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Self-configuring two types neural networks by MPCA
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Abstract. Neural network is a technique successfully employed in many applications on several research fields. An
appropriate configuration for a neural networks is a tedious task, and it often requires the knowledge of an expert on the
application. In this paper, a technique for automatic configuration for two types of neural networks is presented. The
multilayer perceptron and recurrent Elman are the neural networks used here. The determination of optimal parameters
for the neural network is formulated as an optimization problem, solved with the use of meta-heuristic MPCA (Multiple
Particle Collision Algorithm). The self-configuring networks are applied to perform data assimilation.
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1 INTRODUCTION
Artificial Neural Networks (ANNs) are computational techniques that present a mathematical model inspired by the

neural structure of biological organisms, acquiring knowledge through experience which have been applied widely in
several tasks such as control, prediction of weather and climate, data assimilation, optimization, image processing and
others. ANNs have emerged as excellent tools for deriving data oriented models, due to their inherent characteristic of
plasticity that permits the adaptation of the learning task when data is provided. In addition to plasticity, ANNs also
present generalization and fault tolerance characteristics that are fundamental for systems that depend on observational
data that may be incomplete and slightly different from the data used to derive the models.

The use of ANNs to solve real problems always includes the selecting of appropriated network topology. The later
issue has been the subject of intensive research in recent years, since we are looking for an optimal topology to solve a
specific problem. This is a complex task, and usually requires a great effort by an expert, identifying the best parameter
set, and it is necessary a previous knowledge about the problem to be treated.

There are many algorithms in the literature for the ANN training aimed the improving of the ability of generalization
and for the control of an adequate architecture specification, such as: (a) Pruning (Hinton, 1989) makes adjustment of
neural network by modifying its structure, the training begin with an oversized architecture and the weights are eliminated
until the capacity of generalization can be increased; (b) Weight Decay suggested by (Hinton, 1989): the algorithm is
similar to the Pruning, where the cost function and weight vector are modified; (c) Early Stopping proposed by (Weigend,
1990), the scheme performs the early interruption of training, without changing the ANN architecture, similarly; (d) Cross
Validation proposed by (Stone, 1978): it is known to improve the generalization, where the data set is separated in two
sets: training data and validation data. However, all these algorithms still suffer from slow convergence. In addition, these
are based on gradient techniques and can easily stick at a local minimum.

The identification of the best configuration for a given ANNs can be considered as an optimization problem, where
each point in the search space represents a potential NN with different topology and weights. Hence, many methods were
presented to tackle this problem.

Teixeira et al.(2000) presented a new learning algorithm to improve the generalization of the model of multilayer
perceptron. This algorithm uses the training techniques of multi-objective optimization, which proposes to control the
complexity of ANN using simultaneous minimization of training error and norm of weight vector. Costa, Braga and
Menezes (2003a) presents a new constructive method and pruning approaches to control the design of MLP without loss
in performance. Costa et al.(2003b) also have developed an optimization technique for multiobjective training of ANN
which uses the control algorithm for sliding mode control. This algorithm controls the convergence of the system to the
point of minimum. Carvalho, Ramos and Chaves (2011) proposes an approach to configure the architecture of the neural
network, using mono-objective optimization techniques. The authors used four metaheuristics: the generalized extremal
optimization, the variable neighborhood search, simulated annealing, and genetic algorithm.

Optimization problems have the goal of finding the best set within a variable set to maximize or minimize a function,
defined as an objective function or cost function. Optimization problems can be classified as: continuous optimization
(where the variable has real or continuous values); discrete optimization (where the variable has integer or discrete values);
and mixed optimization (with integer and continuous values at the same time) (Becceneri, 2009).

This paper deals with self-configuration using a new meta-heuristic called the Multiple Particle Collision Algorithm
(MPCA) to compute the optimal architecture for an ANN. The cost function has two terms: a square difference between
ANN output and the target data (for two data set: learning process, and the generalization, and a penalty term used
to evaluate the complexity for the new network architecture at each iteration. The concept of network complexity is
associated to the number of neurons and the number of iterations in the training phase.

In this paper, two types of neural networks with supervised learning are used, the Multilayer Perceptron and recurrent
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Elman. Here, the self-configuring networks are applied to perform data assimilation to emulate the Kalman filter is carried
out with linear 1D wave equation (Bennett, 2002).

2 ARTIFICIAL NEURAL NETWORK
Artificial Neural Networks are computational techniques inspired on the neural structure of biological organisms,

acquiring knowledge through experience. The network has parallel and distributed processing units or neurons, which
calculates certain mathematical functions, typically nonlinear. These neurons can be divided into one or more hidden
layers interconnected by synaptic weights (connections), which store the knowledge represented in the model, and serve
to balance the input received by each network neuron (Haykin, 1998).

The artificial neuron model proposed by McCullock and Pitts in 1943, interprets the functioning of the neuron as a
simple binary circuit that combines multiple inputs and one output signal. The mathematical description resulted in a
model with n input terminals representing the dendrites, and only one output simulating the axon. In the mathematical
terms, a neuron-k could be described considering the following pair of equations (Haykin, 1998):

vk =
n

∑
j=1

wk j x j (1)

yk = ϕ(vk +bk) (2)

where x1,x2, ...,xn are the input signals; wk j are the synaptic weights of neuron k computed during the learning phase; vk
is the linear combination among the input signals; bk is the bias; ϕ is the activation function; and yk is the output signal of
the neuron. The use of bias bk has the effect of applying an affine transformation to the output vk of the linear combiner
in the model.

The property of primary significance for a neural network is the ability to learn from the environment, improving
its performance through the learning. A neural network learns from its environment through an interactive process of
adjustments applied to its synaptic weights and bias levels (Haykin, 1998). In the context of neural networks, the learning
process can be defined as a set of well defined rules for solving a specific problem of learning.

The training algorithms are divided into two classes: supervised and unsupervised learning. For the supervised learn-
ing, the input pattern and the desired output are provided by an external supervisor. For this type of training, the output is
compared with the desired response, and the weights of connections are adjusted by minimizing the error. In the training
with unsupervised learning, only the input patterns are presented to the network: there is no an external supervisor to
indicate the desired output for input patterns (Haykin, 1998).

2.1 Multilayer Perceptron
The architectures of multilayer perceptron neural models are the most used and known. Typically, this architecture

consists of a set of units forming an input layer, one or more intermediate (or hidden) layer(s) of computational units, and
an output layer. It is a supervised neural network.

A very popular algorithm for training MLP-NN is called backpropagation of error. The backpropagation learning
error consists of two steps through the different layers of the network: forward and backward steps. For the forward step,
an activity pattern (input vector) is applied thought the nodes of the network, and its effect propagates on the entire the
network, layer by layer. Finally, a set of outputs is produced as the actual response of the network. During the backward
step, the synaptic weights are all adjusted in accordance with an error correction rule. The response of the network is
subtracted from a desired output to produce an error signal. The error signal is back propagated through the network. For
minimizing the error, a correction is applied to the synaptic weight ∆w j(n), following the rule delta (Haykin, 1998):

∆w ji(n) =−η
∂ε(n)

∂w ji(n)
(3)

where η is the learning rate parameter. The use of the negative sign in Eq. 3 denotes the gradient descent direction, so as
to reduce the value of ε(n).

An ANN is composed of an input layer of neurons, one or more hidden layer(s), and an output layer. Each layer
comprises multiple units fully connected (Figure 1), with an independent weight attached to each connection.

In order to evaluate the performance of the models, the mean square error is used:

Egen =
1
N

N

∑
k=1

(yk−dk)
2 (4)

where N is the number of patterns in the data set, yk is the true observational value, and dk is the estimation computed by
the neural model.

2.2 Recurrent Neural Network
The recurrent networks are neural networks with one or more feedback loops. Given a multilayer perceptron as the

basic building block, the application of global feedback can take a variety of forms. We may have feedback from the
output neurons to the input layer. Another possibility is the link among the hidden neurons with the input layer. When the
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Figure 1: Multilayer Perceptron

multilayer perceptron has two or more hidden layers, the possible forms of global feedback expand even further (Haykin,
1998).

The Elman network (Elman, 1990) is used in the current study and it has an similar architecture to the MLP. This
network contains recurrent connections from the hidden neurons to a layer of context units, consisting of unit delays.
These context units store the outputs of the hidden neurons for one time step, and then feed them back to the input layer.
The hidden neurons have some record of their prior activations, which enables the network to perform learning tasks that
extend over time.

The network Elman consists of four layers: an input layer, composed of storage neurons that receive an external signal
to propagate it, without modification; a hidden layer where activation functions may be linear or non-linear; a context
layer is used to store the activation of neurons; the intermediate layer (it can be used with time delay), and an output layer,
neurons whose outputs are linear sums of their respective input signals ) (Haykin, 1998). Figure 2 shows the architecture
of a recurrent network inspired in a multilayer perceptron.

Figure 2: Elman recurrent neural networks

3 MULTIPLE PARTICLE COLLISION ALGORITHM
The Multiple Particle Collision Algorithm (MPCA) was developed by (Luz, Becceneri and Campos Velho, 2008),

inspired the canonical Particle Collision Algorithm (PCA) (Sacco and Oliveira, 2005), (Sacco et al., 2006). In this
version of the algorithm, a new characteristic is introduced: the use of several particles, instead of only one particle, for
moving in the search space. Both algorithms are greatly inspired on two physical behaviour inside of a nuclear reactor:
absorption and scattering. There are similarities with basic characteristics of Simulated Annealing (Metropolis et al.,
1953), (Kirkpatrick, Gelatt and Vecchi, 1983).

The PCA starts with a selection of an initial solution (Old-Config). It is modified by a sthocastic perturbation (Per-
turbation{.}), leading to the construction of a new solution (New-Config). The new solution is compared (function
Fitness{.}), and the new solution can or cannot be accepted. If the new solution is not accepted, the particle can be send
to a different place in the search space, giving the algorithm the capability of escaping a local optimum. This approach
is inspired on the scaterring process (Scaterring{.}). If a new solution is better than the previous one, this new solution
is absorbed (Absorption.}). The exploration around closer positions is applied by using the operators Perturbation{.} and
Small-Perturbation{.} (Luz, 2012).

The implementation of the MPCA algorithm is similar to PCA, but it uses a set of N-particles, where a mechanism for
sharing the information among particles is employed. A blackboard strategy is adopted, whose the Best-Fitness candidate
is shared among all particles in the process. Luz, Becceneri and Campos Velho (2008) have shown the MPCA is able to
computing good solutions, in which PCA cannot found good answers.

The MPCA is codified using Message Passing Interface (MPI) libraries on a multiprocessing machine with distributed
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memory. The pseudo-code for the MPCA is presented by Figure 3 (Luz, 2012). The MPCA, as well as the PCA, applies
a strategy presented by (Metropolis et al., 1953). The MPCA belongs to the class of bio-inspired algorithms. However,
the PCA is a trajectory-based method, while the MPCA is a population-based method.

Generate an initial solution: Old-Config
Best-Fitness = Fitness{Old-Config}
Update Blackboard
For n = 0 to # of particles

For n = 0 to # iterations
Update Blackboard
Perturbation{.}

If Fitness{New-Config} > Fitness{Old-Config}
If Fitness{New-Config} > Best-Fitness

Best-Fitness = Fitness{New-Config}
End If
Old-Config = New-Config
Exploration{.}

Else
Scattering{.}

End If
End For

End For
Figure 3: Pseudo-code for MPCA.

4 CONFIGURING THE NETWORKS WITH SUPERVISED LEARNING BY MPCA
A neural network learns from its environment through an interactive process of adjustments of the synaptic weights

and bias (Haykin, 1998). In the context of neural networks, the learning process can be defined as a set of well defined
rules for solving a specific problem of learning.

There is no a general analytical method to compute ANN weights. Further, we not even know the correct network
topology to be applied. In practice, this problem is usually solved by using empirical methods, based on repetitive trial
and error approach: the configuration is determined performing tests with different topologies until satisfactory results.
This empirical issue consists of an iterative process, where the neural network parameters are supply by the user.

The problem to identify the best configuration of the supervised NN can be formulated as an optimization problem.
The goal is to find the optimum value, representing the best combination of variables for the NN architecture, with the
definition of the set of weights. This self-configured NN is determined by the minimization of cost function defined by
Equation 5.

The main advantage by using an automatic procedure to configure an ANN is the ability to define a near-optimal ANN
architecture, without needing the help of an expert on the NN theory and/or on the application. Such approach avoids this
time consuming and tiring process of trial and error to find the optimal neural network architecture.

Optimization problems have the goal of finding the best solution within a search space to maximize or minimize a func-
tion or a functional, defined as an objective function or cost function. They can be classified as: continuous optimization
(real or complex number domain); discrete optimization (for integer or discrete values), and mixed optimization (when
the unknown set has integer and continuous values) (Becceneri, 2009). The ANN configuration treated here belongs to
the last class.

The objective function used in this study is a weighted average of two terms of square difference between the target
values and the ANN output and a penalty term. The cost function is given by (Carvalho, Ramos and Chaves, 2011):

fobj = penalty×
(

ρ1×Etrain +ρ2×Egen

ρ1 +ρ2

)
(5)

where, ρ1 = 1 and ρ2 = 0.1, the same values proposed by (Carvalho, Ramos and Chaves, 2011). These are adjustment
factors for taking into account the relative relevance of training (Etrain) and generalization (Egen) errors. There is great
flexibility in the evaluation of the objective function, because the training error is directly related to the network memory
capacity, and generalization error refers to the ability of ANN to identify the patterns that are similar to ones contained
in the validation set. The factor penalty is applied to compute the NN architecture with the lowest complexity. The
computational complexity of a supervised ANN architecture can be defined as a function of two factors: the total number
of neurons, and the epochs number to reach the convergence. From this consideration, a penalty factor was developed to
favor lightweight architectures, and it can be expressed by:

penalty =C1 (ε
neurons)2×C2 (epochs)+1 (6)

where C1 = 1 and C2 = 0.1 are adjustment parameters for finding a good balance for the two factors in the complexity
measurement.
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The MPCA is employed to embrace: the number of intermediate layers (integer number), the number of neurons in
each intermediate (hidden) layer (integer number), the learning rate parameter η (real number), momentum constant α

(real number), and the activation function (integer number). Allowed values for these parameters are shown in Table 1.
The objective function 5 is solved with the use of MPCA for automatic configuration of a neural network architecture,
producing a configuration of the NN with the best possible performance.

Table 1: Parameters to define a network architecture.
Parameter Value
Neuron in the hidden layer | 1.0 | . . . | 32 |
Learning ratio: η | 0.0 | . . . | 1.0 |
Momentum constant: α | 0.1 | . . . | 0.9 |
Activation function |Tanh |Logistic |Gauss |

5 APPLICATION: DATA ASSIMILATION
In this work, two models of ANN are used: a Multilayer Perceptron neural network (MLP-NN), and the Elman

recurrent neural network (Elman-NN). Both ANNs are trained to emulate the Kalman Filter applied to assimilate data to
the linear wave equation of first order. The issue is how to specify a quasi-optimal topology for two types of ANNs trained
to emulate the data assimilation Kalman filter process, generating good results.

Mathematical models describing physical phenomena are imprecise, with incomplete understanding of the process.
Therefore, the prediction of a certain model is inexact. The forecast is detached from reality every time step during
the prediction process. For mitigating such disagreement, information are inserted into the model from the observation
system. The result of a balanced combination between model and observation data is called analysis, the initial condition
for the prediction system. This characterizes a cycle of data assimilation and forecasting (Kalnay, 2003), (Daley, 1993).
However, if we consider, hypothetically, that the models are perfect, observation measures contains errors. For a chaotic
regime, any small change in initial conditions alter the dynamics, making the data assimilation a necessary process for an
operational forecasting.

The more accurate is the estimate of the initial condition, the quality of the forecast will be better. For this, it is
necessary to use tools of data assimilation to initialize the numerical forecast models. Mathematically assimilation data is
a two step process:
(i) Forecast step:

x f
t = M(xa

t−1) (7)

(ii) Analysis step:

xa
t = x f

t +ρ (8)

where x f
t is the vector of model state variables, the superscripts f and a represent the forecast and analysis steps, M

represents the numerical model, ρ is the increment of the analysis (or innovation), – determined according to the technique
assimilation used, xa

t is the analysis data (or initial condition (i.c.)).

5.1 Forward model: Linear 1D wave equation
The dynamical system used in our tests is the first order linear 1D wave equation:

∂η

∂ t
+C

∂η

∂ t
= F(x, t) (9)

where η(x, t) is the unknown variable to be estimated by data assimilation, C is the constant phase speed, F(x, t) is the
external forcing, t is time, and x is space. Periodic boundary conditions are assumed. The wave model was integrated
with centered finite difference method, for space variable, and with the Crank-Nicholson scheme for the time. The initial
condition is given by the following expression:

ηF(x,0) = η0
1

cosh2[(x− v)/∆]
0≤ x≤ Lx (10)

where η0 =−60, v = c+(αη0)/3, α =−1.62×10−2, c = 2.42, and ∆ = 1340 (Bennet, 2002)

5.2 Kalman filter
The result of the data fusion from observations and from a mathematical model is called analysis. Among several

probabilistic techniques to make this merger is the Kalman Filter (KF). It is an estimation procedure for taking into
account the statistical model of Gaussian type. For complete description of a Gaussian model, only the mean and the
standard deviation need to be known. For a stochastic process, the distribution (or the statistical properties) will go to
change with time. Thus, if the time variation of the distribution is known, the stochastic process will be well determined.
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There are two components for the Kalman filter: (i) forecasting step, where the updated state and the estimation of
uncertainties are propagated forward in time, (ii) up-dating step, in which the estimated state and the uncertainties are
adjusted, preparing to the next observation set. In the Kalman filter, the prediction is made from a new analysis obtained
when observations are available. The filter propagates the analysis by the forecasting model:

x f
n+1 = M(xa

n) (11)

where n and f denote the discrete time and the forecasting values, respectively. After this step, the modeling error is
estimated by calculating the matrix covariance of the prediction error:

P f
n+1 = MnPa

n MT
n +Qn (12)

where Q is the covariance matrix of the modeling error.

6 RESULTS FOR DATA ASSIMILATION
As mentioned earlier, the goal is to identify neural network for emulating the assimilation process produced by the

Kalman filter. The results below show the network automatically configured with MPCA, and a comparison with previous
results obtained with ANN defined by an expert (Furtado, Campos Velho and Macau, 2011). Parameters used in the
MPCA: 6 particles – multi-processing machine: one particle per processor, 10 iterations. The stopping criterion is the
maximum number of objective function evaluations. The numerical experiment was performed with synthetic observa-
tional data. The MPCA was applied to optimize the parameters of ANN: number of neurons in the hidden layer, activation
function, learning rate, and momentum.

The Kalman filter deals with the following set-up: Qn = 0.1I, Rn = 0.5I, H = I, corresponding to the covariance matrix
of modeling error, covariance matrix of the observation error, H represents the observation system, respectively, and I is
the identity matrix. The observations are synthetically generated, and they are assimilated every 10 steps. Observations
were generated from the forward model, adding a random Gaussian increment with 5% of noise level. For the proposed
data assimilation method using neural networks, the following equation 13 describes the analysis determination :

xa
n = FNN(x f

n ,y
o
n) (13)

where FNN is the neural networks used in the assimilation process. These ANNs are supervised networks. The desired
output for the neural networks is an estimation obtained with Kalman filter. The ANN training phase consist to determine
the best weights for connecting the internal neurons.

The numerical experiment was performed by automatic configuration of two types of ANN for data assimilation. The
first experiment is carried out with the feedforward Elman neural network, and the second one is the MLP-NN. For both
experiments, weights and bias were initialized with random values. The best architectures found by MPCA are shown in
Table 2, where MPCA-ANN1 is the Elman recurrent network, MPCA-ANN2 is the MLP network, and the Expert-ANN
is the network defined by (Furtado, Campos Velho and Macau, 2011).

Table 2: ANN: architectures
Parameters MPCA-Elman MPCA-MLP MLP-Expert
Hide layer 1 1 1
Hide layer neuron 8 23 1
Learning tax: η 0.2 0.4 0.9
Momentum: α 0.9 0.6 0.0
Activation Function Tanh Tanh Tanh
Quadratic Error 0.051 0.158 0.421

The forward model was executed considering tmax = Nt ×∆t = 3000× 10 = 30000 seconds, and Lx = Nx ×∆x =
128× 150 = 19200 m. Figure 4a shows the wave profile at the time step 3000, performing 300 cycles of assimilation.
The blue curve corresponds to the true state, the red one is the wave profile obtained from the analysis computed by ANN
(emulating the Kalman filter), and observations are represented by green square points.

The results using both ANN models determined by MPCA – see Figures 4a and 4b – obtained better performance than
ANN defined by an expert. Indeed, both ANNs computed by MPCA show a high fidelity with real dynamics (see Figure
4c). Figure 5 shows the error between the observation and the assimilation executed by ANN. In the figure, the red curve
corresponds the result with the assimilation obtained by ANN-Expert, the green and blue curves are results obtained by
the MLP-NN and Elman-NN configured by MPCA.

7 FINAL REMARKS
A challenge for the ANN application is to define an appropriated configuration. Here, the self-configuring neural

network is formulated as optimization problem. A new metha-heuristic MPCA is applied for authomatic configuration for
two types of ANN: MLP-NN and Elman-NN. The ANNs were employed into an important application: data assimilation.
The assimilation with the Elman-NN presented the best results (Figure 5).

The automatic method to identify the best configuration for the ANN does not require the help of an expert. This
special feature allows the application of ANN approach to a larger community.
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(a)

(b)

(c)
Figure 4: (a) MPCA-ANN1: Elman recurrent network; (b) MPCA-ANN2: MLP network; (c) Empirical ANN
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Figure 5: Difference between observed and the output of neural networks.
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