
A Controlled Experiment for Combinatorial Testing

Juliana Marino Balera
Instituto Nacional de Pesquisas Espaciais

(INPE)
São José dos Campos, SP, Brazil

juliana.balera@inpe.br

Valdivino Alexandre de Santiago Júnior
Instituto Nacional de Pesquisas Espaciais

(INPE)
São José dos Campos, SP, Brazil
valdivino.santiago@inpe.br

ABSTRACT
In this paper, we present a controlled experiment for com-
binatorial designs algorithms aiming at software test case
generation. We compare our recently proposed algorithm,
TTR, to generate Mixed-Level Covering Array (MCA) with
four other well-known combinatorial designs algorithms/tools
regarding two aspects: cost in terms of the size of the set of
test cases, and cost in terms of the time to generate the test
suites. We used a set of 27 instances for this experiment.
Results show that our algorithm was the best in terms of
the size of the test suite, but was the poorest in terms of the
time to generate the test cases. However, the not so good
performance of our algorithm regarding the time to generate
the test suite can be alleviated by the fact that TTR produ-
ces shorter set of test cases to be executed. We also made
a comparison about the similarity of the test cases, i.e. to
realize how similar are the test suites (test input data) of
TTR compared with the other four algorithms/tools. We
conclude that the TTR’s test suite is not similar to any
other test suites meaning that our algorithm has the po-
tential to uncover different software defects by exercising
different parts of the Software Under Test (SUT).

CCS Concepts
•Mathematics of computing → Combinatorial algo-
rithms; Statistical software; •Software and its enginee-
ring → Software testing and debugging;

Keywords
Controlled Experiment; Combinatorial Designs; Software Tes-
ting

1. INTRODUCTION
Theoretically, to find all software defects it should be nee-

ded to test the Software Under Test (SUT) exhaustively [17].
However, in practice this is unfeasible because the number
of possible combinations of the test input data is extremely

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

SAST, September 19-20, 2016, Maringa, Parana, Brazil
c© 2016 ACM. ISBN 978-1-4503-4766-2/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2993288.2993289

high, particularly considering complex software. Therefore,
the use of software testing techniques is necessary to select
a subset within the total number of possible test cases [6]
which has a high likelihood of revealing many of the software
defects, turning the software testing process feasible.

Combinatorial designs are a set of methods for genera-
ting/selecting test cases that allow the selection of a relati-
vely small set of test cases even if the input domain, and the
number of subdomains after partitioning is large and com-
plex [13]. These methods have proven to be effective in the
discovery of defects due to the interaction of several input
variables (factors).

One combinatorial designs technique, which appears to be
one of the most used by the software testing community, is
Mixed-Level Covering Array (MCA). In MCA, it is possible
that factors (parameters) take levels (values) from different
sets. It is a technique of unbalanced designs [13]. MCA is a

matrix defined by MCA (N ,lk1
1 lk2

2 ...l
kp
p , t), where: N is the

number of rows in the matrix; the k1 factor has l1 levels, ...,
and the kp factor has lp levels. The parameter t corresponds
to the degree of interaction of factors, known as the strength.
In the context of software testing, each row of the MCA is
a test case1. Therefore, an MCA is a test suite.

A recent study [11] presented a survey on the efforts re-
lated to more rigorous evaluations (controlled experiments,
quasi-experiments [23]), in 25 years in the software testing
community in Brazil, represented by the Brazilian Sympo-
sium on Software Engineering (SBES), and in the world, re-
presented by the International Conference on Software Engi-
neering (ICSE). The research considered, among other situa-
tions, the evolution of the application of assessment methods
in articles related to software testing, and its rigor. Results
show that there was an increase in the rate of scientific ar-
ticles employing methods of evaluation through the years,
however only one study, in each conference, reported appli-
cation of controlled experiments, where the number of sam-
ples is considered large (> 10 participants), hypotheses are
formulated, and a statistical evaluation of the results can
provide greater confidence in them [23].

Based on this motivation to present more rigorous evalu-
ations, this work aims to show the results of a controlled ex-
periment to compare our efforts to generate MCAs, the algo-
rithm T-Tuple Reallocation (TTR) [1], with four other well-
known algorithms/tools for combinatorial testing: IPOG-F
[8], jenny [9], IPO-TConfig [21], and PICT [4]. We carried

1However, for combinatorial designs, it is common to con-
sider 1 “test case” as being only the test input data of this
case. In this work, we will adopt this convention.

out two cost comparisons: size of the test suite and time to
generate the test suites. Results showed that our algorithm,
TTR, was the best in terms of the size of the test suite
(smaller size), but had the poorest performance in terms of
time to generate the test suites (greater time). However, the
weakest performance in terms of time to generate the test
suites can be offset by the fact that TTR generates a smaller
number of test cases to run. A set of 27 instances/samples
(composed of factors and levels that serve to generate an
MCA) was used, with values of strength, t, ranging from 2
to 6.

In addition, we conducted a similarity analysis between
the sets of test cases generated by TTR and the other four
algorithms/tools. Our conclusion is that the TTR test suite
is not similar to any other test suite, meaning that our al-
gorithm has the potential to identify different defects by
stimulating different parts of the SUT.

This paper is organized as follows. Section 2 presents the
main concepts behind TTR. Section 3 details the planning
of the experimental study. Experiment’s results and analysis
are presented in Section 4. Section 5 presents related work,
and in Section 6 are the conclusions and future work.

2. OVERVIEW OF TTR
The TTR algorithm [1] aims at generating MCAs by the

t-way testing technique. A high-level view of TTR2 is pre-
sented in Algorithm 1. The general concept of TTR is to
build an array of combinatorial designs through the reallo-
cation of tuples from the matrix Θ to the matrix M , and
then each relocated tuple should cover the greatest number
of tuples not yet covered, considering a parameter called a
goal (ζ). Also note that f is the submitted set of factors
and t is the selected strength. In addition, we should recall
that a tuple is a finite ordered list of elements. In the se-
quence, we will briefly comment on the main features of the
algorithm.

Algorithm 1 The TTR algorithm

1: Θ← constructor(f, t)
2: M ← calculateInitialSolution(Θ)
3: while Θ 6= ∅ do
4: ζ ← calculateZeta(M)
5: (M,Θ)← main(M,Θ, ζ)
6: end while

Constructor: this procedure aims to generate all tuples
to be covered. They are produced as follows: all strength-
based factor groups are created so that each group has the
size of the strength, without repetition. After that, all com-
binations of levels corresponding to these factor groups are
made. For example, let us consider two factors A and B
with two levels each and t = 2 (strength). We will have a
factor group “AB” with 4 tuples: (A1, B1), (A1, B2), (A2,
B1) and (A2, B2). Each tuple is associated with a parame-
ter called flag, which helps in the tuple’s selection process
for reallocation.

Initial Solution: this procedure concerns building an
initial solution, which is made in the following way: among
the factor groups generated by the constructor procedure,
TTR selects the factor group that has the greatest amount
of tuples. Each tuple is removed from the matrix Θ and

2The current version of the algorithm is 1.1.

reallocated in the matrix M , becoming then a test case.
Thus, each test case covers at least one tuple and, hence, a
factor group is covered completely.

Goal: it is a value associated with each row of the matrix
M , and is related to the “potential” coverage of each row
of the array. They are calculated by simply combining the
value of the strength, t, and the number of factors covered
by each tuple at a certain time. For example, let us consider
the following factors A, B and C with 2, 2 and 3 levels,
respectively, and t = 2. There are three possible factor
groups: “AB”,“AC”and“BC”. Each group will have (2∗2) =
4, (2 ∗ 3) = 6 and (2 ∗ 3) = 6 tuples, respectively. The
calculateInitialSolution procedure will reallocate the factor
group “AC” into the matrix M , thus no tuple combination
of “AC” need to be covered, which means that, from now on,
each test case can cover up two tuples, because there exist
two factor groups that have tuples not yet covered.

Main: this procedure transforms the matrix produced by
the initial solution into the final solution (final set of test
cases). After constructing Θ, the initial matrix M , and the
calculation of each goal (ζ), the main procedure builds test
cases to cover the greatest amount of tuples by means of the
gradual reallocation of tuples from Θ to M . For each itera-
tion, the factor group with more uncovered tuples is selected,
and then each one of its tuples is temporarily combined with
each row of the matrix M . Then it is calculated the amount
of tuples not covered by this temporary row and compared
with the value of goal for that row. If these values are equal,
then the tuple is reallocated permanently to that row of M ,
otherwise it is compared with the next row of M until it fits
somewhere. The procedure accomplishes this comparison
until all tuples of that factor group are reallocated.

It is important to consider the case where a tuple is com-
pared with all the rows of the matrix M , however, it does not
fit in any place. For this case, TTR generates a “marking”
and the algorithm proceeds to the next factor group. When
this group is again selected by main as the group with the
greatest amount of uncovered tuples, this marking indicates
that the value of the goal must be reduced. This ensures
that all tuples are covered by the algorithm.

Let us consider Figure 1 where we see factors A, B and
C, with 2, 2 and 3 levels, respectively. Let us also consider
pairwise design, t = 2. All tuples generated by the cons-
tructor procedure, i.e. the initial Θ, can be viewed on the
leftmost matrix in Figure 1. The rightmost matrix is the
final solution (matrix M). To achieve that, the calculateI-
nitialSolution procedure selects the factor group with the
greatest number of tuples, in this case “AC” corresponding
to tuples 5-10 (6 tuples) in the initial Θ which are then re-
allocated into M . Note that factor group “BC” has also
6 tuples (tuples 11-16) and could be selected. TTR always
chooses a factor group which has related the greatest amount
of tuples according to the input of factors. Thereafter, the
calculateZeta procedure finds the goals (ζ) in accordance
with the number of factor groups that were not covered. At
this point, all goals are 2 (“AB” and “BC” are not cove-
red). Then, the main procedure searches the factor group
that possesses the greatest amount of tuples not yet covered.
Tuples 11-16 (due to factor group “BC”) in the initial Θ are
selected. Tuple 11 is combined with tuple 5 and this genera-
tes test case 1 in the matrix M . Thus, note that this process
addresses two tuples (1 and 11) of the initial Θ and this is
precisely equals to the goal (ζ). Then, it is not necessary to

Figure 1: Example of TTR in operation. The leftmost matrix is the initial Θ and the rightmost matrix is the
final M

perform any other action related to test case 1 in M . Next,
tuple 12 is selected and the comparison process is repeated.

In version 1.0 of TTR, the implementation of the algo-
rithm was insensitive to the order of input of factors and
levels. In other words, the instances 6171214131714191 and
9161712141317141 always generated the same amount of test
cases via TTR. Other solutions, such as IPOG-F and jenny,
vary the amount of test cases according to the order of in-
put of factors and levels. Despite insensitivity is something
interesting, we noticed an even better improvement in TTR
performance in terms of a smaller number of test cases gene-
rated, if, like the others, our algorithm was sensitive to the
order of input of factors/levels. Thus, we created version 1.1
of TTR where sensitivity to the order of factors and levels
is one of its features.

3. EXPERIMENTAL DESIGN
In this section, we present the description of the controlled

experiment in regard to its Design/Planning.

3.1 Definition
The primary aim of this study is to evaluate two cost pers-

pectives related to the generation of test cases via combina-
torial designs/MCA considering our solution, version 1.1 of
the TTR algorithm, and four other algorithms/tools propo-
sed in the literature: IPOG-F [8], jenny [9], IPO-TConfig
[21], and PICT [4]. The first definition of cost refers to the
size of the test suites. The second definition of cost refers
to the time to generate the test suite, based on each algo-
rithm/tool. We should emphasize that this time is not the
time to run the test suites derived from each algorithm. A
third comparison has been done where we analyzed the simi-
larity between the generated test suites. Here, the goal is to
realize whether the test cases, generated by a certain appro-
ach, differ or are similar to test cases generated by another
solution.

3.2 Context
The experiment was conducted by the researchers who de-

fined it. The experimentation process proposed in [22] was
used as the basis for the accomplishment of this control-
led experiment, using the R [10] tool for cost analysis, and
python [14] for the similarity analysis.

As our objective is basically to compare the cost of several
solutions in the literature with our proposal, the set of sam-
ples is, in fact, formed by instances that will be submitted to
the algorithms/tools for the generation of the matrices (test
suites). Initially, we chose 33 test instances/samples (com-
posed of factors and levels) with the strength, t, ranging
from 2 to 6. However, only 27 out of the 33 instances could
generate test cases for all algorithms: in 6 instances, IPO-
TConfig failed to finish its execution, even after 24 hours
of execution and, therefore, we discarded these 6 instances.
Table 1 shows the 27 instances/samples used in this study.

It is important to characterize each instance/sample. Let
us consider instance i = 1 in Table 1:

6171214131714191, strength = 2 (1)

For example, in the context of unit test case generation
for programs developed according to the Object-Oriented
Programming (OOP) paradigm, this instance can be used to
generate test cases for a class that had one attribute (factor)
which could take 6 values (levels; 61), 1 attribute that could
take 7 values (71), another attribute that could take 2 values
(21), · · · , 1 attribute that could take 9 values (91). In the
system and acceptance testing context, this same sample
could be used to identify test scenarios (test objectives) in
a model-based test case generation approach [18, 19]. In
both cases, the test suites must meet the criteria of pairwise
testing (strength = 2), where each combination of 2 values
of all factors must be covered.

3.3 Hypotheses
For the evaluation of cost related to the size of the test

suites and the time to generate them, the following hypothe-
ses were considered:

Table 1: Samples for the controlled experiment: Instances
i Strength Instance

1 2 6171214131714191

2 2 2331412231

3 2 9181214151617121

4 2 32214151619121

5 2 223242526272

6 2 22324252627282

7 2 2232425262728292

8 2 2232425262728292102112

9 3 2151213223

10 3 2331412231

11 3 215161223122

12 3 32214124

13 3 22324252

14 3 2232425262

15 3 223242526272

16 4 51312231214131

17 4 22331412231

18 4 2151214151314121

19 4 322141516122

20 4 223242

21 4 22324252

22 5 234131214131

23 5 2331412231

24 5 314121415222

25 5 322141513122

26 5 22324252

27 6 223242

• Null Hypothesis H1.0: There is no difference in cost
(size of the test suites) between TTR and IPOG-F;

• Alternative Hypothesis H1.1: There is difference
in cost (size of the test suites) between TTR and IPOG-
F;

• Null Hypothesis H2.0: There is no difference in
cost (size of the test suites) between TTR and jenny;

• Alternative Hypothesis H2.1: There is difference
in cost (size of the test suites) between TTR and jenny;

• Null Hypothesis H3.0: There is no difference in
cost (size of the test suites) between TTR and IPO-
TConfig;

• Alternative Hypothesis H3.1: There is difference
in cost (size of the test suites) between TTR and IPO-
TConfig;

• Null Hypothesis H4.0: There is no difference in
cost (size of the test suites) between TTR and PICT;

• Alternative Hypothesis H4.1: There is difference
in cost (size of the test suites) between TTR and PICT;

• Null Hypothesis H5.0: There is no difference in
cost (time to generate the test cases) between TTR
and IPOG-F;

• Alternative Hypothesis H5.1: There is difference
in cost (time to generate the test cases) between TTR
and IPOG-F;

• Null Hypothesis H6.0: There is no difference in
cost (time to generate the test cases) between TTR
and jenny;

• Alternative Hypothesis H6.1: There is difference
in cost (time to generate the test cases) between TTR
and jenny.

With regard to the similarity analysis, the following hy-
potheses were considered:

• Null Hypothesis H7.0: There is no difference of
similarity between the test suites of TTR and IPOG-
F;

• Alternative Hypothesis H7.1: There is difference
of similarity between the test suites of TTR and IPOG-
F;

• Null Hypothesis H8.0: There is no difference of
similarity between the test suites of TTR and jenny;

• Alternative Hypothesis H8.1: There is difference
of similarity between the test suites of TTR and jenny;

• Null Hypothesis H9.0: There is no difference of
similarity between the test suites of TTR and IPO-
TConfig;

• Alternative Hypothesis H9.1: There is difference
of similarity between the test suites of TTR and IPO-
TConfig;

• Null Hypothesis H10.0: There is no difference of
similarity between the test suites of TTR and PICT;

• Alternative Hypothesis H10.1: There is difference
of similarity between the test suites of TTR and PICT.

3.4 Variables
Regarding the variables involved in this experiment, we

can highlight the independent variables and dependent va-
riables. The first type are those that can be manipulated
or controlled during the process of trial and define the cau-
ses of the hypotheses [2]. For this experiment, such varia-
bles are the algorithm/tool for generating combinatorial de-
signs/MCA, the instances/samples used, and the program-
ming language in which the algorithms were implemented:
Java (TTR, IPOG-F, IPO-TConfig), C ++ (PICT), and C
(jenny). For the dependent variables, we can observe the
result of manipulation of the independent variables [2]. For
this study, we identified the number of generated test cases,
the time to generate each set of test cases, and the result of
the similarity analysis between the test suites.

3.5 Experiment’s Description
Each one of the algorithms/tools was subjected to each

one of the 27 test instances (see Table 1), one at a time.
The output of each algorithm/tool, with the generated test
suite according to each instance, was directed to a text file
to be recorded. An important point to be stressed is that,
beyond the TTR itself, we implemented a version of IPOG-
F. The other tools (PICT, jenny, and IPO-TConfig) were
already implemented and ready for use.

To analyze the cost considering the size of test suites, we
simply verified the amount of generated test cases, i.e. the
number of rows of the matrix M , for each instance/sample.

For the second perspective of cost, it is necessary to con-
sider that we were not able to measure the time in some
tools because we do not have their source code. Therefore,
we could only obtain the time to generate test cases consi-
dering the tool that implements our own algorithm, TTR,
our implementation of IPOG-F, and jenny. To accomplish
this time measurement, we instrumented each one of the to-
ols and measured the computer’s current time before and
after the execution of each algorithm. In all cases, we used
a computer with an Intel Core(TM) i7-4790 CPU @ 3.60
GHz processor, 8 GB of RAM, running Microsoft Windows
7 Professional 64-bit operating system. The goal of this se-
cond analysis is to provide an empirical evaluation of the
time performance of the algorithms.

For the two cost measures, we used an appropriate sta-
tistical evaluation checking data normality. Verification of
normality was done in three steps: (i) by using the Shapiro-
Wilk test [20] with a significance level α = 0.05; (ii) by chec-
king the skewness of the frequency distribution; and (iii) by
using a graphical verification by means of a Q-Q plot [10]
and histogram. Thus, we believe we have greater confidence
in this conclusion on data normality compared to an appro-
ach that is based only on the Shapiro-Wilk test, considering
the effects of polarization due to the length of the samples.
As we will discuss in Section 4, in all cases and considering
all the 6 first hypotheses, data were not normally distribu-
ted. Therefore, we applied the nonparametric Wilcoxon test
(Signed Rank) [10] with significance level α = 0.05. Howe-
ver, if the samples presented ties, we applied a variation of

the Wilcoxon test, the Asymptotic Wilcoxon (Signed Rank)
[10], suitable to treat ties with significance level α = 0.05.

With respect to the similarity analysis, taking the TTR
as a basis, we have developed a program in python where
we looked for the differences between the test suites genera-
ted by TTR and every other algorithm/tool. The similarity
analysis method is presented in Algorithm 2.

Algorithm 2 The similarity analysis method

1: obtain set X = {x | x = |TSTTR
i |}

2: calculate set L = {l | l = 0.95x, x ∈ X}
3: obtain set Y = {y | y = |TSTTR

i ∩ TSother
i |}

4: dLX ← calculateEuclideanDistance(n,L,X)
5: dY X ← calculateEuclideanDistance(n, Y,X)
6: if dY X ≤ dLX then
7: Test suites X and Y are similar
8: else
9: Test suites X and Y are NOT similar

10: end if

Each element x ∈ X is the amount of test cases generated
via TTR for each instance i. After obtaining the set X, we
calculate set L: a set of ideal values where each element,
l ∈ L, is 95% of a respective value x ∈ X. The set Y refers
to the cases that are common to two different approaches.
Thus, each element y ∈ Y is the amount of test cases ge-
nerated by TTR which are common to other solutions, for
each instance i. We then calculate the Euclidean distance in
an n-dimensional space (n = 27 in this study) considering L
and X, dLX , and considering Y and X, dY X . We conclude
that two test suites are similar if dY X ≤ dLX . Hence, the
set of ideal values, L, helps to determine the maximum eu-
clidean distance to consider a set Y (test cases due to other
solutions which are common to TTR) similar to the set X
(test cases due to TTR).

3.6 Validity
In this section, we discuss some aspects related to the vali-

dity of the experiment. Regarding the validity of the conclu-
sion, it is important to consider the reliability of the metrics.
In this study, the quantities of test cases were obtained in
an automatic way by the algorithms/tools, and it is possible
to achieve the same results, in the case of replication of this
experiment by other researchers. To minimize the impact of
the input order of factors and levels and get more consistent
results for the statistical analysis, we generated test cases
with 3 variations in the order of input of factors and levels,
and took into account the average of these 3 values for the
statistical tests.

We expect that the validity of conclusion concerning the
time for the generation of test cases is also the same in case
of replication of this experiment. Again, we executed each
tool 3 times and considered the mean values for the statis-
tical tests. However, we do expect that a replication of this
study will provide different results of time simply because
such results depend on the computer configuration (proces-
sor, memory, operating system) used to run the tools. But,
for this time perspective, the performance of the best solu-
tion (jenny) was much better than the second best appro-
ach (IPOG-F), and considerably better than our algorithm
which was the weakest. Thus, we dot not expect a different
validity of conclusion.

We expect the same validity of conclusion, in case of repli-
cation, for the similarity analysis. The bottom of line is that
the similarity analysis is based on the amount of generated
test cases and, hence, the same reasoning previously presen-
ted related to the cost in the perspective of the size of the
test suites applies here. We also generated test cases three
times for each instance and all tools, but as we would like to
see the common test cases (TTR and other algorithm/tool)
we have made a separate analysis, per execution, rather than
considering an average value of the findings. For all 3 evalu-
ations (cost/size, cost/time, similarity), 10 hypotheses were
statistically assessed by means of hypothesis tests and veri-
fication of similarity via Euclidean distance.

Threats to internal validity compromise the confidence in
stating that there is a relationship between dependent and
independent variables. There were no factors that interfere
in this relationship because the participants, i.e. the sam-
ples/instances, were randomly selected, there were no unan-
ticipated events to interrupt the collection of metrics once
started, and the generation of test cases strictly followed the
algorithms implemented in the tools. Likewise, the validity
of construction was also assured since traditional combina-
torial designs algorithms/tools were used to compare with
our solution, the TTR algorithm.

Finally, threats to external validity compromise the confi-
dence in asserting that the results of the study can be gene-
ralized to and between individuals, settings, and under the
temporal perspective. Basically, we can divide threats to
external validity into two categories: threats to population
and ecological threats.

Threats to population refer to how significant is the sam-
ple set of the population used in the study. For our study,
the strengths and the range of factors and levels that make
up the instances are the determining points for the charac-
terization of this threat. Note that for such a study, the
possibility of combination of strengths and factors/levels is
literally infinite. However, unlike other informal studies [3]
that focus more on pairwise testing (strength = 2), 70% of
strengths we used are greater than 2, and there are instances
with up to 20 factors, a factor which can take up to 11 levels
(see instance 8 in Table 1). We believe that our choice of
the set of samples is more significant than in other studies
in the literature.

Ecological threats refer to the degree to which the results
may be generalized between different configurations. Test
interaction effects (e.g. carry out a pre-test with the parti-
cipants of the experiment) and the Hawthorne effect (due to
the participants simply feel stimulated by knowing that they
are participating in an innovative experiment) are some of
the types of this threat. The participants in our experiment
are the test instances and therefore this type of threat does
not apply to our case.

4. RESULTS AND DISCUSSION

4.1 Costs: Size of the Test Suites and Time
As we have already stated, the experiment reported in this

work aimed to evaluate two aspects related to cost taken into
account algorithms/tools TTR (Version 1.1), PICT, jenny,
IPOG-F and IPO-TConfig: amount of test cases generated
and time for generating test cases. Additionally, a similarity
analysis was performed in order to check how similar were
the sets of test cases created via TTR compared with other

algorithms/tools.
Hypotheses (Section 3.3) 1 to 4 relate to the first evalu-

ation of cost, the amount of test cases, while hypotheses 5
and 6 refer to the second perspective of cost, time to gene-
rate the test cases. It is important to emphasize that this is
the time only to derive the suite test. Hypotheses 7 to 10
are related to the analysis of similarity between the sets of
test cases.

Considering the cost related to the amount of test cases,
as described in Section 3.5, data normality has been deter-
mined via 3 methods: via Shapiro-Wilk test with a signifi-
cance level α = 0.05, by checking the skewness, and by using
a graphical verification by means of a Q-Q plot and histo-
gram. None of the data related to the four hypotheses were
normally distributed. Therefore, we applied the nonpara-
metric test Asymptotic Wilcoxon (Signed Rank) [10] with
significance level α = 0.05. Table 2 shows the results and
the total average value (x̄) regarding the number of test ca-
ses generated by the five solutions. Due to the fact that all
algorithms are sensitive to the input order of factors and
levels, each instance was considered three times: one in the
order shown in Table 2, other with the first and the last fac-
tors swapped, and another with the second and penultimate
factors swapped. Thus, the values that appear due to each
solution is an average of these three submissions. For exam-
ple, in instance/sample 1, the average of the three runs for
jenny was 71.67 while TTR’s average was 63. Table 3 shows
the p-values related to this assessment.

According to these results, we noticed that all four null
hypotheses (H1.0 to H4.0) were rejected because the p-values
are below 0.05. So there is difference in cost, considering the
amount of generated test cases via the algorithms/tools. As
the total average value (x̄) of TTR is smaller than any other
average value due to other solutions, we conclude that TTR
is the best alternative for generating a lower cost test suite.

With respect to the cost in the perspective of the time
to generate the set of test cases, we followed the same pro-
cedure already described to verify data normality. As in
the previous case, data related to the hypotheses 5 e 6 did
not also present normal distribution. Hence, again we have
made use of the nonparametric test Asymptotic Wilcoxon
(Signed Rank) [10] with significance level α = 0.05. Table 4
shows the results and the total average value (x̄) related to
the time (ms) to generate the test suites. Because the issue
of sensitiveness to the input order of factors and levels, we
generated test cases three times, and the value that appears
in each row of Table 4 is an average of these three submissi-
ons. Table 5 shows the p-values related to this assessment.

These results show again that the two null hypotheses
(H5.0, H6.0) were rejected because the p-values are below
0.05. So there is difference in cost, considering the time to
generate the set of test cases via the algorithms/tools. The
average value of TTR is the largest of all values and, unlike
the first cost evaluation, TTR presented the weakest per-
formance in this second assessment. One possible explana-
tion for the poorest TTR’s performance is the programming
language used: TTR was implemented in Java and jenny
was developed in C. It is a fact that the latter is a much
more appropriate language regarding real time aspects. But
IPOG-F was also implemented in Java. The explanation for
IPOG-F surpasses TTR is that IPOG-F makes comparisons
in order to find the best local solution (it is a greedy algo-
rithm) only to a particular test case. After that, what it

Table 2: Cost related to the size of the test suites: results and mean value
i Strength Instance jenny IPO-TConfig PICT IPOG-F TTR

1 2 6171214131714191 71.67 72.00 76.00 89.67 63
2 2 2331412231 14.33 15.00 13.33 17.33 12.67
3 2 9181214151617121 79.00 78.00 74.33 93.67 72.00
4 2 32214151619121 55.33 55.33 54.00 65.33 54.00
5 2 223242526272 62.00 64.00 55.33 119.33 54.67
6 2 22324252627282 84.33 85.33 73.33 159.00 73.33
7 2 2232425262728292 104.67 109.67 93.33 208.33 95.67
8 2 2232425262728292102112 156.33 167.33 145.00 318.00 185.00
9 3 2151213223 52.67 52.00 49.33 59.33 51.67
10 3 2331412231 44.67 45.00 39.00 46.33 38.00
11 3 215161223122 96.33 99.00 90.33 116.00 90.00
12 3 32214124 42.00 39.67 41.33 46.00 36.67
13 3 22324252 132.00 133.67 122.33 155.00 108.67
14 3 2232425262 252.33 260.33 229.00 315.33 217.33
15 3 223242526272 431.00 381.33 385.33 473.33 371.67
16 4 51312231214131 253.00 255.33 242.67 265.00 226.33
17 4 2331412231 107.33 107.67 106.67 114.00 100.00
18 4 2151214151314121 460.33 463.00 431.00 513.00 324.00
19 4 322141516122 449.00 453.67 359.67 493.33 396.33
20 4 223242 164.00 169.00 150.00 166.33 145.67
21 4 22324252 502.67 517.00 464.33 564.67 439.33
22 5 234131214131 413,33 418,67 397.33 448.33 366.67
23 5 2331412231 234.00 234.67 232.00 267.00 234.67
24 5 314121415222 1328.00 1331.00 1257.33 1432.67 1225.00
25 5 322141513122 645.33 635.00 613.00 637.00 602.33
26 5 22324252 1440.00 1440.00 1440.00 1440.00 1440.00
27 6 223242 576.00 576.00 576.00 576.00 576.00
x̄ 305.62 305.88 289.31 340.72 281.51

Table 3: Cost related to the size of the test suites:
Asymptotic Wilcoxon

Hipothesis p-value
1: TTR ↔ IPOG-F 1.229e− 05
2: TTR ↔ jenny 0.0001011
3: TTR ↔ IPO-TConfig 0.0001019
4: TTR ↔ PICT 0.0244

does is to fill the remaining tuples, with no concern about
the amount of tuples that were covered at each iteration.
This causes the IPOG-F algorithm to be faster from a cer-
tain point on, however, it produces a greater amount of test
cases, compared with TTR, due to this feature.

Despite this time analysis demonstrated a worse perfor-
mance of our algorithm, it is important to note that in a soft-
ware testing process, the time to run the test suites, which
mainly depends on the size of the sets of test cases, is much
more relevant than the time to generate the set of test cases.
So the weakest TTR’s time performance can be compensa-
ted by the fact that our solution generates smaller sets of
test cases than all the other solutions analyzed.

4.2 Similarity Analysis
Following the method described in Section 3.5, we per-

formed an analysis to realize whether the sets of test cases
generated by version 1.1 of TTR were similar to the test sui-
tes generated by IPOG-F, IPO-TConfig, jenny, and PICT.
We also conducted 3 runs of each algorithm/tool but as the

main idea is to calculate the euclidean distance by compa-
ring the number of test cases generated by TTR (set X)
with the number of test cases generated by other solutions
that are common to the ones created via TTR (set Y), we
considered each run separately.

In Table 6 we show the results of the first exection only.
TTR column is the set X and the other columns are sets
Y . Hence, for the first instance, jenny, IPO-TConfig and
IPOG-F have no test case in common to TTR, while 11 test
cases generated via PICT have also been derived via TTR.
We calculated the set of ideal values, L, and the euclidean
distances (dLX , dY X), as presented in Algorithm 2.

Based on Table 7, it is clear that all null hypotheses from
7 to 10 (H7.0 the H10.0) are rejected. In other words, the
test suites generated via TTR are not similar to any of the
sets of test cases generated by the other approaches. This
can be an indication that TTR tends to stimulate different
parts of the SUT in relation to the other algorithms/tools.

5. RELATED WORK
According to the literature review we did, we could not

find any study that presents a controlled experiment con-
sidering combinatorial designs. In this section, we present
some relevant studies that consider controlled experiments.

In [11], the authors presented a 25-year historical pers-
pective of evaluation studies related to software testing and
which were published in Brazil, represented by SBES, and
in the world, represented by ICSE. Main results showed that
the SBES community has considerably increased the efforts

Table 4: Cost related to the time (ms) to generate the test suites: results and mean value
i Strength Instance jenny IPOG-F TTR

1 2 6171214131714191 0.074 0.163 0.115
2 2 2331412231 0.026 0.067 0.080
3 2 9181214151617121 0.090 0.150 0.173
4 2 32214151619121 0.075 0.077 0.130
5 2 223242526272 0.099 0.163 0.991
6 2 22324252627282 0.136 0.302 4.400
7 2 2232425262728292 0.203 0.595 18.999
8 2 2232425262728292102112 0.313 2.430 1240.164
9 3 2151213223 0.075 0.131 0.947
10 3 2331412231 0.055 0.157 0.732
11 3 215161223122 0.098 0.275 1.783
12 3 32214124 0.079 0.121 0.731
13 3 22324252 0.126 0.355 4.601
14 3 2232425262 0.347 2.550 172.537
15 3 223242526272 0.944 18.313 34664.835
16 4 51312231214131 0.250 1.507 56.274
17 4 2331412231 0.118 0.484 12.128
18 4 2151214151314121 0.498 3.301 143.801
19 4 322141516122 0.476 4.843 145.860
20 4 223242 0.114 0.155 0.463
21 4 22324252 0.554 3.824 207.121
22 5 234131214131 0.438 3.073 116.216
23 5 2331412231 0.232 1.394 42.661
24 5 314121415222 1.601 87.788 1271.550
25 5 322141513122 0.709 18.094 316.005
26 5 22324252 0,723 0.424 0.193
27 6 223242 0,376 0.106 0.129
x̄ 0.327 5.587 1423.097

Table 5: Cost related to the time (ms) to generate
the test suites: Asymptotic Wilcoxon

Hipothesis p-value
5: TTR ↔ IPOG-F 3.204e− 07
6: TTR ↔ jenny 5.215e− 07

in performing rigorous evaluations. However, the authors
stated that these efforts are still low compared with the
number of studies published in ICSE and which present ri-
gorous assessments. Moreover, they concluded that only a
single paper, in each conference, presented a controlled ex-
periment. Thse two studies are described below.

In [2], a controlled experiment comparing cost and dif-
ficulty of satisfaction of the mutation analysis criteria was
presented considering the Procedural and Object-Oriented
Programming Paradigms. The authors assessed 32 programs
developed in C and Java. They used two tools, Proteum [5]
for C code, and MuClipse [15] for Java code. The experi-
ment was conducted based on the approach proposed in [22].
Results showed that not only the cost but also the difficulty
of satisfaction of Procedural Paradigm are greater than the
Object-Oriented Paradigm.

A controlled experiment comparing the “What You See is
What You Test” (WYSIWYT) testing methodology with
an Ad Hoc approach was presented in [16]. Results showed
that the subjects that used their methodology, WYSIWYT,
performed significantly more effective testing, as measured
by du-adequacy, and were much more efficient testers, as

measured by speed and redundancy, than the ones that fol-
lowed the Ad Hoc approach. Moreover, subjects that fol-
lowed WYSIWYT are less overconfindent that the Ad Hoc
ones. These results are interesting because they may indi-
cate that it is possible to achieve some benefits of formal
notions of testing without formal training related to testing.

Based on the lack of controlled experiments published in
these two relevant conferences, we believe that, with this
research, we give an interesting contribution towards a wider
use of planned experiments in the context of software testing.

6. CONCLUSIONS
In this work, we presented a controlled experiment for eva-

luating cost in terms of the amount of created test cases and
the time to generate the test suites between our solution, the
TTR algorithm, compared with four other algorithms/tools
found in the literature: IPOG-F, IPO-TConfig, jenny, and
PICT. Results showed that TTR was the best in terms of
the amount of generated test cases (smaller test suites), but
had the poorest performance in terms of the time to gene-
rate the test cases. However, the weakest performance of our
algorithm can be offset by the fact that it generates smaller
sets of test cases, which demands less time for running the
test suites. We also conducted a similarity analysis where we
concluded that the set of test cases generated via TTR are
not similar to those created by the other solutions. Thus,
the TTR tends to explore different behaviors in comparison
with the other algorithms/tools.

Future directions include optimizing the TTR algorithm

Table 6: Similarity analysis: sets X and Y of the first execution
i Strength Instance jenny IPO-TConfig IPOG-F PICT TTR

1 2 6171214131714191 0 0 0 11 63
2 2 2331412231 0 0 0 4 12
3 2 9181214151617121 0 0 2 10 72
4 2 32214151619121 1 1 1 15 54
5 2 223242526272 2 4 3 49 56
6 2 22324252627282 8 3 4 57 75
7 2 2232425262728292 1 2 2 52 100
8 2 2232425262728292102112 26 2 2 106 185
9 3 2151213223 15 13 14 29 53
10 3 2331412231 12 7 14 15 36
11 3 215161223122 11 5 5 35 90
12 3 32214124 8 3 7 17 39
13 3 22324252 7 11 8 25 109
14 3 2232425262 9 4 5 39 217
15 3 223242526272 2 2 3 65 372
16 4 51312231214131 62 42 48 89 226
17 4 2331412231 23 18 22 40 99
18 4 2151214151314121 48 29 49 146 413
19 4 322141516122 73 58 59 146 397
20 4 223242 44 39 68 80 146
21 4 22324252 58 46 63 168 445
22 5 234131214131 104 90 100 180 366
23 5 2331412231 66 75 67 99 233
24 5 314121415222 102 0 254 446 1228
25 5 322141513122 129 148 170 255 601
26 5 22324252 1440 1440 1440 1440 1440
27 6 223242 576 576 576 576 576

Table 7: Similarity analysis: euclidean distances. Caption: max = maximum allowed euclidean distance
max IPOG-F jenny IPO-TConfig PICT

Execution 1 115.63 1598.15 1507.63 1084.56 1390.59
Execution 2 113.70 1411.37 1457.43 975.65 1332.85
Execution 3 115.57 1499.67 1441.89 1096.42 1444.73

to try to improve further their performance in terms of ge-
nerating a smaller test suite. In addition, we will perform
another controlled experiment or quasi-experiment, conside-
ring this new version of TTR, addressing not only the cost
in terms of the size of the test suites but also the cost in
relation to the amount of computer memory required by the
algorithms and the time to really execute the test suites. In
addition, we will also consider, within this new controlled
experiment or quasi-experiment, the effectiveness of the set
of test cases via mutation analysis [6] [7] [12] since effective-
ness is a very important question to be answered.

7. ACKNOWLEDGMENTS
This work is supported via grant 415.563.888-61 - Coor-

denação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES).

8. REFERENCES
[1] J. M. Balera and V. A. Santiago Júnior. T-tuple

reallocation: An algorithm to create mixed-level
covering arrays to support software test case
generation. In O. Gervasi, B. Murgante, S. Misra,
M. L. Gavrilova, A. M. A. Rocha, C. Torre, D. Taniar,

and B. O. Apduhan, editors, Computational Science
and Its Applications – ICCSA 2015, volume 9158 of
Lecture Notes in Computer Science (LNCS), pages
503–517. Springer International Publishing, 2015.

[2] D. N. Campanha, S. R. Souza, and J. C. Maldonado.
Mutation testing in procedural and object-oriented
paradigms: An evaluation of data structure programs.
In Software Engineering (SBES), 2010 Brazilian
Symposium on, pages 90–99. IEEE, 2010.

[3] J. Czerwonka. Pairwise testing combinatorial test case
generation. http://www.pairwise.org/tools.asp.
Accessed: 2016-08-14.

[4] J. Czerwonka. Pairwise testing in the real world:
Practical extensions to test-case generators. In
Proceedings 24th Pacific Northwest Software Quality
Conference, pages 285–294, Portland, 2006.

[5] M. E. Delamaro. Proteum - um ambiente de teste
baseado na análise de mutantes. PhD thesis,
ICMC/USP, São Carlos, 1993.

[6] M. E. Delamaro, J. C. Maldonado, and M. Jino.
Introdução ao teste de software. Campus-Elsevier,
2007. 408 p.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints

on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, April 1978.

[8] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and
D. R. Kuhn. Refining the in-parameter-order strategy
for constructing covering arrays. Journal of Research
of the National Institute of Standards and Technology,
113(5):287–297, 2008.

[9] B. Jenkins. Jenny: A pairwise tool.
http://burtleburtle.net/bob/math/jenny.html.
Accessed: 2016-06-06.

[10] M. Kohl. Introduction to statistical data analysis with
R. bookboon.com, London, 2015.

[11] O. A. L. Lemos, F. C. Ferrari, M. M. Eler, J. C.
Maldonado, and P. C. Masieiro. Evaluation studies of
software testing research in Brazil and in the world: A
survey of two premier software engineering
conferences. The Journal of Systems and Software,
86(4):951–969, 2013.

[12] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala.
Overcoming the equivalent mutant problem: A
systematic literature review and a comparative
experiment of second order mutation. IEEE Trans.
Softw. Eng., 40(1):23–42, Jan. 2014.

[13] A. P. Mathur. Foundations of software testing. Dorling
Kindersley (India), Pearson Education in South Asia,
Delhi, India, 2008. 689 p.

[14] E. Matthes. Curso Intensivo de Python. novatec,
Brazil, 2016.

[15] J. Offutt, Y.-S. Ma, and Y.-R. Kwon. The class-level
mutants of mujava. In Proceedings of the 2006
International Workshop on Automation of Software
Test, AST ’06, pages 78–84, New York, NY, USA,
2006. ACM.

[16] K. J. Rothermel, C. R. Cook, M. M. Burnett,
J. Schonfeld, T. R. G. Green, and G. Rothermel.
Wysiwyt testing in the spreadsheet paradigm: an
empirical evaluation. In Software Engineering, 2000.
Proceedings of the 2000 International Conference on,
pages 230–239, 2000.

[17] V. Santiago, W. P. Silva, and N. L. Vijaykumar.
Shortening test case execution time for embedded
software. In Proceedings of the 2nd IEEE International
Conference SSIRI, pages 81–88, 2008.

[18] V. A. Santiago Júnior. SOLIMVA: A methodology for
generating model-based test cases from natural
language requirements and detecting incompleteness in
software specifications. PhD thesis, Instituto Nacional
de Pesquisas Espaciais (INPE), 2011. 264 p.

[19] V. A. Santiago Júnior and N. L. Vijaykumar.
Generating model-based test cases from natural
language requirements for space application software.
Software Quality Journal, 20(1):77–143, 2012. DOI:
10.1007/s11219-011-9155-6.

[20] S. S. Shapiro and M. B. Wilk. An analysis of variance
test for normality (complete samples). Biometrika,
52(3-4):591–611, 1965.

[21] A. W. Williams. Determination of test configurations
for pair-wise interaction coverage. In Testing of
Communicating Systems: Tools and Techniques, IFIP

TC6/WG6.1 13th International Conference on Testing
Communicating Systems (TestCom 2000), August 29 -

September 1, 2000, Ottawa, Canada, pages 59–74,
2000.

[22] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
software engineering: an introduction. Kluwer
Academic Publishers, USA, 2000.

[23] C. Zannier, G. Melnik, and F. Maurer. On the success
of empirical studies in the international conference on
software engineering. In Proceedings of the 28th
International Conference on Software Engineering,
ICSE ’06, pages 341–350, New York, NY, USA, 2006.
ACM.

