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ABSTRACT:

What can be considered big data when dealing with remote sensing imagery? In general terms, big data is defined as data requiring high

management capabilities characterized by 3 V’s: Volume, Velocity and Variety. In the past, (e.g. 1975), considering the computational

and databases resources available, a series of Landsat-1 imagery from the same region could be considered big data. Nowadays, several

satellites are available, and they produce massive amounts of data. Certainly, an image data set obtained by a single satellite, for a

specific region and along time, fills the 3 V’s requirements to be considered big data as well. In order to deal with remote sensing big

data, we propose to explore the generation of metadata based on the detection of simple features. Besides the intrinsic geographic infor-

mation on every remote sensing scene, no additional metadata is usually considered. We propose basic image processing algorithms to

detect basic well-known patterns, and include them as tags, such as cloud, shadow, stadium, vegetation, and water, according to what

is detectable at each spatial resolution. In this work we show preliminary results using imagery from RapidEye sensor, with 5 meter

spatial resolution, composed by two full coverages of Brazil with RapidEye multispectral imagery (around 40k scenes).

1. INTRODUCTION

Nowadays, several references to the term big data are available,

many of them without a proper understanding of what is the real

meaning of it. Since 2001, Big data has been defined as data

requiring high management capabilities characterized by 3 V’s:

Volume, Velocity and Variety, as proposed by (Laney, 2001). In

(Plunkett et al., 2013), the authors provide examples of what has

been considered big data so far. Examples include Web server and

application logs, digital video and music, clickstream data, social

networks, smartphone location-based services, real-time trading

data, blogs and social media. It is clear that most of the given ex-

amples are Internet-related, however we can find other examples

of big data generation, such as remote sensing.

Remote sensing satellites fill the requirements to be character-

ized as big data. Since at each day new images are obtained,

and previously captured images are also combined as time series,

it is possible to confirm the constant growing volume and also

the increasing velocity of data gathering. New satellites are be-

ing launched and their design life (duration) are frequently over-

come. One great example is the Landsat 5 satellite, projected

with a 5-year design life, that returned scientifically viable data

for 28 years (USGS, 2016). In terms of variety, remote sensing

data is expanding the amount of spectral channels (i.e. Land-

sat 5 and 7 produces images in 8 spectral channels; Landsat 8,

in 11 channels), which means different ways to capture spectral

interaction between targets and eletromagnetic radiation. When

we focus the analysis in the GEOBIA approach, the variety of

data related to the same target increases more, since with the use

of spectrally homogeneous regions, we combine the intra-region

spectral information, such as average pixel values or texture, with

spatial information, such as geometric features, and also relations

to the neighborhood. Considering the aforementioned reasons, it

is clear that remote sensing is a source of big data.

In this paper, we propose a method to work in a set of images

composed by two full coverages of Brazil with RapidEye mul-
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tispectral imagery (MMA, 2016), from 2012 and 2014. Rapid-

Eye images are generated from a constellation of 5 satellites lo-

cated at the same orbital plane, and carrying the same sensors

(BlackBridge, 2015). Available RapidEye imagery are processed

into level 3A, which corresponds to geometric, radiometric and

sensor correction, and mosaicked into 25 by 25 km tiles with

a 5 meter pixel size, created from the acquisition sampled at

6.5 meters at the nadir. The multispectral bands are 5: blue

(0.44−0.51µm), green (0.52−0.59µm), red (0.63−0.685µm),

red edge (0.69− 0.73µm), and near infra-red (0.76− 0.85µm).

2. METHODOLOGY

In this section we describe our proposal to deal with remote sens-

ing big data for metadata generation, which is depicted in the

diagram of Figure 1. We also provide references for the used in-

dices and algorithms to detect the presence of target patterns in

images.

Our proposal is to integrate a set of simple algorithms for pattern

recognition (blocks called Detector for pattern 1 . . . N in Figure

1) without a strong compromise with accuracy, therefore we can

consider these algorithms as weak detectors. Our expected level

of metadata to be generated is as superficial as tags like cloud,

shadow, stadium, vegetation, and water, according to what is de-

tectable in each spatial resolution.

The basic idea in dealing with remote sensing big data plus a

stream of incoming images, is to provide a continuous workflow,

which means a system that keeps running (see the block New im-

ages), allowing the insertion of algorithms for detecting new pat-

terns on-the-fly (block New detectors). With the provided struc-

ture, the algorithm can run more than once for the same image,

which is useful when parameters are changed or new algorithms

are inserted.

2.1 Pre-processing

When dealing with remote sensing big data, which should include

heterogeneous sources of images, specific parameters for each



Figure 1. Diagram for metadata discovery in remote sensing big

data.

sensor are often unavailable, and therefore algorithms should not

rely on them. For this reason, we adopted an uniform normal-

ization of the images, using the well-known min-max method

(Equation 1), considering original pixel from image I at row r

and column c (r = 1 . . . H and c = 1 . . .W , and H and W are

the Height and Width of I). This equation also uses min(I) and

max(I) as the minimum pixel and maximum pixel values, re-

spectively. As output we create the normalized image Inorm with

values in the interval [0, 1].

Inorm(r, c) =
I(r, c)−min(I)

max(I)−min(I)
(1)

This step also includes removal of null pixel values, or no data

values, depending on how they are represented by the formats.

Objects with these values will not be used by our algorithms. The

detectors proposed in our approach are based on well-known re-

mote sensing indices, such as vegetation or water indices. For

other patterns without well-known indices, such as stadium, we

are developing specific algorithms.

Although most of the classic indices are computed using reflectance

information extracted by pixel values and often specific sensor

parameters, we assume an approximation of the values by using

the normalized images as inputs, since our proposal is not to map

exact regions, but presence/absence of patterns.

2.2 Detectors

The main idea in our proposal is to create an image Di, repre-

senting the resemblance of an object Γ (pixel/region) to a certain

pattern i. This resemblance is based on thresholding processed

images, represented as target indices, with values Φ. We defined

a straightforward rule to be applied on each index, and it is up to

the analyst to define the best expected threshold ζ to consider or

not Γ in a specific pattern.

In Equation 2, we formalize the pattern detector. Given an object

Γ, its detection index Φ and a threshold ζ, the outcome of the

detector will be one of the following values:

pattern(Γ) =











2, if Φ ≥ ζ

1, if Φ < ζ and Φ ≥ 0.95.ζ

0, if Φ < 0.95.ζ

(2)

The value 0.95 was defined empirically to distinguish a high from

a medium resemblance outcome (values 2 and 1, respectively).

When object Γ is not detected, the output is value 0. By apply-

ing each detector on the normalized image Inorm, the result is an

image Di, i = 1 . . . N . All detections are then combined to esti-

mate confusion and generate metadata.

Our preliminary results are composed by 5 weak detectors for the

patterns cloud, shadow, stadium, vegetation, and water. For de-

tecting the pattern cloud, we defined a threshold in the brightness

band, with is basicaly computed by selecting, for each pixel, the

maximum value among all bands. For pattern shadow, we applied

a threshold in the near infra-red band to detect low values, adapt-

ing the proposal for Landsat TM band by (Abreu et al., 2013).

The rules for pattern stadium are based on finding parts of im-

ages in which a compact block with high resemblance to vegeta-

tion contrasts with a surrounding area with low resemblance with

vegetation. The average size of each stadium is defined as a re-

lation between the spatial resolution of the image, the number of

pixels expected to define the stadium, and it is computed using a

basic highpass filtering algorithm. For pattern vegetation, we ap-

plied a threshold in the Normalized Difference Vegetation Index

(NDVI), as described in (Rouse et al., 1974), that uses bands in

the region of red and near infra-red. For pattern water, we applied

a threshold in the Normalized Difference Water Index (NDWI),

as described in (McFeeters, 1996), that uses bands in the region

of green and near infra-red.

2.3 Estimating confusion

Independently of the scale of the objects (represented by Γ), in

this step we process the detections for each pixel and create an

output image E with estimated confusion from the previous step.

By summing up individual detection values from Di, i = 1 . . . N ,

it is possible to infer if a pixel was detected as more than one pat-

tern, or even if the object was not classified by any detector. It is

important to highlight that in this step we account only for pix-

els marked with value high resemblance (value 2). Formally, the

image E is computed as follows:

E(r, c) =
N
∑

i=1

1 ⇐⇒ Di(r, c) = 2 (3)

The highest value we obtain in this sum, the more unconfident

we are with the resultant detection. In Figure 2 we provide one

example of some pattern detections and the estimated confusion.

2.4 Generating metadata

Our proposal is to output tags related to the detected patterns for

each input image. It is known that certain targets appear in the

images with higher probability than others. One example, when

analyzing the full coverage of Brazil, is the pattern of vegetation.

When compared to, for example, water, there is a strong differ-

ence in terms of area of occurrence.
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Figure 2. Estimating confusion between 3 pattern detections. Pixels marked as 2 were recognized by 2 pattern detectors. Pixels marked

as 1 were detected by a single pattern, and pixels marked with 0 were not detected by any of the pattern detectors.

However, it is up to the analyst to define a minimum estimated

proportion of detected targets in one image, as a threshold Υi, i =
1 . . . N , to consider the existence of the pattern i in the image,

and therefore creating the tag. As we are dealing with big data, it

is mandatory that Υi is defined as a flexible value, since each re-

mote sensing scene is supposed to include different combinations

and proportions of targets. For this purpose, we compute in the

following equations the value Pi, which stands for the estimated

amount of pattern i in the input image (#patterni), disregard the

detected confusion (#confusion).

#patterni =

H,W
∑

r=1,c=1

1 ⇐⇒ Di(r, c) ∈ {1, 2}

#confusion =

H,W
∑

r=1,c=1

1 ⇐⇒ E(r, c) > 3 and Di(r, c) = 2

#totali = #patterni +

H,W
∑

r=1,c=1

1 ⇐⇒ Di(r, c) = 0

Pi =
#patterni − #confusion

#totali

The value 3 for considering a confusion was empirically defined

(in Equation E(r, c) > 3), based on the assumption that if more

than 3 detectors output a high resemblance for the same pattern,

this value should be disconsidered. At the end, the decision for

creating or not a tag for pattern i is based on the following rule:

tag for pattern i,if Pi ≥ Υi

no-tag,if Pi < Υi

3. CONCLUSIONS

This short paper presented preliminary insights in using remote

sensing big data for metadata discovery. To work with big data,

the flexibility of the thresholds must be considered, and also a

week compromise with positional accuracy should be assumed.

The analyst plays an important role on defining thresholds for

detecting patterns, and also for creating or not metadata tags for

presence of targets.

We are currently running our methodology in a big data set com-

posed by remote sensing images from RapidEye sensor, com-

posed by two full coverages of Brazil with RapidEye multispec-

tral imagery (around 40k scenes). New detectors must be created

to extend the metadata generation for more patterns, since we are

currently working with 5 patterns, namely cloud, shadow, sta-

dium, vegetation, and water. Although 5 is a small number of

patterns, it has allowed us to refine the methodology for estimat-

ing confusion and deciding for tag generation. The algorithms

were developed in R language, using packages rgdal, raster, gg-

plot2 and sp.
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