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Abstract: The fine-tuning of the algorithms parameters, specially, in metaheuristics, is not always trivial and often is 
performed by ad hoc methods according to the problem under analysis. Usually, incorrect settings influence 
both in the algorithms performance, as in the quality of solutions. The tuning of metaheuristics requires the 
use of innovative methodologies, usually interesting to different research communities. In this context, this 
paper aims to contribute to the literature by presenting a methodology combining Statistical and Artificial 
Intelligence methods in the fine-tuning of metaheuristics. The key idea is a heuristic method, called 
Heuristic Oriented Racing Algorithm (HORA), which explores a search space of parameters, looking for 
candidate configurations near of a promising alternative, and consistently finds good settings for different 
metaheuristics. To confirm the validity of this approach, we present a case  study for fine-tuning  two 
distinct metaheuristics: Simulated Annealing (SA) and Genetic Algorithm (GA), in order to solve a classical 
task scheduling problem. The results of the proposed approach are compared  with  results  yielded  by  the  
same metaheuristics tuned through different strategies, such as the brute-force and racing. Broadly, the 
proposed method proved to be effective in terms of the overall time of the tuning process. Our results from 
experimental studies reveal that metaheuristics tuned by means of HORA reach the same good results than 
when tuned by the other time-consuming fine-tuning approaches. Therefore, from the results presented in 
this study it is concluded that HORA is a promising and powerful tool for the fine-tuning of different 
metaheuristics, mainly when the overall time of tuning process is considered. 

1 INTRODUCTION 

The tuning of the algorithms parameters, especially, 
in metaheuristics, is not always trivial and often is 
performed by ad hoc methods according to the 
problem under analysis. Usually, the choice of 
incorrect settings can result in an unexpected 
behaviour of the algorithm, as to converge to a local 
optimum, or even to present a random behaviour, 
which does not converges to a good solution within 
a certain time limit. 

In general, there are many challenges related to 
the tuning of metaheuristics (e.g.: parameters 
domain, approach strategy, etc.) which require the 
use of innovative methodologies. These challenges 
usually interest to different research communities.  
Therefore, in the contemporary literature there are 
many researches (e.g.: Dobslaw, 2010; Lessman et 

al., 2011; Neumüller et al., 2011; Ries et al., 2012; 
Akbaripour and Masehian, 2013; Amoozegar and 
Rashedi, 2014; Calvet et al., 2016; and many others) 
addressed to them. Amongst them, it stands out the 
using of statistical techniques supported by efficient 
methods, in order to aid the process understanding 
and also to reach effective settings. 

This paper aims to contribute to the literature by 
presenting a methodology combining Statistical and 
Artificial Intelligence methods in the fine-tuning of 
metaheuristics, such as Design of Experiments 
(DOE) (Montgomery, 2012) and the concept of  
Racing (Maron and Moore, 1994; Birattari et al., 
2002). The key idea is consider the parameter 
configurations as a search space and explore it 
looking for alternatives near of the promising 
candidate configurations, in order to consistently 
find the good ones. Broadly, our approach focuses 
its searches on dynamically created alternatives in an 
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iterative process, and employs a racing method to 
efficiently evaluate and discard some alternatives, as 
soon as gather enough statistical evidences against 
them. 

Since the last decades, a variety of strategies for 
fine-tuning of metaheuristics have emerged in the 
literature, where it highlight CALIBRA (Adeson-
Díaz and Laguna, 2006), which uses DOE to define 
a parameters search space; F-Race (Birattari et al., 
2002) and its iterated version I/F-Race (Balaprakash 
et al., 2007), with an efficient evaluation of 
candidate configurations; and ParamILS (Hutter et 
al., 2009), whose the alternatives are created from 
the modifications of a single parameter value. 

Inspired by them, our strategy brings these 
characteristics all together in a single heuristic 
method, where the exploration of the search space is 
performed through the candidate configurations in 
the neighborhood of a promising alternative. The 
advantage to combine different strategies can be 
summarized as the hability to define the search 
space, and the efficiency to focus the search on the 
candidate configurations inside this search space. 
Our results confirm the validity of this approach 
through a case study to fine-tune metaheuristics 
from distinct natures, such as Simulated Annealing 
(SA) and Genetic Algorithm (GA), and its 
effectivity when compared with other tuning 
approaches, such as brute-force and racing. The 
quality of the proposed settings for each of them will 
be evaluated by applying the metaheuristics in a 
classical optimization problem, such as the task 
scheduling problem to minimize the total weighted 
tardiness (TWTP) in a single machine. 

The rest of the paper is structured as follows: 
Section 2 presents the problem of tuning 
metaheuristics and our approach combining Statistic 
and Artificial Inteligence methods to address this 
problem. In Section 3 there is an overview about the 
scheduling problem, as well as the metaheuristics 
that will be used in the case study. The proposed 
approach is applied in a case study (Section 4) to 
fine-tune the metaheuristics SA and GA. Section 4 
also presents the case study results and its analyzes. 
Our final considerations are in Section 5. 

2 THE PROBLEM OF TUNING 
METAHEURISTICS 

Informally, this problem consists of determining the 
parameter values, such that the algorithms can 
achieve the best performance to solve a problem 

within a time limit. This problem is itself an 
optimization problem, where the goal is to optimize 
an algorithm (e.g.: better performance, rise the 
quality of solutions, etc.) to solve different problems 
(Blum and Roli, 2003; Talbi, 2009). 

In general, let M be a metaheuristic with a set of 
parameters applied on problems P = {p1, p2, ..., pn}. 
The parameters (e.g.: , , ..., ) of M can assume a 
finite set of values and its cardinality can also vary 
extensively according to M and P studied. If  is a 
set of candidate configurations, such that  is any 
setting of M, then the problem of tuning 
metaheuristics can be formalized as a state-space: 

 
W = (, P). (1)

 
This problem consists of knowing which is the 

best setting    present in W to solve problems P. 
The expected number of experiments for fine-

tuning of M on P is the product of (||  ||  ...  
||)  |P|. For example, M is a metaheuristic with the 
following parameters A, B, C, D, where A = {a1, a2, 
a3}, B = {b1, b2, b3, b4}, C = {c1, c2, c3}, and D = 
{d1, d2, d3, d4, d5}. Let |P| = 50. So, the expected 
number of experiments for fine-tuning of M on 
problems P is (3  4  3  5)  50 = 9000. In short, 
the best setting of M to solve P is an alternative in 
(1), such that its determination, in the worst 
hypothesis, will be given by means of a full search 
in the state-space W. 

2.1 Heuristic Oriented Racing 
Algorithm 

This research proposes an automatic approach to 
avoid a full search in the state-space (1) and still find 
a good setting of M to solve P. To do that we 
combine Statistical and Artificial Intelligence 
methods (e.g.: DOE and Racing, respectively) to 
consistently find the good settings based on 
statistical evaluations of a wide range of problems. 

The tuning process begins with an arbitrary 
selection of n instances (n > 1) from a class of 
optimization problems, and follows by the 
definitions of ranges for the parameters of 
metaheuristic. The previously selected instances are 
treated as a training set, on which are performed 
experimental studies with the Response Surface 
Methodology (RSM) to define the best parameters 
settings for each instance. Therefore, at the end of 
the experimental phase there will exist n different 
settings for each parameter, being each one related 
to an instance. 
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The settings identified in the training set ensure 
diversity for the parameters, and they are used to 
define the bounds of each parameter, that is, a search 
space of parameters limited by the maximum and 
minimum values of each parameter in the training 
set. From there, the goal is to pursue alternatives 
dynamically created in the neighborhood of some 
best known candidate configuration, regarding the 
previously defined bounds of the search space. For 
each of the alternatives, the target algorithm is ran in 
an expanded set of instances, bigger than the 
previous one. 

This process (Figure 1) is called Heuristic 
Oriented Racing Algorithm (HORA), due the way of 
exploring the alternatives in the search space, that is, 
using a heuristic method, and by its evaluation 
process through a racing method. 

 

Figure 1: Schema of the proposed approach. 

The heuristic method used in the fine-tuning 
process is illustrated as a pseudo-code in Figure 2. 
The algorithm receives a promising candidate 
configuration (S0), the search space bounds (B) and 
the number of neighbors (M). The alternatives (n) 
are created in a main loop and its costs (C) are 
achieved by running the target metaheuristic (Mh) 
once on different instances (i). The solutions are 
evaluated by the nonparametric Friedman statistic 

(T), and the worst ones are discarded according to 
the statistical evidences. At each iteration new 
alternatives are created in the neighborhood of some 
best known candidate configuration (S). The process 
continues with the surviving ones and the best 
parameter setting (S*) is selected as one that has the 
lowest expected rank. 

Just as a racing method, in HORA some 
candidate configurations, that is, those considered to 
be good according to the statistical evaluations, are 
evaluated on more instances. However, it should be 
highlight that the HORA employs a racing method 
to evaluate the set of candidate configurations. 
Besides that, both methods (HORA and racing) 
differ among them in the way of creation the set of 
candidate configurations, such that in HORA the 
alternatives are created on demand in an iterative 
process, while in racing they are predefined before 
the fine-tuning process. 

Input: S0, B, M 
Output: S* 
S   S0; 
S'  {}; 
n   {}; 
C   {}; 
do while 
  i   newInstance(); 
  n   newNeighbors(S, B, M); 
  S'  S'  n; 
  for each s  S' do 
    C  C  Mh(s, i); 
  end 
  T   statisticalTests(C); 
  S'  collectElite(S', T); 
  S   identifyBest(S'); 
until termination criteria is met 
S*  S; 
return S*; 

Figure 2: Pseudo-code of the heuristic method for fine-
tuning metaheuristics. 

2.2 The Dynamic of the Search Space 

The most intuitive way for solving the problem of 
tuning metaheuristics is the brute-force approach. 
Broadly, this strategy runs the same number of 
experiments for all alternatives in the set of 
candidate configurations. Nevertheless, any 
alternative with inferior quality in this set must be 
tested as the good ones. 

To avoid this kind of problem, a traditional 
racing method employs efficient statistics to 
evaluate the candidate configurations and discard 
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those considered statistically inferior as soon as 
gather enough statistics against them. 

Even considering the efficiency of a racing 
method to evaluate the alternatives, both approaches 
(brute-force and racing) start the tuning process with 
a large set of candidate configurations. Thus, 
according to the size of this set, its evaluation must 
be initially slow. 

Different to the traditional approaches, the set of 
candidate configurations in HORA is dynamically 
built during the tuning process. The candidate 
configurations are created on demand in the 
neighborhood of some best known alternative, as a 
sequence of sets of candidate configurations: 

 
0  1  2  ... 

 
From the step k to k+1 the set of candidate 
configurations is built possibly discarding some 
alternatives considered statistically inferior. Given 
that some candidate configurations persist in this set, 
they are evaluated on more instances. Nevertheless, 
it is important to note that all the created alternatives 
must be evaluated on the same instances previously 
used on evaluating of the persistent alternatives. 

k = 1  k = 2  k = 3 

                 
                 
                 
                 
                 
                 

|| = 3  || = 5  || = 6 
k = 4  k = 5  k = 6 

                 
                 
                 
                 
                 
                 

|| = 5  || = 7  || = 3 

Figure 3: Illustrative process to create (black) and exclude 
(gray) alternatives from the search space. 

To illustrate this process (Figure 3), let us 
consider any search space, where at each iteration k, 
m = 3 candidate configurations are created. At the 
end of an iteration, all alternatives in the set  of 
candidate configurations are evaluated and those 
with inferior quality are discarded. Therefore, the set 
 is dynamic, that is, its size can increase or 
decrease. The process continues pursuing the 
alternatives in the search space until meet a stop 

criteria (e.g.: number of alternatives in , runtime 
limit, among others). 

The evaluation of the created candidate 
configurations is done in blocks by instance 
according to its cost (e.g.: the objective function 
value). So, the best performance is ranked as 1, the 
second as 2, and so on. In case of ties between the 
alternatives, it gives the average ranking to each one. 
For a detailed description of the evaluation process 
by means of the racing method using the 
nonparametric Friedman statistic, we refer to 
Birattari et al. (2002 and 2009). 

3 CONSIDERED PROBLEM AND 
METAHEURISTICS 

Scheduling problems are related with the limited 
resources distribution aiming the achievement of 
efficient work. It is classical optimization problem 
involving tasks that must be arranged in m machines 
(m ≥ 1) subject to some constraints, in order to 
optimize an objective function. The key idea is to 
find the tasks processing order and decide when and 
on which machine each task should be processed. 

A typical scheduling problem is one on which 
the objective is minimize the total weighted 
tardiness in a single machine (TWTP). These 
problems formally expressed as 1|1,dj|wjTj (Schmidt, 
2000), involve a set of tasks J = {1, 2, ..., n} to be 
processed in a single machine continuously available 
to process at most one task at a time. Each task (j  
J) spends a positive and continuous processing time 
pj (time units), has a weight wj of one task over the 
others, a start time rj, and a due date dj. In general, 
tardiness may be understood as the difference 
between the effective completion time and the due 
date of the tasks, such that the tardiness (Tj) can be 
computed as max(0, Cj  dj), where Cj is the 
effective completion time of task j. 

Metaheuristics are one of the best-known 
approaches to solving problems for which there is no 
specific efficient algorithm. Usually, these 
algorithms differ from each other in terms of 
searching pattern, but offer accurate and balanced 
methods for diversification (search space 
exploration) and intensification (exploitation of a 
promising region) and share features, such as the use 
of stochastic components (involving randomness of 
variables) and have a variety of parameters that must 
be set according to the problem under study. 

The Simulated Annealing (SA) is a probabilistic 
method proposed in Kirkpatrick et al. (1983) and 
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Cerny (1985) in order to find the global minimum of 
an objective function with numerous local minima. 
Widely applied to solve optimization problems, SA 
simulates a physical process from which a solid is 
cooled slowly, so that the final product becomes a 
homogeneous mass to achieve a minimum energy 
configuration (Bertsimas and Tsitsiklis, 1993). 

The SA performance is strongly influenced by a 
number of parameters. For example, the high 
temperature in the early stages increases the 
likelihood of acceptance a low quality solution. 
Beyond the initial temperature, it is important to set 
the number of iterations performed on a same 
temperature, and their cooling rate. Usually, the 
cooling temperature occurs steadily at a predefined 
rate , so that slower, greater the holding of the 
search space (Roli e Blum, 2003; Talbi, 2009). 

By the other hand, the Genetic Algorithm (GA) 
is a population-based method invented by Holland 
(1975) inspired in the principles of survival from 
Darwin’s evolution theory. GA  simulates an 
evolution process in which the fitness of individuals 
(parents) is crucial to generate new individuals 
(children). The basic operating principle of a GA is 
to apply the operators (selection, crossover and 
mutation) on individuals of the population at every 
generation. Its performance is strongly influenced by 
a set of parameters, such as the number of 
generations, crossover and mutation rates. 

In a typical GA, the individuals are crossed at a 
rate between 0.4 and 0.9. For example, if the rate is 
fixed at 0.5, then half of the population will be 
formed from the selection and crossover operations. 
However, if there is no crossover, the population 
mean fitness must increases to match the best 
individual fitness rate. From that point, it can only 
be improved through the mutation. In general, the 
mutation rate is about 0.001, but may vary according 
to the problem under analysis. 

4 EXPERIMENTAL STUDIES 

In our study were selected a set of parameters of 
each metaheuristic. Those parameters are the most 
frequently used in the literature and seems to 
influence the performance of the SA and GA, 
regardless the studied problem. The considered 
parameters for SA are: value of the initial 
temperature (T0), number of iterations on one 
temperature stage (SAmax) and temperature cooling 
rate (); while the chosen parameters for GA are: 
mutation rate (pm), crossover rate (pc), population 
size () and number of generations (n). The 

parameters levels (Table 1) were chosen within the 
real limits of parameters, in order to promote 
diversity in the search space, as well as differences 
between each particular parameter setting. 

For this study, we define a training set with n = 4 
instances arbitrarily selected from the benchmark 
wt40, a TWTP with 40 tasks from the OR-Library 
(Beasley, 1990). The experimental studies were 
conducted with a circumscribed Central Composite 
Design (CCD), whose the axial points establish new 
limits for an interest region (e.g.: the search space of 
parameters). A circumscribed design can be used to 
enlarge the  search space exploration if its bounds 
are in the region of operability, that is, within the 
real limits of parameters. On the other hand, if the 
region of interest matches with the parameter limits, 
another kind of CCD must be chosen (e.g.: face-
centred or inscribed) to avoid the parameters 
infeasibility. 

Table 1: Metaheuristics parameters and its levels for the 
experimental studies. 

SA Low High GA Low High 
T0 1.00e4 1.50e6 pm 0.001 0.025

SAmax 500 1500 pc 0.400 0.900
 0.900 0.980  10 100

n 100 1000

After the experimental studies we have four 
different results for each parameter, being each one 
related to an instance. Through those results, we 
defined the search space of parameters, whose the 
bounds are the maximum and minimum values of 
the parameters in the training set. Accordingly, the 
SA search space is: 

 T0: [1.16e5, 1.65e5]; 
 SAmax: [1316, 1596]; and 
 : [0.945, 0.948]. 

Whereas, we have the following search space for 
GA: 

 pm: [0.014, 0.057]; 
 pc: [0.684, 0.725]; 
 :  [69, 101]; and 
 n: [775, 1267]. 

It is noteworthy in the results, that some 
parameter values are outside of the limits initially 
defined (Table 1). However, as pointed before, this 
occurs due the experimental studies, where the axial 
points of the CCD overcome the previously set 
limits in order to ensure an appropriate estimation of 
parameters. 
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From there, the exploration of the search space 
of parameters is done by creating the alternatives in 
the neighborhood of some best known candidate 
configuration. For each of the alternatives we ran the 
target metaheuristics (e.g.: SA and GA) during 15s 
on an expanded set of instances (e.g.: for this study, 
the expanded set matches all 125 instances from the 
benchmark wt40). This process was repeated 10 
times and the results of fine-tuning of the 
metaheuristics  by means of HORA are presented in 
terms of mean and standard deviation (  ) in 
Table 2. This table also presents the total time (in 
seconds) of the tuning process. 

Table 2: Fine-tuning of metaheuristics (HORA). 

SA Settings GA Settings 
T0 1.29e5  4.22e4 pm 0.040  0.012 

SAmax 1391  87 pc 0.699  0.211 
 0.946  0.001  80  11 
-- -- n 983  115 
t 698s t 875s 

For comparisons, we considered the previously 
defined search space of parameters, and two fine-
tuning approaches, as the Deceive, a brute-force 
approach, and a racing algorithm based in the F-
Race method, called Racing. The settings used for 
both approaches are the same, such that, for SA we 
define: T0 = {1.16e5, 1.26e5, 1.35e5, 1.45e5, 1.55e5, 
1.65e5}, SAmax = {1316, 1409, 1502, 1596}, and  = 
{0.945, 0.946, 0.948}; and for GA we consider: pm = 
{0.014, 0.028, 0.043, 0.057}, pc = {0.684, 0.698, 
0.711, 0.725},  = {69, 85, 101}, and n = {775, 939, 
1103, 1267}. 

Each possible combination leads to one different 
metaheuristic setting, such that, the search spaces 
have 72 and 192 different candidate configurations 
for the SA and GA, respectively. The idea is use 
Deceive and Racing to select the good as possible 
candidate configuration out a lot of options. To do 
that, for the considered approaches, we run the target 
algorithms during 15s on the same extended set of 
instances previously used (e.g.: 125 instances from 
the benchmark wt40). This process was repeated 10 
times and the results of fine-tuning of the studied 
metaheuristics by means of brute force and racing 
method are presented in terms of mean and standard 
deviation (  ) in Tables 3 and 4. These tables 
also present the total time (in seconds) of the tuning 
process. 

It is noted on results that HORA method is the 
most effective in the fine-tuning of the 
metaheuristics, in terms of the overall time process. 

Since it demands a little portion of the time required 
by the brute-force and racing algorithm, 
respectively. The pointed divergence can be justified 
by the size of the set of alternatives, fairly large for 
Deceive and Racing, as well as the way of creating 
the set of candidate configurations in the search 
space. Given that in HORA it is dynamically done 
during the tuning process, whereas the others 
(Deceive and Racing) use predefined sets of 
alternatives. 

Table 3: Fine-tuning of metaheuristics (Brute-force). 

SA Settings GA Settings 
T0 1.34e5  4.39e4 pm 0.053  0.007 

SAmax 1419  112 pc 0.710  0.214 
 0.946  0.001  90  11 
-- -- n 988  190 
t 5460s t 15274s 

Table 4: Fine-tuning of metaheuristics (Racing). 

SA Settings GA Settings 
T0 1.20e5  3.67e4 pm 0.051  0.010 

SAmax 1316  0 pc 0.695  0.210 
 0.946  0.001  90  13 
-- -- n 1087  144 
t 3213s t 11700s 

The results also show the similarity between the 
settings, by means of HORA and Racing. It is 
emphasised that both approaches employ the same 
evaluation method for the candidate configurations. 

4.1 Experimental Results 

In general, the metaheuristics employ some degree 
of randomness to diversify its searches and avoid 
confinement in the search space. Thus, a single run 
of these algorithms can result in different solutions 
from the next run. So, to test the quality of our 
settings, our experimental results were collected 
after 5 run of the metaheuristics SA and GA on the 
TWTP. 

To generalize our results and compare them 
among themselves, we use: 

100
)(

)()(
*

*





sf

sfsf
gap ,  (2)

where f(s) is our computed solution and f(s*) is the 
best known solution of the problem. Thus, the lower 
the value of gap for the metaheuristics, the better the 
performance of the algorithms. 
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We compare the HORA results with Deceive and 
Racing. The settings of the metaheuristics through of 
each approach were presented in Tables 2, 3 and 4, 
for HORA, Deceive and Racing, respectively. 

The set of results in Tables 5 and 6 are best 
found value of (2) and its corresponding runtime (t), 
in 5 run of the studied metaheuristics, in the first 10 
instances of the benchmark wt40, from the OR-
Library (Beasley, 1990). In these tables, the results 
of the approaches are underlined by the capital 
letters D, H and R for Deceive, HORA and Racing, 
respectively. 

Table 5: SA statistics for the first 10 instances of wt40. 

Inst. 
Dgap  Dt  Hgap  Ht  Rgap  Rt  

1 0.00 56 0.00 36 0.00 42 
2 4.65 96 0.00 35 0.00 29 
3 6.70 89 0.00 54 0.00 28 
4 0.00 45 0.00 33 0.00 29 
5 0.00 44 0.00 27 0.00 21 
6 0.00 51 0.00 41 0.00 30 
7 0.00 87 3.91 81 3.91 68 
8 0.00 53 0.00 47 0.00 39 
9 0.00 58 0.52 85 1.36 82 
10 0.00 62 0.00 56 0.00 38 
 1.14 64 0.44 50 0.53 41 
 2.32 18 1.17 19 1.20 18 

The SA statistics (Table 5) reveal an increasing 
of the quality of solutions, when the tuning approach 
HORA is chosen. It is also noted the similarity 
between results of HORA and Racing in the most 
instances. According to the statistics, when 
considering the gap, the metaheuristics tuned with 
HORA is better (closely followed by Racing). When 
considering the execution time, the metaheuristics 
tuned by Racing is faster (closely followed by 
HORA). 

The GA statistics (Table 6) reveal a decreasing 
of the quality of solutions (e.g.: arithmetic mean) for 
HORA and Racing approaches, when comparing its 
results with SA. In both cases the results are about 
the double of the results above (Table 5). Over 
again, it is noted the similarity between the results of 
HORA and Racing in almost all the selected 
instances, but for GA, HORA is little faster than 
Racing. However, as observed the runtime is also 
increased. 

In summary, the tuning of metaheuristics by 
means of the HORA method are competitive and 
showed the better results for both algorithms. The 
presented results were statistically analyzed by 
means of t-test at the significance level of 5%, and 
the comparisons between HORA  Deceive, as well 

as HORA  Racing, were not significant. Therefore, 
considering the time required to the tuning process, 
HORA is more effective, since it demand less time 
than the brute-force and racing approaches for 
achieving the statistically same results. 

Table 6: GA statistics for the first 10 instances of wt40. 

Inst. 
Dgap  Dt  Hgap  Ht  Rgap  Rt  

1 0.00 57 0.00 36 0.00 62 
2 0.00 100 0.00 65 3.10 51 
3 6.70 53 6.70 55 6.70 57 
4 0.00 38 1.29 43 1.29 56 
5 0.00 30 0.00 5 0.00 7 
6 1.34 85 0.00 105 0.00 112 
7 0.00 83 0.00 54 0.00 32 
8 0.00 50 0.00 89 0.00 94 
9 0.34 68 0.00 79 0.00 50 
10 0.00 127 0.04 95 0.04 121 
 0.84 69 0.80 63 1.11 64 
 1.99 28 2.00 29 2.09 33 

5 CONCLUSIONS 

This paper presented a method addressed to the 
problem of tuning metaheuristics. The problem was 
formalized as a state-space, whose the exploration is 
done effectively by a heuristic method combining 
Statistical and Artificial Intelligence methods (e.g.: 
DOE and racing, respectively). 

The proposed method, called HORA, applies 
robust statistics on a limited number of instances 
from a class of problems, in order to define a search 
space of parameters. Thus, from the alternatives 
dynamically created in the neighborhood of some 
best known candidate configuration, it employs a 
racing method to consistently find the good settings. 
However, it should be highlight that HORA differs 
from the racing method in the way how the 
alternatives are created, that is, while racing uses a 
predefined set of candidate configurations, in HORA 
the alternatives are created on demand in an iterative 
process. This feature ensures the dynamic of the 
search space, such that in some situations it 
increases and others, it decreases, as well as it makes 
the evaluation process more efficient. 

From a case study, HORA was applied for fine-
tuning two distinct metaheuristics. Its results were 
compared with the same metaheuristics tuned by 
means of different approaches, such as the brute-
force and racing. The HORA method proved to be 
effective in terms of overall time of the tuning 
process, since it demands a little portion of the time 
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required by the other studied approaches. Through 
the experimental studies it is noted that the 
metaheuristics SA and GA tuned by means of 
HORA can reach the same results (eventually better) 
than the other studied fine-tuning approaches, but 
the tuning process is much more faster with HORA. 
This better performance can be explained by the way 
of exploring the alternatives in the search space, that 
is, pursuing the good ones in the neighborhood of 
some best known candidate configuration, and by 
the efficiency of its evaluation process with a racing  
method. 

In the scope of this study, the metaheuristics SA 
and GA, as well as the problem TWTP, were used 
only to demonstrate the HORA approach addressed 
to the problem of tuning metaheuristics. The results 
achieved show that the proposed approach may be a 
promising and powerful tool mainly when it is 
considered the overall time of tuning process. 
Additional studies must be conducted in order to 
verify the effectiveness of the proposed 
methodology considering other metaheuristics and 
problems. 
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