
Clustering Search applied to Rank Aggregation

Luiz H. N. Lorena
UNIFESP-ICT

São José dos Campos, Brazil

Email: luiz.lorena@unifesp.br

Ana C. Lorena
UNIFESP-ICT

São José dos Campos, Brazil

Email: aclorena@unifesp.br

Luiz A. N. Lorena
INPE-LAC

São José dos Campos, Brazil

Email: lorena@lac.inpe.br

André C. P. L. F. Carvalho
USP-ICMC

São Carlos, Brazil

Email: andre@icmc.usp.br

Abstract—Several practical applications require joining
various rankings into a consensus ranking. These applica-
tions include gathering the results of multiple queries in
information retrieval, deciding the result of a poll involving
multiple judges and joining the outputs from ranking classi-
fication algorithms. Finding the ranking that best represents
a set of rankings is a NP-hard problem, but a good solution
can be found by using metaheuristics. In this paper, we
investigate the use of Clustering Search (CS) algorithm allied
to Simulated Annealing (SA) for solving the rank aggregation
problem. CS will clusters the solutions found by SA in order
to find promising regions in the search space, that can be
further exploited by a local search. Experimental results on
benchmark data sets show the potential of this approach
to find a consensus ranking, achieving similar or better
solutions than those found by other popular rank aggregation
strategies.

I. INTRODUCTION

The need for the aggregation of multiple rankings arise
in several real applications. For instance, many search
engines need to join the results from different queries
into a consensus list, where web-pages are ranked from
those most related to the query to those less relevant [1].
This problem is also frequent in Machine Learning and
Data Mining, when one needs to combine the outputs
from various ranking classifiers [2] or to produce a list of
important features according to different feature ranking
techniques [3]. In social sciences this problem has been
also largely studied, when one needs to join the votes of
multiple judges in an election [4].

Formally, the rank aggregation problem can be de-
fined as finding a permutation of items that represents
a consensus for the permutations created by m different
judges. There are different criteria for evaluating whether
a given permutation represents a consensus. In this paper
we use the Kendall-tau distance [5] and define the optimal
consensus permutation as the one which has minimum
Kendall-tau distance to the others. This permutation is
named the Kemeny optimal ranking [6].

Finding the Kemeny optimal ranking is a NP-hard prob-
lem [4] for which various works provide approximate so-
lutions [7]. In [8] the authors employ a Genetic Algorithm
(GA) for approximating the Kemeny optimal ranking.
By using a permutation-based coding GA, those authors
show the suitability of this GA in finding consensus
permutations for a benchmark of problems of increasing
difficulty.

In this work, we employ Clustering Search (CS) [9],
[10], [11] algorithm using Simulated Annealing (SA) [12]
as it base metaheuristic for solving the rank aggregation
problem. CS will clusters the solutions found by SA,
grouping them in promising regions to be exploited by
a local search mechanism.

Our results reinforce the suitability of metaheuristics
for finding Kenemy optimal ranking and strengthen the
conclusions pointed out in [8], that metaheuristics are
promising tools for solving the rank aggregation problem.
These results are validated using the same benchmark data
sets from [8] and [13], allowing the comparison against
their results.

This paper is organized as follows. Section II defines
the rank aggregation problem. Section III describes the
technique employed in this paper. Section IV presents
the experiments performed, while Section V discusses the
main conclusions from this work.

II. RANK AGGREGATION

Given a set of n items, labeled as 1, 2, ..., n, a permu-
tation π corresponds to a particular ordering of these n
items. This ordering can also be regarded as a ranking of
the elements, from the most to the least important, accord-
ing to some criterion. In the rank aggregation problem we
are given a set M with m distinct rankings πi and we
must find a permutation π∗ that represents a consensus
between them.

One way to express consensus is through similarity
between the permutation π∗ and other m permutations.
Similarity between permutations can be estimated by ap-
plying a distance function. Permutations are similar when
the distance between them is small. Therefore, for the rank
aggregation problem, the permutation π∗ must be chosen
so as to minimize the sum of the distances between itself
and each of the m input rankings.

There are two main distance functions considered when
aggregating rankings [7]: Spearman’s Footrule (ds) [14]
and Kendall-tau (dk) [5]. This paper deals with minimizing
the Kendall-tau distance, for which the best consensus per-
mutation is named Kemeny optimal ranking [6]. Finding
this ranking is an NP-hard problem for m ≥ 4 and it
is still an open issue whether the same condition holds
for m = 3 [4]. Spearman’s Footrule and Kendall-tau
distances between two permutations πi and πj of size n
are respectively given by equations 1 and 2.

2014 Brazilian Conference on Intelligent Systems

978-1-4799-5618-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BRACIS.2014.44

198

2014 Brazilian Conference on Intelligent Systems

978-1-4799-5618-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BRACIS.2014.44

198

ds(πi, πj) =
n∑

k=1

|πik − πjk| (1)

dk(πi, πj) = |{(a, b) : a < b,
(πi(a) < πi(b) ∧ πj(a) > πj(b))
∨
(πi(a) > πi(b) ∧ πj(a) < πj(b))}|

(2)

Therefore, Spearman’s Footrule distance measures the
disarray of two ranks based on sum of the absolute differ-
ences between them, and can be computed in O(n). On
the other hand, the Kendall-tau distance counts the number
of pairs of items (a, b) for which the permutations πi and
πj disagree in their ordering, that is, where one of them
gives a better ranking position to a and worse position to
b while the other does the opposite. Our implementation
of this distance is O(n2) but, with appropriate algorithms,
it can be computed in O(nlog(n)) [15]. This modification
may be necessary for permutations of size greater than
250 (larger permutation size of our data sets).

For the Rank Aggregation problem the best solution π∗

(Kemeny optimal ranking) will be the one that minimizes:

v(π∗) =
m∑

i=1

dk(πi, π
∗), πi ∈ M (3)

There are some algorithms to approximate the Kenemy
optimal ranking in the literature [16], [17], [18]. The paper
[13] presents a large set of techniques for searching the
Kenemy optimal ranking, and recommend the use of a
branch-and-bound A* with beam-search, which reduces
the number of nodes to be expanded in order to treat larger
problems, since the basic algorithm runs out of memory
and the problem becomes intractable. Finally, despite the
large number of techniques considered in [13], the authors
of [8] missed the use of some metaheuristic approach, and
thus proposed a GA to be used in the same benchmark data
sets from [13] and reported superior results.

There are a few previous papers addressing the rank per-
mutation problems with metaheuristics. In [19] a Lamar-
ckian GA which hybridizes metaheuristics based on the
SA method or the noising method [20] is applied to find
approximate solutions to this problem. The paper [21]
uses a GA for optimizing Spearman’s Footrule distance
for partial lists (note that here we are dealing with
total lists). They also discuss a parallel implementation
of the GA, since this algorithm can be computationally
costly for some practical applications, such as web-based
search engines. In [22] a self-adaptive GA based on
multiple genomic redundant representations, which encode
different locality properties, was employed. Finally, [23]
describes a ranking package named RankAggreg designed
for combining ordered lists through different criteria and
algorithms, which includes a GA. These works show that
the use of metaheuristics is appropriate for approximating
the Kenemy optimal ranking of multiple permutations.

This paper strengthen these results by employing a
metaheuristic and shows the potential of employing a local

search strategy for to better exploiting the search space, a
theme not addressed in none of the previous papers.

III. CLUSTERING SEARCH

Clustering Search (CS) was earlier proposed by Oliveira
and Lorena [24] as a hybrid method that combines meta-
heuristics and local search. The aim is to detect promising
areas of the search space before applying local search
procedures. Search is intensified only in areas of the search
space that deserve special attention. These promising areas
are discovered by dividing the search space into clusters,
created by grouping the solutions provided by the base
metaheuristic. Oliveira et al. [9] give a recent survey of
CS characteristics and applications.

The CS algorithm is composed by three conceptually
independent components: 1) Iterative Clustering Module
(ICM), 2) Analyser Module (AM) and 3) Local Search
Module (LSM). Figure 1 shows the conceptual design of
the CS algorithm. In our case, the Simulated Annealing
algorithm is used as a base metaheuristic. ICM is re-
sponsible to gather similar solutions into clusters. AM
examines each cluster, at regular intervals, measuring its
activity level. The activity level of a cluster is given by the
number of solutions of the metaheuristic that are assigned
to this cluster. This measure is called cluster density, and
higher values indicate that the cluster is at a promising
area. Finally, LSM module is responsible for applying a
local search to the center of a cluster when its density is
above a predefined threshold.

Figure 1: Conceptual design of CS algorithm.

Figure 2 shows a schematic representation of a search
space. This figure illustrates how the ICM module behaves
when a new solution provided by the metaheuristic is fed
into the CS algorithm. Clusters are represented by their
center ci, namely the solution that best represents a group
of solutions in a given area of the search space. Each
cluster has a coverage radius R. The example contains
four clusters, while the cross symbol represents a new
solution provided by the metaheuristic. When this solution
is presented, ICM checks for its similarity against all
clusters centers, assigning it to the cluster with higher
similarity. Similarity is determined by a distance metric,
which is the Spearman’s Footrule distance ds in our case.
In this example, the solution is assigned to c3, because is
closer to it and lies within its coverage radius.

To increase the chance of discovering better solutions
a process called assimilation is conducted by ICM each
time a new solution is assigned to a cluster and is within
its coverage radius. It consists of using the path-relinking

199199

Figure 2: Clusters of solutions in the search space.

� �

��������	�

�������������

���������
�������
��������	
�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3: Path-relinking moves.

algorithm [25] to intensify and diversify the search within
a group of solutions.

Figure 3 shows an example of the assimilation process.
It makes exploratory movements in a neighborhood around
an initial solution seeking to reach a guide solution. At
each step the procedure examines all of the possible moves
from the current solution and selects the one that has a
better cost. The goal is to find better solutions in a path
which interconnects them. The movements gradually intro-
duce attribute information from the guide solution into the
initial solution. Squares of darker color represent positions
that are fixed (already have guide solution information),
whereas lighter color squares represents positions where
information from the guide solution is under analysis. The
quality of the solution is evaluated every time an attribute
information is introduced in the solution. Thick arrows
show the path connecting the best solutions at each step.
To reduce the computational burden of this process, the
evaluation of all possible movements can be stopped when
no further improvements to the solution are obtained, even
if the path is not complete. The best solution found in path
will replace the cluster center.

Algorithm 1 shows how CS interacts with the SA

metaheuristic. Functions in lines 1 and 15 are described at
Algorithm 2 and correspond to CS steps. Line 1 initializes
the CS cluster centers and sets some initial parameters.
Lines 2 to 4 initializes SA. Line 5 represents the main
loop which controls the halt of the SA algorithm. Lines 7
to 13 perform the Metropolis algorithm [26]. At line 9 a
neighborhood function is applied. In our case it consists of
selecting one random position at the permutation and mov-
ing its corresponding value to another random position.
Line 14 decreases the current temperature by α and checks
if the solution provided by Metropolis is the best SA
solution. At line 15 the CS Iterative Cluster Module (ICM)
is called using as input argument the solution from the
Metropolis algorithm. Finally, at line 16, the CS solution
is checked against the best SA solution so far. The best
value is then assigned to the global solution π∗.

Algorithm 1: Simulated Annealing (SA) with Clus-
tering Search (CS)

input : The permutation matrix M of size m× n
SA parameters: T0, Tc, SAMAX , α

output: A consensus permutation π∗

1 CS.Initialization () � CS initialization
2 π ← random initial permutation � SA start
3 πSA ← π π∗ ← π
4 T ← T0

5 while T > Tc do
6 iter ← 0
7 while iter < SAMAX do
8 iter ← iter + 1
9 π′ ← Neighbor(π)

10 if v(π′) < v(π) then
11 π ← π′

12 else
13 With probability e−(v(π′)−v(π))/T set

π ← π′

14 T ← αT πSA ← min(π, πSA)
15 πCS ← CS.ICM(π) � CS ICM
16 π∗ ← min(πCS , πSA)

17 return π∗ � SA end

Algorithm 2 presents the CS algorithm and its main
components. The variable cTOTAL is used to control the
actual number of clusters. Line 3 in Procedure Initializa-

tion calculates the coverage radius R as the percentage of
the maximum Spearman’s Footrule distance between two
permutations (dsMAX) of size n. In lines 4 to 6 a random
solution is assigned to each center and their density and
inactivity levels are initialized.

Procedure ICM receives as argument a solution pro-
vided by the metaheuristic. Lines 2 to 9 are responsi-
ble to find the index of the best cluster iBEST , which
corresponds to that with lower Spearman’s Footrule dis-
tance value. The remaining clusters have their inactivity
increased (line 9). If the solution π is within the cBEST

coverage radius R (line 10) the solution is fed into the

200200

assimilation process (line 11). If the solution obtained is
better than the current cluster center, it will be assigned as
the new center and have its density and inactivity levels
reset (lines 13 to 15); otherwise the inactivity of the center
will increase and the algorithm checks for the possibility
to create a new cluster using π as its center (lines 17 to
20). At line 21 the Analyser Module (AM) is called, which
will return the best current solution within all clusters. This
solution will be provided to the base metaheuristic (line
22).

Finally, in Procedure AM all cluster densities will
be checked (line 3) and if they reach a threshold value
denMAX a local search will be performed by the LSM
module (line 4). Local search consists of using the as-
similation process between a center ci and the remaining
ones. This process is stopped whenever a better solution is
found. This solution will replace the given cluster center
(lines 5 to 7). If the inactivity level of the cluster reaches
a threshold value inactMAX , this cluster can be removed
(lines 8 to 10). Lastly, line 11 search for the best solution
within all clusters, and returns it.

IV. COMPUTATIONAL RESULTS

The proposed solution was coded in Java 1.7.0 45
and the computational tests were performed in a i7-
3517U @ 2.40 GHz processor with 8GB RAM running
Windows 8 64-Bit. The data sets were previously used
in [8] and gently provided by those authors. They model
probability distributions over permutations by using the
Mallows Model [27], which is a distance-based probability
distribution over permutation spaces [8]. The data sets
are generated by sampling from different instances of this
distribution, which is given by Equation 4 [8]:

P (π) =
e−θ(dk(π,π0))

φ(θ)
(4)

Where π0 is a central permutation and θ is a spread
parameter that accounts for the concentration of the dis-
tribution around its peak. φ(θ) is a normalization constant.
Therefore, the permutation π0 has a higher probability of
being sampled, while the probabilities of the other n!− 1
permutations are reduced according to their distance to π0.

For all data sets, [8] have employed π0 = 1, 2, 3, . . . , n.
They varied the values of θ and n to produce different
instances of the problem and generated m = 100 per-
mutations. Therefore, the pair (θ,n) accounts for different
complexities of the rank aggregation problem. While θ
takes value in 0.2, 0.1, 0.01, 0.001, n takes value in 50,
100, 150, 200, 250. The most complex cases are those with
smaller θ (bigger dispersion, less consensus) and larger
permutation/rank size (n). For each of the 16 combinations
of θ and n, 20 different data sets with m = 100 instances
(permutations) were generated. Therefore, the results pre-
sented for each of the 16 combinations are averaged over
20 data sets.

To tune algorithms parameters, five instances were
randomly chosen, one of each size (50, 100, 150, 200
and 250), and the following process was adopted: each

Algorithm 2: Clustering Search (CS)
input : A solution π coming from metaheuristic

CS parameters: NC,DP, densMAX , inactMAX

output: A solution πCS

1 Procedure Initialization()
2 cTOTAL ← NC
3 R ← DP ∗ dsMAX

4 for i ← 1 to cTOTAL do
5 ci ← random solution

6 densi ← 0 inacti ← 0

1 Procedure ICM(π)
2 iBEST ← 0 distBEST ← ∞
3 for i ← 1 to cTOTAL do
4 disti ← ds(π, ci)
5 if disti < distBEST then
6 distBEST ← disti
7 iBEST ← i
8 else
9 inacti ← inacti + 1

10 if distBEST ≤ R then
11 πNEW ← PathRelinking(π, ciBEST

)
12 if v(πNEW) < v(ciBEST

) then
13 ciBEST

← πNEW

14 densiBEST
← densiBEST

+ 1
15 inactiBEST

← 0

16 else
17 inactiBEST

← inactiBEST
+ 1

18 if cTOTAL < NC) then
19 Create cluster with π center

20 cTOTAL ← cTOTAL + 1

21 πCS ← AM()
22 return πCS

1 Procedure AM()
2 for i ← 1 to cTOTAL do
3 if densi ≥ densMAX then
4 πNEW ← LocalSearch(ci) � LSM
5 if v(πNEW) < v(ci) then
6 ci ← πNEW

7 densi ← 0 inacti ← 0

8 if inacti ≥ inactMAX then
9 Remove cluster i

10 cTOTAL ← cTOTAL − 1

11 i ← argmin{v(ci)} i ∈ {1, . . . , NC}
12 πCS ← min(ci, πCS)
13 return πCS

parameter was varied while the others were kept fixed. The
algorithm was run five times for each parameter setting
and for each instance, and the setting yielding the best
average result was chosen. This methodology is used for
tuning the SA and CS parameters described in Table I,

201201

which shows the best values found.

Simulated Annealing
T0 Initial temperature 5
Tc Cooling temperature 0.0004
SAmax Number of iterations of Metropolis 10000
α Cooling rate 0.975
Clustering Search
NC Maximum number of clusters 10
DP Percentage of maximum distance 0.4
densMAX Maximum density for Local Search 2
inactMAX Maximum cluster inactivity allowed 7

Table I: Final parameters after tuning phase.

After parameter tuning, for each pair of (θ, n), five
independent runs of the algorithm were carried out and
an average performance was recorded. Table II shows the
CS computational results (Kendal-tau distances) compared
with those of the GA in [8] and of some algorithms
described and detailed in [13]. B&B represents the branch
and bound A* with beam search. CSS is a graph-based
approximate algorithm [28]. DK is a solver for an integer
program [29] with heuristics to reduce the search space.
Borda is a method where each position in a rank is given a
ponctuation [30]. The sum of the pontuactions achieved by
the items in the different rankings is then used to devise
a new ordering. Each cell in Table II accounts for the
average of the 100 different experiments (20 data sets x 5
runs). The best overall results are highlighted in bold. CS
found 13 (out of 20) new best solutions compared to the
ones reported previously in the literature.

Comparing the results of the techniques in all data sets
using the Friedman statistical test [31], there are significant
differences of performance at 95% of confidence level.
Applying the Bonferroni-Dunn post-test using the CS al-
gorithm as baseline, we found that GA and CS performed
closely, while CS outperformed all other techniques.

The larger and difficult problem (n = 250 and θ = 0.001)
is approximately solved in 491.06 seconds by CS. This
is also a case where CS reached better results than all
other algorithms compared, as can be observed in Table
IV. The smaller problems (with n = 50) were solved
from 2.31 (θ = 0.2) to 8.13 (θ = 0.001) seconds. We
judge this a very interesting result, since the time taken to
obtain the solutions can be considered feasible for practical
applications. We were not able to compare our processing
time results against those from [8], [13], since they did
not present this analysis.

The main parameters governing the benchmark in-
stances are θ and n. Therefore, we analyze next the results
of the algorithms CS, GA and B&B for the different values
of these parameters. The GA results come from [8], while
B&B is the best performing algorithm from [13].

Regarding the parameter n, we can observe that CS was
the best performing technique in the majority of cases,
although ties are observed for n = 50 and n = 200
with the GA. For n = 150, CS was always the best
performing technique, despite the value of the parameter
θ. B&B was able to achieve good results only for the
smaller instances, and for a higher value of the spread

n=50 θ = 0.2 θ = 0.1 θ = 0.01 θ = 0.001

CS 18784.6 32007.3 55873.2 56855.7
GA 18781.5 32010.4 55876.9 56846.9
B&B 18781.5 32010.4 55892.8 56866.2
CSS 18834.2 32088.3 56072.0 57049.9
Borda 18783.7 32019.4 55991.5 56970.1
DK 18781.6 32012.8 55958.2 56954.6
n=100 θ = 0.2 θ = 0.1 θ = 0.01 θ = 0.001

CS 41203.1 78802.7 215224.1 230196.9
GA 41215.4 78802.6 215224.7 230323.1
B&B 41255.4 78810.2 215298.6 230498.3
CSS 41320.1 79012.6 215745.0 231026.6
Borda 41257.1 78827.9 215530.1 230827.7
DK 41255.4 78805.8 215429.4 230803.8
n=150 θ = 0.2 θ = 0.1 θ = 0.01 θ = 0.001

CS 63687.75 125990.8 458678.9 519642.8
GA 63717.6 126058.3 458967.2 519673.1
B&B 63717.7 126061.0 459091.7 520123.3
CSS 63890.3 126417.1 459943.1 521001.5
Borda 63724.5 126096.4 459513.7 520699.8
DK 63717.7 126064.5 459349.8 520834.0
n=200 θ = 0.2 θ = 0.1 θ = 0.01 θ = 0.001

CS 86264.8 173430.5 769215.9 922854.6
GA 86264.8 173430.3 769227.1 923284.0
B&B 86268.5 173439.5 769463.9 924155.7
CSS 86515.4 173942.9 770632.3 925365.5
Borda 86270.7 173481.0 769999.5 925021.0
DK 86265.0 173433.6 769713.6 925602.1
n=250 θ = 0.2 θ = 0.1 θ = 0.01 θ = 0.001

CS 108770.8 220658.7 1130023.2 1442029.5
GA 108762.2 220656.4 1130024.9 1442227.6
B&B 108765.4 220666.5 1130306.3 1443555.1
CSS 109079.6 221313.0 1131954.7 1445117.9
Borda 108771.9 220722.3 1131118.9 1444884.0
DK 108762.3 220663.1 1130708.5 1445374.6

Table II: Results.

parameter θ. This occurred because this technique can
discard some of the good solutions, once it maintains only
part of the search frontier of A* in order to remain feasible
for larger problems. For the different θ values, the results
of CS highlight again for more difficult instances, which
are those for which the value of θ is lower.

Figure 4 summarizes which were the best performing
algorithms for all data sets configurations, i.e., for all
combinations of n and θ values. Higher values of n com-
bined to lower values of θ correspond to more challenging
problems, where the ranking length is higher and there is
less consensus between the rankings. CS achieved the best
results for 70% of the instances, specially for those which
are harder to solve (with n ≥ 100 and θ ≤ 0.01).

V. CONCLUSION

This paper applied the Clustering Search algorithm
allied to the Simulated Annealing to solve the Rank
Aggregation problem. Namely, the objective is to obtain
a consensus ranking from a set of different rankings.

The experimental results shows that the proposed so-
lution achieved similar or better solutions than those
found by other popular rank aggregation strategies. These

202202

Figure 4: Best algorithm for each data set.

results reinforce the suitability of metaheuristics as an
promising tools for solving the rank aggregation problem.
Nonetheless, this work also supports that exploiting the
search space through local search in promising regions of
the search space, as done by Clustering Search, can lead
to improvements.

As future work, we plan to employ the investigated
technique in other rank aggregation data sets, including
real data sets. Other metaheuristics can be employed with
CS, as the GA from [8]. We believe that CS will be able
to solve the problem in less iterations. Lower bounds can
be found by linear programming techniques, and used to
estimate the quality of CS solutions. A better parameter
tuning for the algorithms can be employed, considering
different parameter values for the distinct problem sizes.

VI. ACKNOWLEDGMENTS

The authors would like to thank for the financial support
of FAPESP and CNPq. We also would like to thank David
Molina Garcia and Juan A. Aledo for providing the data
sets.

REFERENCES

[1] K. W. Lam and C. H. Leung, “Rank aggregation for meta-
search engines,” in Proceedings of the 13th International
World Wide Web Conference on Alternate Track Papers.
ACM, 2004, pp. 384–385.

[2] M. Grbovic, N. Djuric, and S. Vucetic, “Multi-prototype
label ranking with novel pairwise-to-total-rank aggrega-
tion,” in Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, 2013, pp. 1358–
1364.

[3] R. C. Prati, “Combining feature ranking algorithms through
rank aggregation,” in Internatinoal Joint Conference on
Neural Networks, 2012, pp. 1151–1157.

[4] I. Bartholdi, J., C. Tovey, and M. Trick, “Voting schemes
for which it can be difficult to tell who won the election,”
Social Choice and Welfare, vol. 6, no. 2, pp. 157–165, 1989.

[5] M. G. Kendall, “Rank correlation methods.” 1948.
[6] J. Kemeny and J. Snell, Mathematical Models in the Social

Sciences, ser. A Blaisdell book in the pure and applied
sciences. Blaisdell Publishing Company, 1962.

[7] S. Vembu and T. Gärtner, “Label ranking algorithms: A sur-
vey,” in Preference Learning, J. Fürnkranz and E. Hüller-
meier, Eds. Springer Berlin Heidelberg, 2011, pp. 45–64.

[8] J. A. Aledo, J. A. Gámez, and D. Molina, “Tackling the
rank aggregation problem with evolutionary algorithms,”
Applied Mathematics and Computation, vol. 222, pp. 632
– 644, 2013.

[9] A. C. M. Oliveira, A. A. Chaves, and L. A. N. Lorena,
“Clustering search,” Pesquisa Operacional, vol. 33, no. 1,
pp. 105–121, 2013.

[10] R. L. Rabello, G. R. Mauri, G. M. Ribeiro, and L. A. N.
Lorena, “A clustering search metaheuristic for the point-
feature cartographic label placement problem,” European
Journal of Operational Research, vol. 234, no. 3, pp. 802–
808, 2014.

[11] A. A. Chaves and L. A. N. Lorena, “Clustering search
algorithm for the capacitated centered clustering problem,”
Computers & Operations Research, vol. 37, no. 3, pp. 552–
558, 2010.

[12] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” science, vol. 220, no. 4598, pp.
671–680, 1983.

[13] A. Ali and M. Meilă, “Experiments with kemeny ranking:
What works when?” Mathematical Social Sciences, vol. 64,
no. 1, pp. 28 – 40, 2012.

[14] P. Diaconis and R. L. Graham, “Spearman’s footrule as
a measure of disarray,” Journal of the Royal Statistical
Society. Series B (Methodological), pp. 262–268, 1977.

[15] D. Christensen, “Fast algorithms for the calculation of
kendall’s τ ,” Computational Statistics, vol. 20, no. 1, pp.
51–62, 2005.

[16] A. Van Zuylen and D. P. Williamson, “Deterministic algo-
rithms for rank aggregation and other ranking and cluster-
ing problems,” in Approximation and Online Algorithms.
Springer, 2008, pp. 260–273.

[17] C. Kenyon-Mathieu and W. Schudy, “How to rank with
few errors,” in Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing. ACM, 2007, pp. 95–
103.

[18] N. Ailon, M. Charikar, and A. Newman, “Aggregating
inconsistent information: ranking and clustering,” Journal
of the ACM (JACM), vol. 55, no. 5, p. 23, 2008.

[19] I. Charon and O. Hudry, “Lamarckian genetic algorithms
applied to the aggregation of preferences,” Annals of Op-
erations Research, vol. 80, pp. 281–297, 1998.

[20] ——, “The noising method: a new method for combina-
torial optimization,” Operations Research Letters, vol. 14,
no. 3, pp. 133–137, 1993.

[21] M. Sufyan Beg, “Parallel rank aggregation for the world
wide web,” in Proceedings of International Conference on
Intelligent Sensing and Information Processing. IEEE,
2004, pp. 385–390.

[22] M. L. Gargano and M. P. Kasinadhuni, “Rank aggregation
for metasearch engines using a self-adapting genetic algo-
rithm with multiple genomic representations,” Generations,
vol. 1, no. 2, p. 3, 2005.

[23] V. Pihur, S. Datta, and S. Datta, “Rankaggreg, an r pack-
age for weighted rank aggregation,” BMC bioinformatics,
vol. 10, no. 1, p. 62, 2009.

[24] A. C. Oliveira and L. A. Lorena, “Detecting promising
areas by evolutionary clustering search,” in Advances in
Artificial Intelligence–SBIA 2004. Springer Berlin Hei-
delberg, 2004, pp. 385–394.

[25] F. Glover, M. Laguna, and R. Martı́, “Fundamentals of
scatter search and path relinking,” Control and cybernetics,
vol. 39, no. 3, pp. 653–684, 2000.

[26] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, “Equation of state calculations by
fast computing machines,” The journal of chemical physics,
vol. 21, p. 1087, 1953.

[27] C. L. Mallows, “Non-null ranking models. i,” Biometrika,
vol. 44, no. 1/2, pp. 114–130, 1957.

[28] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to
order things,” J. Artif. Int. Res., vol. 10, no. 1, pp. 243–270,
1999.

[29] A. Davenport and J. Kalagnanam, “A computational study
of the kemeny rule for preference aggregation,” in Pro-
ceedings of the 19th National Conference on Artifical
Intelligence, 2004, pp. 697–702.

[30] J. Borda, “Memoire sur les elections au scrutin,” Histoire
de l’Academie Royale des Sciences, 1781.

[31] J. Demšar, “Statistical comparisons of classifiers over mul-
tiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30,
2006.

203203

