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This work explores the continuum removal (CR) technique to detect plant stress in visible/near infrared 

wavelengths. The red edge of the 680 nm chlorophyll absorption is a key feature in plant stress studies 

(e.g., [1], [8], [7]). The CR transformation consists of estimating the absorptions not due to the band of 

interest and removing their effects [2]. The CR technique normalises the reflectance spectrum and 

isolates absorption features to allow comparison between absorption bands on a common basis [4]. The 

CR method was initially used in geological remote sensing and was first applied to studies of leaf 

biochemistry by [5]. [6] demonstrated that the distinction between healthy and contaminated plant 

samples was improved when analysing the continuum-removed reflectance compared to reflectance and 

first derivative of reflectance data. In that study, they applied the CR using fixed continuum channels 

(e.g. 550-570 nm). Pre-stipulated wavelengths (i.e. left and right channels) used to determine the 

continuum line for the CR of a specific absorption feature can be adjusted for each sample to better 

represent the feature (PRISM software, [3]). In the present study, a time series of close range canopy 

reflectance data of a grass plant species (Brachiaria brizantha) grown in liquid hydrocarbon-

contaminated (diesel – DSL; gasoline-GSL) soil was acquired with a portable spectrometer (ASD 

FieldSpec® 3 Hi-Res). The parameters describing the chlorophyll 680 nm absorption feature 

(continuum channels, depth, width, and area) were derived using the CR applied to the spectra using 

fixed (FIX) and adjusted (ADJ) continuum channels. Differences between CR-FIX and CR-ADJ results 

are observed in Figure 1 for all parameters but the feature centre (Table 1). Left and right channels of 

the continuum line differs some 16 nm and 8 nm on average, respectively, for the FIX and ADJ methods. 

In addition, the mean depth, width (FWHM – full width at half maximum) and area of the 680 nm 

feature yielded with the ADJ technique showed higher values. The analysis of the parameters estimated 

for the 680 nm absorption feature (CR-ADJ) for each of the contamination treatments, indicates that 

plants stressed by DSL and GSL display mean values of depth, width and area substantially lower than 

healthy plants (CTR) (Table 2). The results imply that to better characterize an absorption feature, the 

application of the CR technique using adjusted channels is superior and should be favoured in the 

analysis. Plant stress in brachiaria grass induced by the contamination of soil with DSL and GSL can 

be detected with spectral feature analysis focusing on the depth, width or area of the 680 nm chlorophyll 

absorption feature. 



 

Figure 1. Continuum removed reflectance using fixed (FIX) and adjusted (ADJ) continuum channels 

for: (1) the 680 nm chlorophyll absorption feature. (2) Zoom in the wavelengths smaller than 560 nm 

and. (3) Zoom in the wavelengths greater than 740 nm. The curves in green, blue and red correspond to 

the samples of the control (CTR), contaminated with diesel (DSL) and contaminated with gasoline 

(GSL), respectively. 

 

Table 1. Statistics of the 680 nm chlorophyll absorption feature parameters of all samples analysed 

using continuum removal with fixed (FIX) and adjusted (ADJ) continuum channels. The mean 

differences between fixed and adjusted parameters are highlighted in grey. 

 Left channel Right channel Center Depth FWHM Area 

F
IX

 

Minimum 550 750 678 699 129 84 

Maximum 550 750 679 899 149 124 

Mean 550 750 678 827 140 107 

SD 0 0 0 67 7 14 

A
D

J 

Minimum 518 756 678 702 131 87 

Maximum 529 761 679 901 152 129 

Mean 525 760 678 830 143 111 

SD 5 2 0 66 8 15 

A
D

J 
- 

F
IX

 Minimum -23 4 0 3 2 3 

Maximum -12 9 0 2 4 5 

Mean -16 8 0 2 3 4 

SD 5 2 0 0 0 1 
FWHM – full width half maximum;   SD – standard deviation. 

 



Table 2. Statistics of the 680 nm chlorophyll absorption feature parameters obtained with the continuum 

removal using adjusted continuum channels. Data are presented for each of the treatments: control 

(CTR), plants contaminated with diesel (DSL) and plants contaminated with gasoline (GSL). 

    Left channel Right channel Center Depth FWHM Area 

C
T

R
 

Minimum 518 757 678 823 141 108 

Maximum 528 761 679 909 154 132 

Mean 523 760 679 876 148 122 

Range 10 4 1 86 13 24 

SD 4 2 0 23 4 7 

D
S

L
 

Minimum 518 761 678 680 129 83 

Maximum 530 762 679 898 152 129 

Mean 525 761 678 835 142 112 

Range 12 1 1 218 24 46 

SD 5 0 0 73 9 16 

G
S

L
 

Minimum 518 750 678 605 122 69 

Maximum 530 761 678 896 151 127 

Mean 526 758 678 779 137 101 

Range 12 11 0 291 28 58 

SD 5 4 0 103 10 21 
FWHM – full width half maximum;   SD – standard deviation. 
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