)

Check for
updates

Developers’ Initial Perceptions on TDD
Practice: A Thematic Analysis with
Distinct Domains and Languages

Joelma Choma!®) | Eduardo M. Guerra'!®) and Tiago Silva da Silva?(®)

! National Institute for Space Research, Sao José dos Campos, Brazil
jh.choma@hotmail.com, guerraem@gmail.com
2 Federal University of Sao Paulo, Sao José dos Campos, Brazil
silvadasilva@gmail.com

Abstract. Test-Driven Development (TDD) is one of the most popular
agile practices among software developers. To investigate the software
developers’ initial perceptions when applying TDD, we have performed
an exploratory study. This study was carried out with participants who
had about ten years of professional experience (on average), the majority
of whom with no experience using TDD. The study is in the context of
an agile project course at the postgraduate level of a research institute.
Participants individually developed medium size projects addressed to
different domains and using different programming languages. Through a
structured questionnaire with open and semi-open questions, we collected
information on TDD effects such as the perceived benefits, encountered
difficulties, and developer’s opinion about the quality improvement of
the software. Afterward, we conducted a thematic analysis of the quali-
tative data. Most participants noticed improvements in code quality, but
few have a more comprehensive view of the effects of TDD on software
design. Our findings suggest that after overcoming the initial difficulties
to understand where to start, and know how to create a test for a feature
that does not yet exist, participants gain greater confidence to implement
new features and make changes due to broad test coverage.

Keywords: Test-driven development * Test-first programming
TDD - Qualitative study - Thematic analysis

1 Introduction

Test-driven development (TDD) [3] is a technique for designing and develop-
ing software widely adopted by agile software development teams. TDD was
proposed by Kent Beck in the late 1990s as a practice of the Extreme Program-
ming. Motivating the programmer to think about many aspects of the feature
before coding it, this technique suggests an incremental development in short
cycles by first writing unit tests and then writing enough code to satisfy them
[14]. TDD consists of small iterations by following three steps: (1) write a test for

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 68-85, 2018.
https://doi.org/10.1007/978-3-319-91602-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_5&domain=pdf

Developers’ Initial Perceptions on TDD Practice 69

the next bit of functionality you want to add; (2) write the functional code until
the test passes; and (3) refactor both new and old code to make it well-structured
[3]. TDD focuses on unit tests to ensure the system works correctly [8]. By fol-
lowing this method of testing before coding, the software can be incrementally
developed without a need for detailed designing it upfront [15].

Many studies have highlighted the benefits of TDD in software quality by
comparing it with other software development approaches. Other studies sought
to understand how TDD is addressed as design and development practice by
software developers. As a result of this type of investigation, some studies point
out that programmers experienced in TDD report that this practice increases
the confidence in the result of their work and ensures a good design and fewer
defects in code [7]. As a consequence, these factors collaborate to increase the
quality of software [22].

Nevertheless, programmers considered novices to the TDD might experience
difficulties when applying this practice for the first time. As an effect of these
initial challenges, programmers can become unmotivated because they do not
feel productive using TDD [2]. Understanding the purpose of testing is one of
the main difficulties reported by developers [9]. Despite the difficulties, most of
them recognize that when traditionally developing software — i.e., testing only at
the end — they are subject to spending more time searching for bugs and trying
to evolve the software.

In this paper, we present the results of an exploratory study involving soft-
ware developers, many of them with many years of professional experience, but
that had never tried programming using TDD. This study was carried out in
the context of an agile project course at the postgraduate level of a research
institute. Our goal is to gain insights into the initial perceptions of developers
regarding the TDD effects on design and development practice.

Unlike many studies that usually propose simpler activities to evaluate the
use of TDD involving, for example, the coding of a single class or function;
our study offered to the participants to develop projects with complete fea-
tures. Thus, participants developed medium size projects (i) addressed to differ-
ent domains and (ii) using different programming languages. From the partici-
pants’ projects, we collected information about their perceptions concerning the
perceived benefits, encountered difficulties, and their opinion about the quality
improvement of the software attributed to the use of TDD.

The remainder of this paper is organized as follows. In Sect.2 we review
related work. In Sect.3 we describe the empirical study. In Sect.4 we present
the results of the thematic analysis. In Sect.5 we discuss our findings. Finally,
Sect. 6 presents the conclusions, limitations, and future work.

2 Related Work

A growing number of empirical studies have been conducted both in academic
or industrial settings to investigate the effects of TDD over the software quality
(internal and external), productivity, and test quality [9,18,23].

70 J. Choma et al.

Gupta and Jalote [15], in an academic setting, evaluated the impact of TDD
on activities like designing, coding, and testing. By comparing it with the con-
ventional code development, their results suggest that TDD can be more efficient
regarding development efforts and developer’s productivity. However, the study
participants reported higher confidence in code design for traditional approach
than needed for the TDD approach.

Janzen and Saiedian [17] conducted some experiments to compare the effects
of TDD against Test-Last-Development (TLD) approach, involving students in
undergraduate courses (early programmers) and professional training courses
(mature developers). Their study revealed that mature developers are much
more willing to adopt TDD than early programmers. However, they identified
confounding factors between the two groups which may have interfered in their
results — such as project size, TDD exposure time, programming language, and
individual and paired programming style.

In an industrial setting, George and Williams [13] complemented a study
about efficiency and quality of test cases with a survey to gather perceptions
from 24 professional pair-programmers about their experiences using TDD. On
average, the survey results indicate that 80% of professional programmers con-
sider TDD an effective practice; and 78% claimed that practice improves pro-
grammers’ productivity. Also, their results indicated that the practice of TDD
facilitates a more straightforward design, and the lack of initial design is not an
obstacle. However, for some of the programmers, they found that the transition
to the TDD mindset is the most significant difficulty.

In an experiment involving teams composed of 3-6 undergraduate students,
Huang and Holcombe [16] evaluated TDD effectiveness focusing on aspects
related to productivity, coding effort, testing effort, and external quality. One
result of the comparative study is that TDD programmers spent a higher per-
centage of time on testing and a lower portion of time on coding than TLD
programmers. Moreover, they found that, statistically, TDD programmers nei-
ther delivered software of higher quality nor were more productive, although
their productivity was on average 70% higher than that of TLD. In this study,
they used external clients’ assessment as a measure of quality rather than defect
rate.

Vu et al. [24] also examined the TDD effects on both the internal and external
quality of the software and the programmers’ perception of the methodology.
They carried out an experiment with 14 upper-level undergraduate and graduate
students, who were divided into three teams. Two of the three teams utilized
TDD while the remaining team utilized a TLD. In contrast to several previous
studies, their results indicated that the TDD did not outperform TLD in many
of the measures; and concerning the programmer’s perception, although were
not significant, the results indicated a preference for TDD.

Aniche and Gerosa [1] carried out a qualitative study with 25 software practi-
tioners, aiming mainly to investigate developers’ perceptions of how the practice
of TDD influences class design. Most of the interviewees were professionally
experienced and had some practice in TDD. As a result, they found that the

Developers’ Initial Perceptions on TDD Practice 71

constant need of writing a unit test for each piece of the software forces develop-
ers to create testable classes. For this reason, developers agreed that the practice
of TDD helps them to improve their class design.

Scanniello et al. [21] also conducted a qualitative investigation on practi-
cal aspects related to TDD and its application with focus groups, in which 13
master students and five professional software developers discussed their expe-
rience in the programming using TDD. Among the findings, they reported that
applying TDD can be tricky without the knowledge of advanced unit testing
techniques — e.g., mock objects; and that participants admit that refactoring
is often neglected. When TDD is compared to TLD, they found that novices
believed that TDD improves productivity, whereas professionals consider that
TDD decreases productivity in developing software. Romano et al. [20] conducted
an ethnographically-informed study with 14 graduate students and six profes-
sionals software developers, to understand the values, beliefs, and assumptions of
TDD. From their observations, they found that, in most cases, developers wrote
production code in a quick-and-dirty way to pass the tests, and often ignored
refactoring.

In analyzing the studies mentioned above, we have noted that most of them
compare the effects of TDD to a test-last approach. Nevertheless, there is no
consensus on their results, since each experience involves different contexts and
other potential influence factors, as observed by Janzen and Saiedian [17]. In
our study, we are not directly comparing TDD with any other approach, but
we are taking into account the participants’ prior experience with traditional
approaches (e.g., TLD). Notably, there are few qualitative investigations explor-
ing the TDD effects from the viewpoint of the developers [20,21]. In this study,
we also are interested in exploring and knowing the opinion of the developers
about the use of TDD, its effects and other factors that imply in its application.
However, we intend to capture perceptions and draw conclusions regardless of
the programming language or application domain.

3 Empirical Study

This section first describes the study context and participants’ profile recruited.
Secondly, we present some characteristics of the projects implemented by the
participants using TDD. Finally, we outline the methods of collection and anal-
ysis employed in this study.

Subjects and context. The 19 subjects involved in this study were recruited
in the context of the postgraduate course of Agile Projects from the National
Institute for Space Research in Brazil, in the third period of 2015 and 2016.
Participants were experienced professionals — had about ten years on average of
experience in software development.

During the course, all subjects received the same training about TDD based
on Java programming language and JUnit framework. The training consisted of
face-to-face classes and practical exercises applied in Java. However, the concepts
have been taught to be applied using any language. Based on these concepts and

72 J. Choma et al.

practical exercises, the subjects had to develop an application using TDD indi-
vidually. We have established that each subject was responsible for defining the
type and goal of the application, and for choosing the programming language,
the IDE and the unit test tools. This variability of projects would allow us to
mitigate a bias observed in other studies, and to bring the implemented soft-
ware closer to real needs. The subjects had around two months to develop the
application in their work environment. After the development period, the partic-
ipants were asked about their experience using TDD. However, it is important
to point out that neither the answers nor the software delivered was considered
for evaluation, to allow the participants greater freedom of speech.

As shown in the Tablel, subjects had at least two years of experience in
programming. However, most of them had between 5 and 22 years of experience
and good skill with the language of programming chosen for the project. For
analysis, we have considered more experienced those subjects with more than
five years of experience. There were only five subjects with shallow knowledge
about the language used in their projects. Regarding experience with TDD, only

Table 1. Projects characterization

| Project Programming | Programmers’
language experience
(years)

S1 | System for decoding avionics data bus Python 2

S2 | Model-based Testing Tool Java 3

S3 | Annotation Validation System Java 5

S4 | System for E-Commerce Java 5

S5 | Implementation of parametric curves C++ 5

S6 | System for generation of geospatial data C++ 15

S7 | Management system for coffee shop C++ 9

S8 | Extraction of historical software metrics JavaScript 13

S9 | Web service for conversion of XML models | Java 10

S10 | Implementation of training algorithm Java 14

S11 | System for weather forecast data gathering PHP 12

S12 | Drawing application for digraphs Java 12

S13| API for mathematical calculus Java 22

S14 | Framework for gamification Java

S15 | API for searching of code-annotations Java

S16 | Metadata-based framework Java

S17 | Classification of remote sensing images C++ 11

S18 | Framework for Adaptive Object Models Java 19

S19 | API for mining of software dependencies Java 10

Developers’ Initial Perceptions on TDD Practice 73

two subjects had previously used TDD but had minimal experience of it in their
practice.

Projects characterization. The participants had defined their projects with
different purposes, i.e., all projects were different from each other. Table 1 shows
a brief description of each project. As displayed in Table 1, many of them were
focused on applications for the field of space science and technology. As for
the programming language, 12 projects were developed in Java; and the other
languages used were C++ (4), Python (1), PHP (1) and JavaScript (1). About
the type of project, 12 participants reported that their projects were part of
their academic research; 3 participants developed part of the real projects that
they had been developing in the industry, and other 3 participants developed
personal projects. Of all the projects, twelve of them used as their starting point
an existing code, while the others seven were built from scratch.

Data gathering and analysis. In this field study, a structured questionnaire
with open, semi-open and closed-ended questions was used as the principal means
of data collection from the software projects carried out by the study partici-
pants. For the open and semi-open questions, in particular, we have using a
thematic analysis technique [4], through which we looked for themes/patterns
across qualitative data to capture the critical points about developers’ percep-
tions regarding the TDD practice.

Thematic analysis (TA), such as proposed by Braun and Clarke [5], is a the-
oretically flexible approach to analyzing qualitative data widely used to arrange
and describe a data set in rich detail, and also to interpreter various aspects of
the research topic. According to them, this approach can be used as a realist
method to reports experiences, meanings and the reality of participants; or as a
constructionist method to examine how events, realities, meanings, experiences
are the effects of a range of discourses and behaviors.

Further, TA can be used to analyze different types of data; to work with
large or small data-sets, and to produce data-driven or theory-driven analyses
[6]. Thus, to accomplish the analysis of the participants’ answers, we carried
out a thematic analysis following the six steps proposed by Braun and Clarke
[5]: (i) familiarizing with the data; (ii) generating initial codes; (iii) searching for
themes; (iv) themes review and refinement; (v) defining and naming themes; and
(vi) writing the final report. The first author performed the thematic analysis,
and then the other two authors reviewed the themes and helped in refining them.

4 Findings

In this section, we first present some information about the projects developed by
the study participants, and then we describe the results of the thematic analysis
grouped into five topics related to the questionnaire: (i) difficulties in applying
TDD; (ii) test failures and unexpected situations; (iii) key benefits of TDD; (iv)
software design; and (v) mock objects. The results of the thematic analysis are
presented in tables. The questions asked the participants are under the headings

74 J. Choma et al.

of each table. For each question, we present the themes and sub-themes that
have emerged from participants’ answers. Alongside each theme and sub-theme,
we included the number of participants who mentioned something about them.
Also, we included some participants’ quotations. Such quotations, originally in
Portuguese, were translated into English by the authors.

Projects size and test coverage. Once the applications had different purposes
(see Tablel), our intention was not to compare the projects with each other.
However, we collected some software metrics, which have been provided to us by
the participants, to obtain information on the size of the applications, and on
the coverage of tests. Table 2 presents the metrics related to: (i) total of hours
spent in implementation; (ii) number of lines of code; (iii) number of classes
(or functions, or modules); (iv) number of methods; (v) number of lines in the
test code; (vi) number of classes (or files) in the test code; and (vii) number of
methods in the test code. Additionally, Table 2 also shows the percentage of test
coverage, and the tools used to support programmers in the unit tests.

16000
14000 + T + - + - *

12000

10000

8000 *

Total LOC

6000

4000 L 2

2000 2 3

' SANR

0 20 40 60 80 100 120 140 160 180 200
Time (hours)

Fig. 1. Development time and total lines of code

Regarding development time, about 84% of the projects took in the range of
9 to 72h to be implemented considering the production code and the unit tests
(see Fig. 1). The amount of LOC of production ranged from 103 to 11,316; while
the number of LOC of tests ranged from 101 to 4,588. Given the total number
of LOC (production and testing), almost half of the projects (47%) range from
1,000 to 2,000 lines of code. As for the code coverage, 12 projects (about 63%)
reached over 80% coverage. We point out that testing coverage is evidence that
reinforces the use of TDD by participants.

Difficulties in applying T'DD. Analyzing the participants’ answers, we iden-
tified four themes on difficulties encountered by developers when developing the
software through TDD: (i) the lack of culture and skill; (ii) difficulties related
to unit testing; (iii) difficulties related to using TDD for software design; and
(iv) difficulties with mock objects. There were other difficulties mentioned by

Developers’ Initial Perceptions on TDD Practice 75

Table 2. Software metrics

|TIME LOC |NOC|NOM |[t-LOC|t-NOC t-NOM | Coverage % | Tool

S1 | 30 132 5 17 246 5 20 100.0 PyUnit
S2 9 2669 | 11 42 400 1 8 96.2 JUnit

S3 | 50 103 7 27 136 6 52 85.3 JUnit

S4 | 60 1214 | 47 236 959 | 19 55 95.8 JUnit

S5 | 30 359 9 125 603 8 41 96.7 GTest
S6 | T2 1627 | 38 296 | 1,619 | 12 49 75.7 Gtest

S7 176 | 11,316 146 | 2,320 2,762 | 1 | 38 80.0 QTestLib
S8 | 15 830 6 85 654 4 44 98.7 Mocha
S9 | 16 843 9 27 307 2 25 87.2 JUnit
S10| 9 285 4 28 140 3 11 98.4 JUnit
S11| 14 463 9 32 101 3 11 71.4 PHPUnit
S12| 32 1,109 | 26 108 579 3 43 57.6 JUnit
S13| 60 809 | 19 62 376 | 13 58 85.1 JUnit
S14| 30 3,231 | 41 169 | 4,588 | 14 237 79.1 JUnit
S15/100 1,442 8 63 428 1 21 58.8 JUnit
S16| 70 1,228 | 69 256 390 163 144 83.0 JUnit
S17| 60 547 2 14 544 3 24 100.0 GTest
S18| 40 2,000 3 10 | 2,000 3 10 78.5 JUnit
S19|140 1,674 | 56 415 536 7 69 49.0 JUnit

TIME - Total of spent hours in implementation; LOC - Number of lines of code;
NOC - Number of classes (or functions, or modules); NOM - Number of methods;
t-LOC - Number of lines in the test code; t-NOC - Number of classes in the test code;
t-NOM - Number of methods in the test code

the participants, which were more related to other technical problems than to
the development method itself. Table 3 presents the themes and sub-themes that
emerged from our analysis of difficulties reported by participants. There was only
one participant who mentioned that he had no difficulty in applying TDD.

Test failures and unexpected situations. During the tests, participants had
to deal with some sort of unexpected situation. As an answer to this question,
we found that 42.1% of participants (8 of 19) pointed out that such situations
occurred when a new test passed when it should have failed; for 68.4% of partic-
ipants (13 of 19) when a previous test failed unexpectedly when a new feature
was being introduced; for 57.9% of participants (11 of 19) when a code refactor-
ing generated failure in some test; and for 78.9% of participants (15 of 19) when
an error discovered in another way motivated them to add a new automated
test. Table 4 presents the themes and sub-themes related to the test failures and
unexpected situations reported by participants. In this case, the sub-themes refer
to the facts leading to the unexpected situations.

76 J. Choma et al.

Table 3. Difficulties in applying TDD

Question: What major difficulties did you have in the development?

Themes Sub themes Quotes
Lack of culture and create test first “The biggest difficulty was thinking
skill (n=14) (n=06) about the test before having the

functionality, that is, I don’t know
how to get started.” [S3]

control on the size | “To follow the steps, instead I wanted

of steps (n=3) to implement the main functionality
as soon as possible.” [S5]
low “Due to lack of knowledge of TDD, in

productivity(n=3) | the beginning, it was required more
time to get the job done.” [S16]

keep pace (n=2) “... keep pace with TDD (write test /
red bar / feature / green bar /
refactor); sometimes I got caught
“unconsciously” jumping phases.” [S8]

Unit testing (n=10) | test quality (n=238) | “To define the scope of the tests: some
tests required implementation of more
than one function.” [S§]

support tool “In the case of Java IDE, there is a lot
(n=2) of support, but in languages like PHP,
I found it harder because of IDE did
not give me so much support.” [S4]

Software design how to design “To think about how the API will

(n=3) using TDD (n=3) | behave before you design it.” [S14]

Mock objects (n=2) | use or not use “In this way, many “mock objects”
(n=2) would need to be created to isolate the

behavior that is carried out by my
study, being that this mining code is
very repetitive, but it is very small
and very little would be effectively
tested.” [S19]

Key benefits of TDD. Concerning the perceived benefits of TDD, we identi-
fied four themes: (i) testing coverage, (ii) code quality, (iii) software design, and
(iv) baby steps. Table5 presents the themes and sub-themes that emerged from
our analysis of benefits reported by participants. The most benefits are related
to what the test coverage provides the developer, such as a safe refactoring, con-
fidence to evolve and change the code, bug prevention, and consistency of code
working correctly. The quality of the code is another benefit much-mentioned and
perceived by almost all participants. Curiously, one of the developers reported
that he could not identify improvements in code quality using TDD compared
to Test Last. Instead, he mentioned only a greater comfort in implementing
new features since the tests were in place, and a reduction in time to identify
flaws introduced in the code. Software design and baby steps were two topics
identified, but in fact were little mentioned.

Developers’ Initial Perceptions on TDD Practice 7

Table 4. Test failures and unexpected situations

Question: Tell us about unexpected situations that

occurred during testing.

Themes

Sub themes

Quotes

New test passes
unexpectedly (n=38)

implementation errors
(n=4)

“Upon verification, I noticed
errors in the implementation
that were later corrected.” [S17]

bad writing test (n=23)

“In some cases, the tests needed
more manipulation, in others of
better-elaborated assertions.”
[S19]

incomplete method

(n=1)

“I did not realize that one of
the methods was still
incomplete.” [S2]

A previous test failed
unexpectedly (n=11)

insertion of new rules
(n=6)

“Faced with a new functionality,
part of the implementation that
previously passed the test,
stopped working, because it
became necessary to implement
more functional rules.” [S12]

in the integration (n=1>5)

“The tests failed during the
integration of the two
frameworks.” [S16]

Refactoring generates
failures (n=28)

changing methods (n=2)

“It happened several times,
after moving some method or
changing the operation of some
method.” [S1]

implementation failure
(n=3)

“Thus, it was necessary to
adjust these tests to the new
situation, and in other cases fix
the implementation.” [S12]

data structures (n=2)

“It occurred mainly when data
structures were changed.” [S6]

addition of a new pattern
(n=1)

“Some tests failed when a new
pattern (responsibility chain)
was added.” [S3]

New test for new
discovered bugs
(n=15)

unthought cases (n=11)

“Changing some tests to reject,
I realized that it was the case to
add one more test to cover that
situation.” [S1]

artifact errors (n=2)

“The encoding of the imported
file did not match the header
encoding declaration.” [S11]

mock objects (n=1)

“I discovered the error by
performing tests using mocks
objects.” [S16]

in the integration (n=1)

“It happened during the
integration of the class that
makes the requisitions.” [S8]

J. Choma et al.

Table 5. Key benefits of TDD

Question: What are the key benefits you noticed when using TDD?

Themes

Sub themes

Quotes

Test coverage
(n=31)

safe refactoring
(n=10)

“The code can be refactored
with minimal impact.” [S13]

confidence (n=9)

“Due to the increased
coverage afforded by TDD
usage, the changes become
easier and safer.” [S17]

preventing bugs
(n=9)

“By validating the code in
small parts from the
beginning of development, it
ends up reducing greatly the
appearance of bugs and
failures.” [S10]

consistency (n=3)

“The tests previously created
ensure the structure and
consistency of the code, i.e.
the code that was working
kept working.” [S2]

Code quality
(n=21)

clean, clear, and
simpler (n=11)

“TDD has helped me to
improve the code making it
more readable.” [S16]

lean programming

(n=7)

“I coded only what was
needed, avoiding to treat
every imaginable situation.”

[S6]

maintainability
(n=3)

“TDD allows greater
maintainability.” [S1]

Software design
(n=4)

less coupled classes
(n=3)

“The classes were less
coupled, so I was able to
understand the behavior of
the class without depending
on the total execution of the
system.” [S4]

less complicated
integration (n=1)

“Integration of separately
created modules was
performed in a less
complicated way.” [S2]

Baby steps (n=3)

thinking in a
simpler way (n=23)

“Because of the baby steps, I
was forced to think in a
simpler way, which ended up
reducing the complexity of
what I had envisioned.” [S4]

Developers’ Initial Perceptions on TDD Practice 79

Software design. When asked if participants had used TDD for software
design, we found three types of situations. In the first situation, 42.1% of partici-
pants (8 of 19) defined the software design through TDD. In the second situation,
31.6% of participants (6 of 19) already had part of their classes and methods
defined. Thus they used TDD only for the development and internal design of
the classes. Moreover, in the third situation, 26.3% participants (5 of 19) defined
during the TDD only the methods and the interaction issues since the classes
already were defined. Table 6 presents the themes and sub-themes that emerged
on software design.

Mock objects. Mock objects allow developers to write the code under test as
if it had everything it needs from its environment, guiding interface design by
the services that an object requires, not just those it provides [11]. In our study,
we found that nine participants (47.4%) used this expedient, while other ten
participants (52.6%) did not use it. Table 7 presents the themes and sub-themes

Table 6. TDD for software design

Question: How did you use TDD for software design activity?

Themes Sub themes Quotes
For entire software | bottom-up “After the test possibilities
design (n=11) development (n=7) | were exhausted for first

created class, I thought of
the next class and created a
test file for it. I was creating
new tests, always generating
classes associated with the
other classes with tests
previously created.” [S5]

lots of refactoring “The process required a lot
(n=2) of refactoring, changes in the
name of modules and
methods, extraction of
functionalities and so on.”

[S8]
slow, but efficient “This insecurity made the
(n=1) whole process very slow, but

I practically did not have to
change any tests - in relation
to the purpose of the test.”
[S10]

mock objects (n=1) | “In the file search module in
the file system, the tests were
directed to use the Observer
pattern, including the use of
mock.” [S6]

(continued)

80 J. Choma et al.

Table 6. (continued)

Question: How did you use TDD for software design activity?

Themes Sub themes Quotes
For the internal new functionalities “I decided to apply the TDD
design of the classes | (n=1) for the implementation of the
(n=6) new functionalities of the
software.” [S3]
decoupled objects “By using TDD, I needed to
(n=1) develop decoupled objects.”
(S4]
methods validation | “The unit tests served to
(n=1) validate the operation of the
methods.” [ST7]
patterns and “The class layout is equaled

refactoring (n=3) | to the interfaces.” [S16]

For methods design |integration problems | “At the time of integration, I
(n=5) (n=1) saw interface problems
between classes that required,
for example, changes in
method returns.” [S1]

previous sketching “I listed of the activities my
of classes (n=4) software could perform in
increasing order of
complexity; and for each of
these activities would, in
principle, correspond to a
test.” [S2]

about the use of mock objects by participants. For participants who used mock,
the sub-themes highlight what purpose they were used for. As mentioned earlier,
one of the difficulties of the participants was deciding whether or not to use mocks
in their projects. Then, nine participants decided that it was unnecessary, and
one participant was able to conclude that it would be an effort without effect.

5 Discussion

TDD requires a new mindset because it recommends some practices which are
not common among developers, such as test-first, baby steps, and continuous
improvement of the design via refactoring. Like George and Williams [13], we
also found that transitioning to the TDD mindset is difficult. Developers are
slow to get pace because they take time to know where to start, and how to
create a test case for something that does not yet exist.

If, on the one hand, thinking about the test before implementing the code —
without having a design up front — can cause insecurity to the developer; on the

Developers’ Initial Perceptions on TDD Practice 81

Table 7. Use of mock objects

Question: Have you used mock objects in your project?

Themes Sub themes Quotes
Using mocks behavior simulation | “I found it essential to
(n=10) (n=6) simulate the behavior of

other classes and to verify if
the iteration between the
objects was done as
expected.” [S4]

isolating classes “It helped me to verify what
(n=2) kind of dependency I would
need to use between classes.”
[S10]
external components | “It was very useful for testing
(n=2) a class that interacts with an
external component.” [S6]
Not using mocks unnecessary (n=9) | “Maybe I could create a
(n=10) mock for the graphical

interface but I found it
unnecessary since the
manipulation of the classes
could be done without it.”

[S12]
without effect “The case where I could have
(n=1) used to isolate the tested

behaviors, I would not have
the expected result.” [S19]

other hand, a more considerable effort to create the tests before implementation
can be offset by less spent time in the bug fixes. There is little empirical evidence
showing if TDD, in fact, increases or decreases productivity [19]. In our study,
we can infer that the lack of practice surely is one of the aspects that can impact
productivity. Moreover, for this reason, developers often do not feel productive
when using TDD for the first time.

As suggested by Kent Beck [3], baby steps consist of to write tests for the
least possible functionality, simplest code to pass the test, and always do only
one refactoring at a time. This practice encourages developers to evolve the
software through small steps. According to Fucci et al. [12], an incremental
test-last and TDD “could be substitutes and equally effective provided that
they are performed at the same level of granularity and uniformity”. Thus, they
suggested that the quality assurance might not be tied to its test-first nature,
but on granularity effect.

Although baby steps are a key factor, we found that various developers ini-
tially have difficulty setting the size of the steps. In particular, we noticed that

82 J. Choma et al.

the less experienced developers struggle more against the anxiety because they
want to implement the requirements as soon as possible. On the other hand, more
experienced developers know to assess when baby steps are the best option. Some
participants realized that baby steps could help to reduce the complexity of the
design. Also, in the developers’ perception, problems including failures and bugs
tend to be easier to solve when they are discovered because of development in
small steps.

Once they overcome the initial difficulties, the participants gain greater con-
fidence to implement new features and make changes, since everything built so
far was already tested. Therefore, the test coverage is the most significant benefit
perceived by them — bringing a safety in refactoring (less traumatic) and helping
to prevent bugs [18]. These effects encourage the continuous improvement of the
code. But, this is not always done at every step, as recommended in TDD. In
line with the Scanniello et al.’s [21] findings, we also noticed that, sometimes,
refactoring was only performed after a set of tests and implemented features.
We underline how important is this issue to be addressed in the TDD training
and coaching, and focusing more on realistic situations.

The quality of the code regarding readability and simplicity is also one of the
forces of TDD perceived by developers — providing a leaner programming and
better software maintainability. By writing tests before code, programmers would
be “forced” to make better design decisions during development [9]. According
to Turhan et al. [23], incremental and straightforward design are expected to
emerge when using the TDD. Although some developers mentioned less-coupled
classes, few developers realize the influence of TDD on design activity. This
probably happened because the effect over software design is considered an indi-
rect consequence, as pointed out by Aniche and Gerosa [1]. For instance, one
participant claimed that decoupling was an effect of the use of mock objects.

Developers can gain a broad understanding of the requirements, since before
writing the tests they need to think about how features should work. Further-
more, the test cases can be used to explain the code itself [13]. A better under-
standing of the code certainly helps in its maintenance. However, we noticed that
few developers directly perceive a positive effect of TDD on software maintain-
ability. Nevertheless, we believe that such benefit seems to be better perceived
in the long run, or by more experienced developers, as pointed out by Dogsa and
Batic [10].

6 Conclusion, Limitations and Future Work

The major concern of existing studies has been to evaluate the effects of TDD
compared to other development approaches; however, few studies seek to under-
stand such effects more deeply from the viewpoint of developers. This study
contributes empirical evidence on the use of TDD from developer’s perspective.
Unlike other studies, the design of this study involved a variability of projects
with different sizes and purposes, and using different programming languages
and support tools. Our findings are in agreement with the results of several
related studies.

Developers’ Initial Perceptions on TDD Practice 83

We have found that, in the participant’s vision, the adoption of TDD hap-
pens slowly due learning curve and change of mindset. But, like any new practice
that involves non-routine, knowledge work, this is an issue already expected. For
them, in the beginning, the main difficulties are to know where to start, and then
to know how to create a test for a feature that does not yet exist. Regarding per-
ceived benefits, we found that participants gain greater confidence to implement
new features and make changes due to broad test coverage. Most participants
noticed improvements in code quality, but few have a broader view of the effects
of TDD on software design. Less experienced developers have difficulty applying
baby steps because tend to be more eager to view the all features implemented.
Many of them cannot assess when using mock objects is appropriate to the
project.

Regarding the limitations of this study, we have to consider that generaliz-
ability of qualitative research findings is usually not an expected attribute, since
qualitative research studies are meant to study a specific issue or phenomenon,
involving a certain population, and focused in a particular context. In our study,
for example, although the study participants have different profiles and personal
experiences, some traits of culture can be typical of the Brazilian developers.
Therefore, we can not assume that our results apply outside the specific setting
in which it was run. Besides, the number of participants in this study may not
be sufficient to generalize the results.

Another validity concern is the possibility of researcher’s influence on the
qualitative data analysis. To mitigate this threat, we have adopted the thematic
analysis as a systematic method following a pre-established protocol. Also, the
results of the analysis were reviewed by the other two authors. Regarding study
participant’s, despite most developers had no previous experience with TDD, it
may be that one’s personal experience has influenced their particular opinions
and perceptions. In future work, this issue can be better analyzed.

Acknowledgements. We would like to thank the support granted by Brazilian fund-
ing agencies CAPES and FAPESP (grant 2014/16236-6, Sao Paulo Research Founda-
tion).

References

1. Aniche, M., Gerosa, M.A.: Does test-driven development improve class design?
a qualitative study on developers’ perceptions. J. Braz. Comput. Soc. 21(1), 15
(2015)

2. Aniche, M.F., Ferreira, T.M., Gerosa, M.A.: What concerns beginner test-driven
development practitioners: a qualitative analysis of opinions in an agile conference.
In: 2nd Brazilian Workshop on Agile Methods (2011)

3. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional,
Reading (2003)

4. Boyatzis, R.E.: Transforming Qualitative Information: Thematic Analysis and
Code Development. Sage, Thousand Oaks (1998)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77-101 (2006)

84

6

7

8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Choma et al.

. Clarke, V., Braun, V.: Teaching thematic analysis: overcoming challenges and
developing strategies for effective learning. Psychologist 26(2), 120-123 (2013)

. Crispin, L.: Driving software quality: how test-driven development impacts software
quality. IEEE Softw. 23(6), 70-71 (2006)

. Deng, C., Wilson, P., Maurer, F.: FitClipse: a fit-based eclipse plug-in for exe-
cutable acceptance test driven development. In: Concas, G., Damiani, E., Scotto,
M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 93-100. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73101-6-13

. Desai, C., Janzen, D., Savage, K.: A survey of evidence for test-driven development

in academia. ACM SIGCSE Bull. 40(2), 97-101 (2008)

Dogsa, T., Bati¢, D.: The effectiveness of test-driven development: an industrial

case study. Softw. Qual. J. 19(4), 643-661 (2011)

Freeman, S., Mackinnon, T., Pryce, N., Walnes, J.: Mock roles, objects. In: Com-

panion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications, pp. 236-246. ACM (2004)

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., Juristo, N.: A dissection of the

test-driven development process: does it really matter to test-first or to test-last?

IEEE Trans. Softw. Eng. 43(7), 597-614 (2017)

George, B., Williams, L.: A structured experiment of test-driven development. Inf.

Softw. Technol. 46(5), 337-342 (2004)

Guerra, E., Aniche, M.: Achieving quality on software design through test-

driven development. In: Software Quality Assurance: In Large Scale and Complex

Software-Intensive Systems, p. 201 (2015)

Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and effi-

ciency of the test driven development. In: Proceedings of the First International

Symposium on Empirical Software Engineering and Measurement, ESEM 2007,

pp. 285-294. IEEE Computer Society, Washington, DC (2007). https://doi.org/

10.1109/ESEM.2007.20

Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of test

first programming. Inf. Softw. Technol. 51, 182-194 (2009)

Janzen, D.S., Saiedian, H.: A leveled examination of test-driven development accep-

tance. In: 29th International Conference on Software Engineering (ICSE 2007), pp.

719-722. IEEE (2007)

Jeffries, R., Melnik, G.: Guest editors’ introduction: TDD-the art of fearless pro-

gramming. IEEE Softw. 24(3), 24-30 (2007)

Pancur, M., Ciglari¢, M.: Impact of test-driven development on productivity, code

and tests: a controlled experiment. Inf. Softw. Technol. 53(6), 557-573 (2011)

Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Results from an

ethnographically-informed study in the context of test driven development. In:

Proceedings of the 20th International Conference on Evaluation and Assessment

in Software Engineering, p. 10. ACM (2016)

Scanniello, G., Romano, S., Fucci, D., Turhan, B., Juristo, N.: Students’ and profes-

sionals’ perceptions of test-driven development: a focus group study. In: Proceed-

ings of the 31st Annual ACM Symposium on Applied Computing, pp. 1422-1427.

ACM (2016)

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., Erdogmus, H.: What do

we know about test-driven development? IEEE Softw. 27(6), 16-19 (2010)

https://doi.org/10.1007/978-3-540-73101-6_13
https://doi.org/10.1109/ESEM.2007.20
https://doi.org/10.1109/ESEM.2007.20

Developers’ Initial Perceptions on TDD Practice 85

23. Turhan, B., Layman, L., Diep, M., Erdogmus, H., Shull, F.: How effective is
test-driven development. In: Making Software: What Really Works, and Why We
Believe It, pp. 207-217 (2010)

24. Vu, J.H., Frojd, N., Shenkel-Therolf, C., Janzen, D.S.: Evaluating test-driven devel-
opment in an industry-sponsored capstone project. In: 2009 Sixth International
Conference on Information Technology: New Generations, ITNG 2009, pp. 229—
234. IEEE (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Developers' Initial Perceptions on TDD Practice: A Thematic Analysis with Distinct Domains and Languages
	1 Introduction
	2 Related Work
	3 Empirical Study
	4 Findings
	5 Discussion
	6 Conclusion, Limitations and Future Work
	References

