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This work concerns analytical results on the role of coupling strength in the phenomenon of onset

of complete frequency locking in power-grids modelled as a network of second-order Kuramoto

oscillators. Those results allow estimation of the coupling strength for the onset of complete fre-

quency locking and to assess the features of network and oscillators that favor synchronization.

The analytical results are evaluated using an order parameter defined as the normalized sum of

absolute values of phase deviations of the oscillators over time. The investigation of the frequency

synchronization within the subsets of the parameter space involved in the synchronization problem

is also carried out. It is shown that the analytical results are in good agreement with those observed

in the numerical simulations. In order to illustrate the methodology, a case study is presented,

involving the Brazilian high-voltage transmission system under a load peak condition to study

the effect of load on the syncronizability of the grid. The results show that both the load and the

centralized generation might have concurred to the 2014 blackout. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967850]

Power-grids are recognized as the largest man-made

machines and their proper functioning relies heavily on

the synchronization and balance of the interconnected

devices. Understanding the conditions under which syn-

chronization can be lost allows us to conceive the grid in

such a manner so as to prevent them. The study of

power-grid models can enhance such comprehension and

provide insights to make them more robust and reliable.

In this study, an analytical expression is provided to esti-

mate the coupling strength for the onset of complete fre-

quency locking in networks of second-order Kuramoto

oscillators. Good matching is obtained when the analyti-

cal results are compared to the experimental outcomes

obtained by numerical simulations. As a case study, the

proposed estimation method is applied to the Brazilian

Interconnected power system, in order to evaluate how

synchronization might have been hampered by the con-

currence of heavy power transfer and centralized genera-

tion in the 2014 blackout.

I. INTRODUCTION

Power grids are large scale distributed dynamical systems

with a functional structure involving a number of subsystems.

Usually, they consist of a large number of heterogeneous com-

ponents that operate interconnected, forming a complex net-

work structure. In this network, the interconnected nodes can

either perform an energy supplier role or an energy consumer

one. Furthermore, the role of a specific node can change over

time. The proper functioning of a power grid requires an

appropriate management of the power generation so that in an

integrated way they are able to sustain and satisfy the energy

demands (loads) of the consumers23,24 at any given time. In

order to accomplish this, it is necessary to be able to deal with

episodes of unexpected changes in the load demand by the

consumers, with eventual failure of the energy generating

units and with disruptions of the transmission lines. In this

context, frequency synchronization is an essential feature in

alternating current (AC) systems. The matched timing of

injection of electrical torques in the network allows for con-

structive interference of the power injected by each generator

in the grid, thus increasing the power available to be trans-

ferred to loads. Whenever a generator goes beyond a very nar-

row tolerable margin of frequency mismatch in relation to the

rest of the grid, it must be disconnected from the grid in order

to avoid voltage fluctuations or even physical damage to the

generator. Such disconnection causes redistribution of power

flow in the system, which in turn may lead to problems to gen-

eration/load balance, overloads, load shedding, and further

contingencies.

These disturbances may lead to the occurrence of local

instabilities, which may propagate as a cascade wave through

the power grid network. As this process evolves, the cascad-

ing disruptions may lead to blackouts ranging from local,

short-lived unavailability to full system collapse lasting for

several hours or even days. Take as examples the large

blackouts in North America and Italy, both in (2003), whose

major causes included the inability of the power-grids to

regain operational stability after power flow redistributions

triggered by the tripping of transmission lines shorted to

ground.1,7,16,17 A more recent example of a large-scale event

was the 2014 blackout in Brazil reportedly due to a short
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circuit of a key high-voltage line which happened to be run-

ning under heavy power transfer regime across the country

at the time of failure.30

Therefore, power grid systems must be designed to be

resilient to local instabilities,34 failures,9,35,38 and disturban-

ces.15,18,40 The stability and robustness of such systems are

closely related to the individual characteristics of the oscilla-

tors, as well as to the couplings among them reflected in the

topology of the network.2,3,13,25,28,35 Several studies show

that valuable insights into the dynamical behavior of power-

grids can be gained by means of theoretical studies that con-

sider models of electrical generators coupled according to

network structures that reproduce the topological and electri-

cal interactions existing in real power-grids.3,8–10,15,18,21,28,38

The second-order Kuramoto oscillators are used in Ref. 15 to

describe the dynamics of coupled rotating machines, genera-

tors, and motors. In Refs. 3–5, 12, 13, and 15, a major object

of interest is to investigate the transition from a synchronous

state to an incoherent state (or vice-versa) from the view-

point of complex networks. For instance, it was found in

Ref. 25 that, by means of the application of the concept of

basin stability,26,37 nodes adjacent to dead ends or dead trees

generally have poorer stability, thus being particularly vul-

nerable to perturbations.25 For a detailed review of the state-

of-the-art concerning the second-order Kuramoto oscillator,

one can mention Ref. 33. It is noteworthy that over the last

four decades since it was proposed, the Kuramoto model has

been successfully applied in a number of fields ranging from

Neuroscience to Earth science,33 leading to intensive

research activities aimed at deepening and sharpening the

understanding of its dynamics (see Refs. 11, 14, 19, 22, 27,

29, 39, and 42). A number of studies exists that focus the

synchronization and stability issues in the second-order

Kuramoto model, such as in Refs. 3–5, 12, 13, 15, 18, 29,

32, and 36. Not only the characterization of the phase transi-

tion is of interest but also admissible classes of initial config-

urations and natural frequency distributions which lead to

synchronization.4 Sufficient conditions for initial setups lead-

ing to asymptotic complete phase-frequency synchronization

were derived in Ref. 4 on the basis of fixed conditions on

inertia, coupling strength, and natural frequencies of the

oscillators. The conditions also apply to non-identical oscil-

lators and are tied to requirements on the magnitude of iner-

tia and the diameter of natural frequencies, defined as

DXðtÞ ¼ maxjXi � Xjj; i; j ¼ 1;…;N, where Xi, Xj are the

natural frequencies of oscillators i, j, respectively. In power-

grids, stable asymptotic synchronization is actually directly

related with inertia, as synchronous inertia of the system

opposes sudden changes in frequency due to disturbances,

thus enhancing stability. Similar conclusions using numeri-

cal investigations were drawn in Ref. 29. There, for both

Gaussian and Lorentzian distributions, the threshold value

for the transition from incoherence to coherence states was

reported to be dependent on system size and inertia. The

authors reported that the hysteresis in the phase transition

occurs for large enough inertia. Similar results had been pre-

viously reported for damped driven pendula with finite

(large) inertia.41 On the other hand, in Ref. 34, a study based

on a second-order Kuramoto model shows that distributed

generation helps decrease the number of crucial links in a

network, thus reducing the probability of global failures and

facilitating the emergence of complete synchronization.

Subsequently, an extended version of the second-order

Kuramoto model which takes into account the interplay

between voltage and angular stabilities was proposed in Ref.

36. There, voltage stability means the ability of a power sys-

tem to maintain steady voltages along buses following a dis-

turbance, whereas angle stability addresses the ability of

restoring the equilibrium state between input (mechanical

torque) and output (electrical torque). It turns out that this

extended model allows one to make predictions for a variety

of scenarios involving disturbances. Furthermore, the transi-

tion to non-stationary states is more feasible due to the exis-

tence of a smaller stability region as compared with those

obtained with the classical model.36 Indeed, this extended

model can be applied to the study of the dynamical stability

of a power system undergoing a short-circuit.

In this paper, the generator/machine model proposed in

Ref. 15 is considered, together with the previous studies on

the Kuramoto model3,6,13 to develop analytical expressions

for the critical coupling strength associated with the transi-

tion from unsynchronized to synchronized state in power

grids. The analytical results are then evaluated using an order

parameter based on the ideas of partial synchronization pre-

sented by Gomez-Gardenes et al.20 The numerical results

obtained by evaluating the order parameter over subsets of

the synchronization problem are shown to be tight and in

good agreement with those obtained from the analytical

expressions. The main contribution of the paper is given in

Section III, as an explicit algebraic expression for the estima-

tion of the onset of complete frequency locking. It is shown

that the diameter of angular frequencies of oscillators plays

an important role in the estimation of the critical value for

synchronization.

The paper is organized as follows: Section II presents the

Kuramoto-like model with bimodal distribution15 and some

results on the critical coupling for synchronization.3,6,13

Section III develops an estimate for the actual value of the cou-

pling parameter for the onset of complete frequency locking.

Section IV presents simulation results. Section V discusses the

results and put them in perspective of similar studies in the lit-

erature. Finally, Section VI gives final remarks.

II. A MODEL FOR SYNCHRONOUS ELECTRICAL
GENERATORS AND LOADS

Consider a network of oscillators with the dynamics

given by the second order Kuramoto model, as proposed in

Ref. 15. Following Ref. 15, the system equations can be writ-

ten as

_hj ¼ xj

_xj ¼ �axþ Pj þ Pmax

XN

k¼1

Ajk sin ðhk � hjÞ (1)

in which hj and xj are functions of time and denote the phase

and angular velocity of the jth oscillator, respectively, a is

the damping parameter related to the power dissipation, Pj is
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the normalized power delivered by (Pj> 0) or consumed by

(Pj< 0) the jth node, Pmax is the maximum capacity of the

transmission line between two nodes, which corresponds to

the coupling strength between two oscillators, and Ajk is the

entry of the symmetric adjacency matrix at row j and column

k that is equal to one if nodes j and k are linked and to zero,

otherwise. In the context of power-grids, nodes with Pi> 0

are regarded as energy suppliers or generators (G), whereas

nodes with Pi< 0 are energy consumers or motors (M). In a

network of coupled generators and motors, the synchronous

state can be taken as x1ðtÞ ¼ x2ðtÞ ¼ � � � ¼ xNðtÞ, which

means that the angular velocities of all the oscillators are

equal to the synchronous velocity xsðtÞ, that is, _xj � _xk ¼ 0.

Following Carareto et al.,3 one takes the condition _xj ¼ 0;
xj ¼ xs; j ¼ 1; 2;…;N for some constant synchronous angu-

lar velocity xs, such that Equation (1) becomes

0 ¼ �axs þ Pj þ Pmax

XN

k¼1

Ajk sin ðDkjÞ (2)

with Dkj ¼ hk � hj a given constant. Under these conditions,

it was shown in Ref. 3 that the summation of the equations

of the N nodes yields the synchronous angular velocity

xs ¼
X Pj

aN
: (3)

In a power-grid, the balance between generators and

consumers requires that
PN

j¼1 Pj ¼ 0, which means that

xs¼ 0. Over the time, whenever these conditions are not sat-

isfied, instabilities may appear. Two indicators can be used

to evaluate how effective a specific power grid is in terms of

handling instabilities: synchronization quality and persis-
tence over time. The former refers to how tight is the match-

ing among the angular velocities of the oscillators, whereas

the latter refers to the amount of time they remain synchro-

nized during a sufficiently large time interval. Actually, as

time passes, consumer’s power request keep changing which

requires continuous adjustments in the power supplied by the

generators. This, in turn, implies that the synchronous angu-

lar velocity keeps changing over the time.

In fact, it can be shown that there is a lower bound for

the existence of a synchronous manifold for a network of

coupled second-order Kuramoto oscillators, given by3

Psm ¼ max
j

jaxs � Pjj
dj

( )
; (4)

where dj ¼
PN

k¼1 Ajk is the degree of node j.
Based on this lower bound, one can state the following

Lemma (see Ref. 3 for demonstration):

Lemma 1. (Existence of a synchronous manifold3).
Consider the second-order Kuramoto model given by Eq. (1),
with a damping a> 0 and coupling strength Pmax. A necessary
condition for frequency synchronization of this system is that

Pmax � Psm¢ max
j

jaxs � Pjj
dj

( )
(5)

in which Pj, j¼ 1,…, N is the power injected/consumed by

node j and dj represents its degree.

This indicates that the variance in the distribution of Pj

has to be compensated with stronger coupling or a high value

of the node connectivity (node degree). This can also be seen

as one examines the coupling strength at the onset of com-

plete frequency locking for a fully connected network.

Consider the deviation equations €hi � €hj given by

_xi � _xj ¼ �aðxi � xjÞ þ ðPi � PjÞ þ PmaxEðhi; hj; hkÞ (6)

and, as shown by Spong et al.,6 the maximum value for the

function

Eðhi; hj; hkÞ ¼ 2 sin ðhj � hiÞ

þ
XN

k¼1;k 6¼i;j

ðsin ðhk � hiÞ þ sin ðhj � hkÞÞ (7)

with respect to the phase angles hi, hj, hk, which is achieved

for hi¼ hj or 2hk¼ hiþ hj. In case hi¼ hj, there is no power

flow, and thus, this case is not of interest. For 2hk¼ hiþ hj,

the function 7 reaches a maximum.6 The coupling function E

is related to the intensity of the interplay among a node and

its neighbors, and its maximum corresponds to the state of

maximum power transfer. The optimal solution (hj – hi)opt

gives the maximum of 7 whose value is an explicit function

of the number of oscillators for the network, N. As presented

in Ref. 6, at the optimal phase difference condition

hj � hi

� �
opt
¼ 2arccos

� N � 2ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2ð Þ2 þ 32

q
8

 !

(8)

so that the function 7 yields

Emax ¼ 2 sin hj � hi

� �
opt
þ 2 N � 2ð Þsin

hj � hi

� �
opt

2

 !
: (9)

The behavior of Emax as a function of the number of

oscillators is depicted in Figure 1. Hence, the Kuramoto

model adopted in this work, Eq. (9), leads to a tight lower

bound to the onset of complete frequency locking, compati-

ble to that originally presented in Ref. 6 and recently refined

in Ref. 13. Following Refs. 6 and 13, this condition for the

second-order Kuramoto model can be stated as follows.

Lemma 2. (Tight critical coupling6,13) Consider (hj – hi)opt

and Emax as in Eqs. (8) and (9), respectively. A necessary condi-
tion for frequency synchronization of the second-order Kuramoto
model in Eq. (1), N� 2, and coupling strength Pmax is that

Pmax � Pcritical¢max
jPi � Pjj

Emax
(10)

in which Pi, Pj, i, j¼ 1,…, N are the generated/consumed

power and hj � hi

� �
opt
2 p

2
; p

� �
.

Section III examines the relation between the necessary

conditions required in Lemmas 1 and 2. Furthermore, by

considering the influence of angular velocities, a way is
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provided to estimate the actual onset of complete frequency

locking for networks of second-order Kuramoto oscillators

with all-to-all couplings.

III. COUPLING FOR THE ONSET OF COMPLETE
FREQUENCY LOCKING: THE NECESSARY
CONDITIONS AND A CLOSER ESTIMATE

As ðhj � hiÞ ! ðhj � hiÞopt one has E ! Emax. Now,

consider Eq. (8) and assume E¼Emax for the purpose of

finding Pmax for the onset of complete frequency locking.

Also, denote xi – xj¼Dxij in Eq. (6), yielding the following

linear ODE:

D _xij þ aDxij ¼ ðPi � PjÞ þ PmaxEmax (11)

whose solution is given by

Dxij ¼
Pi � Pj

a
þ PmaxEmax

a
þ Dx0e�at (12)

for some arbitrary integration constant Dx0. As t ! þ1,

the exponential term vanishes and one can rearrange the

equation such that

Pmax > max
jaDxij � Pi � Pjð Þj

Emax
; i; j ¼ 1;…;N: (13)

Equation (13) provides a lower bound for Pmax that

allows synchronization. Assuming Pi,Pj as constants, one can

approximate the value of Pmax by evaluating the upper bound

for the deviation in angular velocities, Dxmax. Consider that

the angular velocity for a given oscillator will have a value

in the interval ½xmin;xmax�, in which xmin ¼ minðxiÞ and

xmax ¼ maxðxiÞ; i ¼ 1;…;N. One can define this interval

by observing that for a weak coupling condition, each

oscillator will rotate with angular velocity corresponding to

its natural frequency as t!þ1, that is,

xi ¼
Pi

a
: (14)

On the other hand, for strong coupling and t!þ1,

xi ¼ xs ¼
XN

i

Pi

aN
(15)

so that

Dxmax ¼ xmax � xmin ¼ max
i

PN
i

Pi � NPi

aN

��������

��������
: (16)

Thus, the value of Pmax from Equation (13) can be estimated

for a given network of coupled generators/consumers by the

expression

P��max ¼ max
jaDxmax � Pi � Pjð Þj

Emax

� 	
; i; j ¼ 1;…;N:

(17)

Note that as xi, xj eventually evolve to the same value,

Equation (6) becomes

0 ¼ ðPi � PjÞ þ Pmaxþ2 sin ðhj � hiÞ

þ
XN

k¼1;k 6¼i;j

ðsin ðhj � hkÞ þ sin ðhj � hkÞÞ (18)

and, by different means, one recovers the expression

P�max ¼ max
jPi � Pjj

Emax
; (19)

FIG. 1. Evolution of the optimal phase

angle (hj – hi)opt as a function of the

number of nodes N in the network

(above) and evolution of the value of

Emax as a function of the optimal phase

angle and the number of nodes. The

value of Emax allows us to estimate the

value of the minimum coupling value

for which synchronization can be

achieved.
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which is the value below which synchronization between

nodes i and j cannot be achieved, as established in Lemma 2.

In other words, Pmax > P�max is a necessary condition for syn-

chronization. Figure 2 shows the evolution of P�max, P��max,

and PSM as a function of the number of nodes N to networks

with all-to-all couplings, Pi ¼ ð�1Þi; i ¼ 1;…;N. Note that

P�max � PSM for all N, which makes P�max a less strict neces-

sary condition for synchronization when jPij ¼ jPjj; i; j

¼ 1;…;N. However, this is not the case if jPij 6¼ jPjj; i; j ¼
1;…;N as P�max gives lower values than Psm. Thus, in all

cases, one should choose maxfP�max; Psmg as a necessary

condition for the onset of complete frequency locking. A

more realistic estimation would consider unmatched angular

velocities, and in this case, Equation (19) cannot be applied.

In such cases, P��max given by Equation (17) provides the

amount of power transfer capability that would allow the net-

work to remain synchronous or to regain synchrony after a

perturbation.

Another element in making the model dynamics more

akin to that of power-grids is by working around the assump-

tion of full connectedness of the corresponding network

matrix. Towards that end, consider the network adjacency

matrix A which induces the network Laplacian matrix G¼D
– A, where D is a diagonal matrix whose entries are defined

as Dii ¼
PN

j¼1 Aij. Consider the Laplacian matrix G of a

highly connected undirected and unweighted network with N
nodes, such that k2 is its smallest nonzero eigenvalue, also

known as the algebraic connectivity of the network. Further,

consider a fully connected network with N nodes whose

Laplacian matrix is Gfull and define kf ull
2 in an analogous

manner. As one considers networks of oscillators that are not

fully connected, the assumption made for the calculation of

Emax is not satisfied. In other words, the derivation of an

expression for Emax relies upon the assumption of a fully

connected network. To generalize the result to networks

modeled by not fully connected undirected Laplacian matri-

ces, we refer to the work by Carareto et al.3 which estab-

lished that, for highly connected networks, the scaling

Pmax ¼
kf ull

2

k2

Pf ull
max (20)

holds.

In the adopted power-grid model, Dhjk(t)¼ c indicates

that the phase difference between two oscillators j and k is a

constant. In turn, time-varying Dhjk(t) indicates that frequen-

cies are not matched. Assume, therefore, that one can mea-

sure the phase differences Dh(t) for every pair of oscillators

over the network to form a matrix with entries Dhjk(t). Its

mean value over the time can be regarded as a measure of

the overall state of network synchronization, and it can be

associated with the previous defined overall quality and per-

sistence of synchronization. It follows that the level of coher-

ence in the power-grid model can be accessed by means of a

parameter rf defined as

rf ¼
1

N N � 1ð Þ
XN

k¼1

XN

j¼1;j 6¼k





 lim
Dt!þ1

1

Dt

ðtrþDt

tr

ei hj�hkð Þdt






 !

(21)

in which rf 2 [0, 1], rf¼ 0 indicates totally incoherent or

intermittent states, rf¼ 1 indicates perfectly matched angular

velocities over time, and rf 2 (0, 1) corresponds to intermit-

tent or partial synchronization. This order parameter given

by Equation (21) can be calculated within subsets of the

parameter space and then presented in the form of coherence

FIG. 2. (a) Evolution of P�max; P��max

and PSM as a function of the number of

the nodes N of an all-to-all network.

As P�max and Psm are necessary condi-

tions for synchronization and P�max is

more restrictive in this case, the syn-

chronization can only emerge if Pmax

� P�max. A more realistic estimate for

the onset of complete frequency lock-

ing, as explained above, is given by

P��max. (b) A closer look into the evolu-

tion of P�max and Psm.
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maps from which the synchronization figure in diverse net-

work structures and parameter subsets can be studied.

Section IV explored such plots by means of numerical

simulation.

IV. RESULTS

In what follows, the results derived in Section III are

compared using numerical simulations. The integration was

performed using the 4th order Runge–Kutta algorithm and

with a time step h¼ 10�3. Apart from checking the validity of

the theoretical results, the numerical simulations shall allow

an evaluation of the effects of different levels of distributed

generation on the value of the minimal coupling. More specif-

ically, networks with fixed power demand and different sizes

are studied. The conditions under which each of the simula-

tions was performed are given in the figure captions.

Following Ref. 12, we define c as the length of the shortest

arc in the cycle that covers the geodesic distance between any

two initial condition angles of the oscillators. Thus, for exam-

ple, if h1 ¼ p=4; h2 ¼ p=3, and h3 ¼ p=2, then the shortest

arc c lies in the clockwise subtraction c ¼ p=2� p=4 ¼ p=4.

This parameter is used along with coupling strength to study

the onset of complete frequency locking.

A. Two nodes: Generator-motor

The numerical simulation shown in Figure 3 illustrates

the application of theoretical results in a network of mutually

coupled second-order Kuramoto oscillators, which corre-

sponds to the simplest case. The numerical values chosen for

this simulation are Pmax¼ 1.5, a ¼ 0:2; P1 ¼ 2; P2 ¼ �1

and initial conditions ðhj � hiÞopt and x1 ¼ x2 ¼ 0. Note

that this is the critical coupling value given by Equation

(19) for the maintenance of synchronization in the case

when all the frequencies are matched. As Dx¼ 0, Equation

(19) holds and the oscillators remain synchronized over

time, as shown in Figure 4. On the other hand, a large set of

numerical simulations for Pmax below the threshold showed

that synchronization is lost as t !þ1, which is also the

case when Dx(0) 6¼ 0. Numerical simulations revealed that

synchronization is not maintained for Pmax< 1.5, as pre-

dicted by theory.

B. Fixed power demand for different network sizes

It can be noticed from the theoretical results and numeri-

cal simulations that, for a fixed amount of power demand,

networks with distributed generation do better in achieving

and maintaining synchronous behavior, as well as in

recovering the synchronous behavior after a perturbation. To

FIG. 3. Time evolution of two mutu-

ally coupled Kuramoto-like oscillators

with Pmax¼ 1.5, P1¼ 2, P2¼�1 in a

generator-motor configuration (G-M)

x1(0)¼x2(0)¼ 0. The value of the

coupling strength, obtained by means

of Equation (19), is the minimum for

which synchronization between such

oscillators can be maintained.
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illustrate this, Figure 4 shows networks with
P

PM ¼ �5

and different levels power generation architecture, from (a)

the most distributed to (d) the most centralized one. Results

show that both Pmax and Psm increase as the power genera-

tion becomes more centralized, which means that the condi-

tions for stable frequency synchronization become more

stringent with centralization. Parameter values for these sim-

ulations are shown in Table I.

Note that Pmax and Psm increase monotonically with the

increase in maxfPi � Pjg and in the number of nodes N,

which influences Emax. This can be read also from Eqs. (17)

and (4).

C. A tour over the N 3D P parameter space

A study of the behavior of Pmax over the parameter space

N � DP gives a more general account of how these parameters

influence synchronization. It can be noted from Figure 5 that

the value of Pmax increases more steeply along the vertical axis,

labeled maxð�PijÞand defined as maxðPi � PjÞ; i; j ¼ 1;…N.

Thus, concerning the power-grid model of second-order

Kuramoto oscillators, it can be concluded that the heterogeneity

of the oscillators in the network, with respect to their generated/

consumed power, is more influential for the synchronizability

than for the network size.

D. A real power-grid: SIN —National Interconnected
System

The National Interconnected System, in Brazil, is a

countrywide power system composed of 96 000 km of high-

voltage transmission lines, over 1000 generation units and

FIG. 4. (a) Network with 5 generators

(PG¼ 1 each) and 5 motors (PM¼�1

each). (b) Network with 3 generators

(PG1¼PG2¼ 2, PG3¼ 1) and 5 motors

(PM¼�1 each). (c) Network with 2

generators (PG1¼ 3, PG2¼ 2) and 5

motors (PM¼�1 each). (d) Network

with 1 generator (PG¼ 5) and 5 motors

(PM¼�1 each).

TABLE I. Comparison of the coupling values for the cases presented in

Figure 4.

Case max{Pi – Pj} N Psm P��max

(a) 2 10 0.111 0.181

(b) 3 8 0.286 0.396

(c) 4 7 0.500 0.655

(d) 6 6 1.000 1.249

FIG. 5. Contour plot showing the evaluation of Pmax as a function of the

number of nodes in the network (N) and the maximum difference between

power input/outputs, maxjDPijj.
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800 circuits.31 Around 200 of the generating units have nom-

inal capacities above 30 MW and the system can deliver over

130 GW. The generation includes hydro (70.8%), natural gas

(10.5%), oil (4.0%), biomass (3.8%), nuclear (1.8%), and

eolic (0.2%). SIN is composed by four subsystems: North

(N), North-East (NE), South-East/Center-West (SE/CO), and

South (S), as shown in Fig. 6. The statistics for the graph of

the high-voltage generation and transmission system is pre-

sented in Table II.

In a typical day, the system operates within 30–40% of

its installed capacity.31 In other days, these figures can reach

60–70%. Figure 6 illustrates this fact: (a) load demand for a

typical day and (b) load demand for a usual day when an all-

time-high instantaneous demand occurred, followed by a

blackout. We apply the framework developed in Section III to

evaluate the requirements on Pmax in each case. Towards this

end, we consider the bulk portion of SIN transmission net-

work, pictured in Figure 7(a). From this, one obtains a net-

work of bulk power transfers among the 4 subsystems, as

pictured in Figure 7(b). The reference values and direction of

power flow for each case are given in Figure 6. Considering

that the network is composed of N¼ 4 nodes, the values of

power transfers are scaled down such that the magnitude of

the maximum power generation/demand for any region is

P� 4 (Fig. 8).

The results of simulations under these conditions are

presented in Figures 9 and 10. The results in Figure 9 indi-

cate Psm¼ 0.752 and Pmax¼ 1.176 for the conditions pre-

sented in Figure 6(a)—typical day. These are considerably

lower than those corresponding to the conditions presented

in Figure 6(b)—all-time high, which are Psm¼ 1.333 and

Pmax¼ 1.891. The analytical estimates for Pmax are closely

matched by the numerical results, as it can be read from

Figures 9 and 10. In any case, these values indicate that,

indeed, the condition under which the February 4, 2014,

blackout in Brazil occurred was one of significantly large

coupling strength requirement in comparison with the one

that is observed in a typical day. Under these conditions, it

was shown that the conditions for complete frequency

locking become more stringent since the critical coupling

for the onset of complete frequency locking becomes

higher.

Another dynamical effect of heavier power transfers

and more unbalanced generation/consumption per region

can be visualized by comparing Figures 9 and 10. The sim-

ulation results show the contour plot for the order parameter

rf, defined in Equation (21), as a function of the coupling,

Pmax, the length of the shortest arc in the cycle that covers

the geodesic distance between any two initial condition

angles of the oscillators, c, defined before (Fig. 11). From

these pictures, it can be noted that the heavier power trans-

fers and more unbalanced generation/consumption per

region, as depicted in Figure 12, cause the phase locking

region to shrink significantly. This not only causes synchro-

nization to be more difficult to occur but also causes the

network to be more likely to lose synchronization due to

perturbations.

FIG. 6. Charts of generation and load: the composition of the sources include Hydro, Thermal Eolic and Nuclear generators. Mean values and direction of

power transfers are informed by the arrows and associated amounts given in Gigawatts (GW). (a) Power transfers for a typical day; (b) Power transfers in the

occasion of the all-time-high power demand day in which a major blackout occurred. Adapted from Ref. 31.

TABLE II. Statistics of the network of the National Interconnected System

(SIN), in Brazil, and each of its subsystems.

Property SIN N NE CO/CO S

Number of nodes 1.201 351 337 350 138

Number of edges 1.459 434 420 408 157

Mean degree 2.429 2.472 2.493 2.326 2.275

Max. degree 12 8 11 12 8

Clustering coefficient 0.042 0.061 0.042 0.031 0.021

Average path length 14.329 8.581 7.984 8.907 8.381

Diameter 33 23 21 20 24

Degree assortativity �0.005 �0.047 �0.037 0.023 �0.013
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V. DISCUSSION

Under jPij ffi jPjj, the results developed in Section III

establish less restrictive necessary condition for the emergence

of synchronization. Hence, the line capacity maxðP�max;PsmÞ
gives the minimum value of coupling for which synchroniza-

tion can set in. In practice, this value affects the calculations

of bus and line capacities, especially under contingency sit-

uations as power flow must be redirected in such a way that

the condition Pmax � maxðP�max;PsmÞ is still verified for the

nodes and links that remain working in the post-fault

condition.

Regarding the estimation of P��max in Equation (17), it

shows that the coupling strength has to be large enough to

overcome the heterogeneity of the oscillators, as expressed

by Pi – Pj, and the difference of angular velocities, Dxmax.

This criterion agrees with previous results developed on the

basis of different approaches, analytical and numerical,

found in recent papers.3,5,29 Further evidence of the consis-

tence of the results is that they agree with numerical simu-

lations with significant accuracy. The behavior of

monotonic increase of Emax as N ! 1, along with the

direct linear dependence of Pmax on the node heterogeneity

DP ¼ jPi � Pjj, suggests that larger networks with more

distributed power generation, that is, jPij ffi jPjj, can

achieve and maintain synchronization more easily with

respect to the coupling strength.

VI. CONCLUSIONS

This work provided some useful analytical expressions

to estimate the coupling strength with a view on the onset of

complete frequency locking in networks of second-order

Kuramoto oscillators. Rather than assuming that the oscilla-

tors are currently synchronized in order to derive an expres-

sion for the onset of complete frequency locking, we simply

observe that their angular velocities shall lie within a com-

pact set with known boundaries and then estimate their lim-

its. The theoretical expressions were evaluated by means of

an order parameter associated with synchronization quality

and persistence. Case studies were carried out to illustrate

the applicability of the proposed theoretical results which

were seen to closely match the data obtained by numerical

simulations. Further, a case study considering the National

Interconnected System shed a light on the likely factors con-

tributing to the 2014 blackout, that is, centralized generation

and heavy power flow.

FIG. 7. (a) National Interconnected System (SIN) in Brazil, the countrywide electrical power transmission system. Rated line voltages range from 138 kV to

750 kV for AC transmission and 600 kV for DC transmission. The system is sectioned into four subsystems: North (N), North-East (NE), South-East/Center-

West (SE/CO) and South (S). (b) Network of the bulk inter-region power transfers. Adapted from Ref. 31.

FIG. 8. Graph representation of the subsystems of SIN for each of the con-

ditions depicted in Figure 6. (a) Network with 2 generators (PG1¼ 0.91,

PG2¼ 2.26) and 2 motors (PM1¼�1.60, PM2¼�1.57). (b) Network with

1 generator (PG1¼ 4.00) and 3 motors (PM1¼�1.82, PM2¼�1.02,

PM3¼�1.16).
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FIG. 9. Numerical simulation of the mean values of power transfers presented in Figure 6(a). The synchronization manifold exists for Psm� 0.752 and synchro-

nization sets in for Pmax� 1.176.

FIG. 10. Numerical simulation of the mean values of power transfers presented in Figure 6(b). The synchronization manifold exists for Psm� 1.333 and syn-

chronization sets in for Pmax� 1.891.
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