and reaching higher values would increase the fuel 
consumption to place the spacecraft there. The results are 
also shown in Table 4 for the situation where rp is equal to 
30,000 km. The interesting characteristic is that it is pos-
sible to find a sequence with more swing-bys. In this case, 
a number of six swing-bys, instead of four, were found. 
The successive values of energy (and so semi-major axis) 
are the same, but since the initial eccentricity is smaller, 
the perigee does not reach the surface of the Earth and the 
sequence has two more swing-bys. It means that the dura-
tion of the sequence is larger, in the order of 546  days, 
instead of 355  days. The maximum value of the apogee 
distance is 529,720.85 km, a little larger than the value of 
522,784.43  km, found before, and two more intermediate 
steps were added. So, the decision of starting with a higher 

Table 4   Sequence of orbits performing swing-bys with the Moon when rp = 30,000 km

Swing-by Orbital 
period 
(day)

rap (radius 
of the 
Moon)

a (103 km) e Energy rp (103 km) ra (103 km)δ (°) ψ (°) Resonance Time 
(days)

Tisserand’s 
criterion

0 13.96 – 244.91 0.8775 −0.814 30.00 459.82 40.35 360.61 – 0 1.1675

1 13.66 2.22 241.39 0.8834 −0.826 28.15 454.63 42.51 357.22 2:1 27.32 1.1675

2 15.18 1.95 258.96 0.8554 −0.770 37.45 480.46 45.96 359.33 9:5 163.93 1.1673

3 15.61 1.59 263.86 0.8482 −0.755 40.06 487.66 47.73 358.90 7:4 273.22 1.1672

4 16.39 1.43 272.59 0.8360 −0.731 44.7 500.47 49.69 359.14 5:3 355.18 1.1671

5 17.08 1.27 280.1 0.8262 −0.712 48.69 511.53 51.83 358.72 8:5 491.79 1.1670

6 18.21 1.11 292.42 0.8115 −0.682 55.12 529.72 54.38 358.73 3:2 546.43 1.1669

7 19.52 0.94 306.19 0.7970 −0.651 62.17 550.21 56.48 359.16 7:5 683.04 1.1667
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perigee depends on the goals of the mission. There is a 
trade-off between the fuel consumption to place the space-
craft in the initial orbit and the time and sequence of orbits 
obtained. The criterion of Tisserand confirms the trajecto-
ries found one more time, with the errors still in the order 
of the fourth decimal digit, so it is possible to be sure about 
the existence of the sequence of trajectories proposed.

4.2 � Study of the accuracy of the “patched-conics” method 
for the Earth–Moon system

Another interesting question that can be made now is how 
accurate is the “patched-conics” approach for the Earth–
Moon system. A detailed study is shown in Ref. [34] for 
the Sun–Jupiter system but, since the Moon has a much 
larger mass with respect to the Earth than Jupiter has with 
respect to the Sun (about 10 times), this approximation is 
expected to give results with less accuracy. To answer this 
question, a study similar to the one shown in Ref. [34] is 
performed here for the Earth–Moon system. Simulations 
are made using the circular-restricted three-body problem 
and the “patched-conics” approach for a large number of 

swing-bys and the differences are plotted in a graph that 
has the angle of approach in the horizontal axis (in degrees) 
and the velocity of approach in the vertical axis (in canoni-
cal units). Figure 15 shows the results for different values 
of the close approach distance.

Another view of the same results can be done by cal-
culating the errors as a percentage. These calculations are 
made using:

In this equation, EPC is the variation of energy calculated 
using the model given by the restricted three-body problem, 
EP2C is the same variation obtained by the “patched-con-
ics” approach and �Em is the mean variation of each graph. 
The mean variation is used instead of the instantaneous 
value of every trajectory to avoid numerical problems with 
low values in the denominator for regions where the vari-
ation of energy is near zero. The figures are similar to the 
ones shown above, so they are omitted here to save space. 
But, in general, it is clear that the errors are larger when 
compared to the Sun–Jupiter system [34], as expected. For 
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∣

∣
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Fig. 15   Difference of the variation in energy between two models for different values of the close approach distance
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the study considering the case rap =  8 Rm, 305 swing-ys 
were obtained and the error between both models is in the 
range 10–80  %, from a total of 3,660 swing-bys. For the 
situation, where rap = 4 Rm, 127 swing-bys had errors above 
10 % from a total of 3,660 swing-bys. Another value used 
for the close approach distance in this test was rap = 2 Rm. 
In this case we found 125 swing-bys with errors in the range 

10–100 %, also from a total of 3,660 swing-bys calculated. 
As a final simulation, the case rap = 1.1 Rm was used. Here 
we found 102 swing-bys with errors in the range 10–100 %, 
also from a total of 3,660 swing-bys.

The results show that the accuracy of the method 
improves when the value of rap decreases and the effects of 
the close approaches are larger. In the region where practical 

Table 5   Numerical results of energy variation between two models for perigee distance of 2 radius of the Moon

CJ Jacobian’s constant Vinf velocity (canonical units)

ψ (°) Energy 
(canonical 
units)

Cji = −1.3 Cji = −1.0 Cji = −0.7 Cji = −0.4 Cji = −0.1 Cji = 0.2 Cji = 0.5 Cji = 0.8 Cji = 1.1 Cji = 1.4

Cjf = −1.0 Cjf = −0.7 Cjf = −0.4 Cjf = −0.1 Cjf = 0.2 Cjf = 0.5 Cjf = 0.8 Cjf = 1.1 Cjf = 1.4 Cjf = 1.7

Vi = 0.59 Vi = 0.97 Vi = 1.24 Vi = 1.47 Vi = 1.66 Vi = 1.83 Vi = 1.99 Vi = 2.13 Vi = 2.27 Vi = 2.35

Vf = 0.97 Vf = 1.24 Vf = 1.47 Vf = 1.66 Vf = 1.83 Vf = 1.99 Vf = 2.13 Vf = 2.27 Vf = 2.35 Vf = 2.48

180°–190° |�Em| 0.010 0.006 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.001

�Em3c 0.103 0.101 0.106 0.100 0.096 0.092 0.088 0.106 0.104 0.080

190°–200° |�Em| 0.026 0.015 0.010 0.008 0.006 0.005 0.003 0.003 0.003 0.003

�Em3c 0.299 0.309 0.303 0.290 0.278 0.267 0.256 0.247 0.260 0.256

200°–210° |�Em| 0.033 0.024 0.017 0.012 0.009 0.007 0.006 0.005 0.004 0.003

�Em3c 0.424 0.512 0.501 0.480 0.460 0.441 0.424 0.408 0.396 0.381

210°–220° |�Em| 0.059 0.033 0.022 0.015 0.012 0.009 0.007 0.006 0.005 0.004

�Em3c 0.668 0.689 0.673 0.645 0.619 0.594 0.571 0.550 0.533 0.514

220°–230° |�Em| 0.077 0.043 0.028 0.020 0.015 0.012 0.010 0.008 0.006 0.006

�Em3c 0.839 0.863 0.842 0.808 0.775 0.744 0.716 0.690 0.668 0.645

230°–240° |�Em| 0.076 0.041 0.027 0.019 0.014 0.010 0.009 0.007 0.006 0.005

�Em3c 0.826 0.849 0.828 0.794 0.761 0.730 0.702 0.676 0.655 0.632

240°–250° |�Em| 0.107 0.056 0.036 0.024 0.018 0.013 0.010 0.008 0.006 0.005

�Em3c 1.077 1.102 1.073 1.028 0.985 0.944 0.907 0.873 0.844 0.815

250°–260° |�Em| 0.087 0.060 0.038 0.026 0.019 0.015 0.011 0.009 0.007 0.006

�Em3c 1.032 1.174 1.142 1.096 1.051 1.008 0.969 0.934 0.903 0.873

260°–270° |�Em| 0.117 0.069 0.039 0.025 0.018 0.013 0.010 0.007 0.005 0.004

�Em3c 1.179 1.210 1.178 1.123 1.076 1.033 0.993 0.956 0.924 0.893

270°–280° |�Em| 0.116 0.059 0.037 0.024 0.017 0.012 0.009 0.007 0.004 0.004

�Em3c 1.179 1.203 1.170 1.122 1.076 1.032 0.992 0.956 0.923 0.893

280°–290° |�Em| 0.112 0.057 0.035 0.022 0.015 0.011 0.008 0.006 0.004 0.003

�Em3c 1.146 1.171 1.138 1.092 1.046 1.003 0.964 0.928 0.896 0.865

290°–300° |�Em| 0.100 0.050 0.031 0.020 0.014 0.010 0.006 0.004 0.003 0.002

�Em3c 1.069 1.093 1.063 1.021 0.979 0.940 0.903 0.870 0.840 0.813

300°–310° |�Em| 0.087 0.044 0.027 0.017 0.012 0.009 0.006 0.004 0.003 0.001

�Em3c 0.964 0.988 0.961 0.924 0.886 0.851 0.818 0.788 0.762 0.736

310°–320° |�Em| 0.071 0.037 0.022 0.014 0.009 0.007 0.004 0.003 0.002 0.001

�Em3c 0.831 0.855 0.831 0.800 0.767 0.737 0.708 0.683 0.659 0.637

320°–330° |�Em| 0.054 0.055 0.029 0.018 0.008 0.005 0.004 0.002 0.001 0.001

�Em3c 0.664 0.675 0.696 0.677 0.626 0.601 0.578 0.557 0.537 0.521

330°–340° |�Em| 0.038 0.021 0.013 0.009 0.006 0.004 0.003 0.002 0.001 0.0004

�Em3c 0.491 0.509 0.494 0.477 0.457 0.438 0.421 0.405 0.390 0.3779

340°–350° |�Em| 0.022 0.012 0.008 0.005 0.005 0.002 0.002 0.001 0.001 0

�Em3c 0.301 0.313 0.304 0.294 0.294 0.271 0.260 0.251 0.241 0.234

350°–360° |�Em| 0.007 0.004 0.003 0.001 0.001 0 0.001 0.001 0 0

�Em3c 0.107 0.111 0.106 0.104 0.100 0.096 0.093 0.090 0.085 0.084
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applications are more numerous, rap < 4.0 Rm, there are only 
around 120 swing-bys (about 3  % of the total) that have 
more than 10  % in error. It makes this method of evalua-
tion of the accuracy useful for preliminary analyses of the 
problem. Another point in favor of this analysis is that the 
regions where the accuracy is not good (>10 %) are shown 
and, if the trajectory of interest lies in this region, a better 
method can be used to evaluate the results of the swing-bys, 
as the restricted three-body problem.

Another view with more details of the comparison of the 
models, “patched conics” and “Restricted Three-Body Prob-
lem”, is shown in Table 5. In this study, 450,000 maneuvers 
were performed for the periapsis distance of 2 radius of the 
Moon. In all cases studied was analyzed energy change when 
considering different angle of approaches and different Jac-
obi’s constant. The results are organized in Table  5, where 
|Gem|  =  |ΔEmPC−ΔEm3c|; ΔEm3c calculated using the 
model given by the restricted three-body problem. ΔEmPC is 
the same variation obtained by the “patched-conics” approach 
and ΔEm is the mean variation between two models for each 
simulation; cji and cjf are the Jacobi’s constants initial and 
final, respectively; vi and vj is the initial and final velocity in 
the canonical units which corresponds to cji and cjf.

5 � Conclusion

This study was made to show the evolution of the trajec-
tories, as well as the amplitudes of the variations of the 
velocity, energy and angular momentum of an orbit due to 
a series of close approaches with the Moon. A set of ana-
lytical equations is derived to allow the calculation of the 
distance of the closest approach that generates a specified 
orbit. Then, a series of resonant orbits with the Moon that 
has increasing apoapsis to cover a large area of the space 
around the Earth–Moon system is found. Using these 
equations it is possible to establish a sequence of close 
approaches that meets the goals.

The results showed that it is possible to find useful 
sequences of close approaches using these natural changes 
of orbits to pass by different positions in the space with-
out the expenses of applying a control to the spacecraft. 
The criterion of Tisserand was applied and it confirmed the 
existence of the trajectories found.

Regarding the study of the accuracy of the “patched-
conics” method used to study this problem, it was shown 
that its accuracy improves when the distance of the close 
approach decreases, which is very important because the 
practical applications concentrated in this region. In gen-
eral, it is clear that the approximation is good in the major-
ity of the initial conditions. The situations where the accu-
racy is not so good are mapped, so it is possible to know in 
advance that a better solution has to be found.
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