
Probability Aware Fault-Injection Approach for
SER Estimation

Fábio B. Armelin∗†‡, Lı́rida A. B. Naviner† and Roberto d’Amore‡
∗Instituto Nacional de Pesquisas Espaciais (INPE), DEA, Av. dos Astronautas, 1758, São José dos Campos, Brazil

†Télécom ParisTech, COMELEC, 46 Rue Barrault, Paris, France
‡Instituto Tecnológico de Aeronáutica (ITA), IEEA, Pça. Mal. Eduardo Gomes, 50, São José dos Campos, Brazil

978-1-5386-1472-3/18/$31.00 c©2018 IEEE

Abstract—The Soft-Error Rate (SER) estimation is used to
predict how electronic systems will respond to the transient elec-
trical pulses induced by the ionizing radiation. SER estimation
by radiation test is an accurate method, but it is expensive
and requires the real device. Traditional simulation methods
incorporate logical, temporal and electrical masking effects while
injecting faults at the output of the device’s functional elements.
Nevertheless, they do not consider the probability of the ionizing
radiation to produce a transient fault at the output of each
class of functional element. On the other hand, studies in the
stochastic computing domain deal with a probabilistic fault-
injection approach. Since many concomitant faults among the
elements may occur, the fault probability of each element is
treated independently. This leads to the use of one Pseudo-
Random Number Generator (PRNG) and a probability compara-
tor for each functional element. However, the analysis of a single
fault is usually enough for SER estimation. In this context, this
work presents a different approach for probability-aware fault-
injection, in which a weighted distribution of faults is defined
considering the relative fault probability of each functional
element. This approach enables the use of just one PRNG
and a decoder for the entire device, instead of a pair ‘PRNG-
comparator’ per element, leading to a significant reduction in
logic blocks consumption. For the example analyzed in this study,
the use of relative fault probability decreases the number of logic
blocks from 875 (adopting independent fault probability) to 495.

I. INTRODUCTION

Soft-Error Rate (SER) is an essential parameter to properly
assess the reliability of electronic systems that operate under
the effects of the ionizing radiation particles. This parameter
is intrinsically related to the rate of transient electrical pulses,
R, generated in the sensitive internal elements of the device,

R =

∫ ∞

0

φ(E) · σ(E) · dE, (1)

where φ is the particle fluency, σ is the element cross-section,
and E is the particle energy.

In digital systems, these sensitive elements are the switching
transistors, for which the cross-section is directly related
to their drain areas. However, the device’s SER is not the
sum, or combination, of the R value of each transistor. The
logical, temporal and electrical masking effects filter-out many
transient pulses. Thus, applying the eq. 1 to estimate the
device’s SER would require an ‘effective σ’, including these
masking effects. The difficulty in determining this effective σ
led to the development of many SER estimation methods.

The SER estimation methods can be analytical, as in [1],
simulated fault-injection, as in [2], emulated fault-injection, as
in [3], or radiation tests, as in [4]. The radiation tests, in which
the real device is irradiated with neutron beams, is considered
the most accurate SER estimation method. This method takes
into account the physical and operational characteristics of
the device and its interaction with a representative radiation
particle. The drawbacks are the test cost and the need to have
the real device (available late in the design cycle).

Other classes of SER estimation methods had evolved to
try to achieve the accuracy obtained with the radiation tests.
However, they still lack in considering a parameter that is
intrinsic to the radiation test: the probability of the transient
pulse, induced by the radiation particle, to produce a soft-error
at the hierarchical level above (referenced as the functional
element – ASIC’s standard cells and FPGA’s logic blocks).

For example, simulated fault-injection approaches inject a
uniform distribution of faults at the outputs of the functional
elements. In other words, they intrinsically consider that each
class of functional element has the same probability to produce
a soft-error when hit by a radiation particle, no matter if it is
an Inverter or a 2-bit full-adder. The analytical and emulated
fault-injection methods have the same intrinsic assumption.

The drawback in not consider the probability of the transient
pulse to produce a soft-error at the hierarchical level above is
more significant for FPGAs. In these devices, the same logic
block can be configured for many distinct functions. In fact,
a previous study analyzed how the logic block configuration
may affect the SER estimation for an FPGA [5].

On the other hand, in the stochastic computing domain,
some studies adopt a probabilistic FPGA emulated fault-
injection approach [6]. In that domain, it is essential to
consider many concurrent faults. For this reason, they consider
individual fault probabilities. This leads to a substantial impact
on the FPGA resources since it requires a Pseudo-Random
Number Generator (PRNG) and a threshold probability com-
parator for each fault injection location.

This work proposes the SER estimation considering the fault
probability of the functional elements. Contrary to the stochas-
tic approach, the probability aware fault-injection approach
proposed in this work considers only one fault at a time. For
the SER estimation, the analysis of a single fault is usually
enough, and this assumption enables the use of relative fault
probabilities: the fault probability of each functional element

is used as a weight for the fault distribution. A single PRNG
with a decoder is used to distribute the faults to the functional
elements.

This new probability aware approach enables considering
the fault probability of each functional element, as in the
radiation tests, with a significant reduction in logic block
consumption, when compared to [6].

This paper is organized as follows. Section II describes the
adopted methodology, including the analyzed example circuit.
The results are shown in Section III, and Section IV discusses
the proposed approach and compares the results with those
from previous works. Finally, the conclusions of this study
are given in Section V.

II. METHODOLOGY

The probability aware fault-injection approach proposed in
this work relies on a weighted fault distribution, with weights
defined by the sensitivity of each class of functional elements
to the transient pulses induced by the radiation particles. The
fault distribution is applied to the circuit under test (CUT)
using an autonomous emulated fault-injection environment.
This environment considers a specific fault model, that is
injected to the outputs of the functional elements using sabo-
teurs. Finally, the analysis of the proposed approach required
some fault-injection campaigns. The following subsections
describe all these aspects of the applied methodology.

A. Weighted Fault Distribution

The fault-distribution is implemented using a PRNG, to
pseudo-randomly distribute the faults, and a decoder. For a
uniform distribution, each value generated by the PRNG is
used to enable one saboteur, in a one-to-one decoding process.
On the other hand, for a weighted distribution, a range of
values generated by the PRNG is used to enable one saboteur,
in a range decoding process. Different weights are defined with
different ranges.

Additionally, the ranges (weights) are proportional to the
soft-error susceptibility of each class of functional element.
For example, considering two classes of logic blocks, A
and B, with the soft-error sensitivity of A being half the
value of B, and a circuit composed by [A;B;A;A;B] logic
blocks; it could results in fault enabling ranges such as
[1..10; 11..30; 31..40; 41..50; 51..70].

Finally, a second PRNG determines the clock cycle of the
test vector sequence in which the fault will be injected, to
guarantee a uniform fault distribution over time.

B. Fault-Injection Environment

The fault-injection environment has two versions of the
CUT: the Golden CUT, used as a reference, and the Faulty
CUT, that is instrumentalized with saboteurs, for the fault-
injection. Both versions of the CUT execute the same test
vector sequence, driven by a Driver, while a Monitor compares
the outputs of the CUTs. Any mismatch between the outputs
is reported through a serial interface, containing a mismatch
code and a time-tag (the clock cycle in which the mismatch

TABLE I
FAULT PROBABILITY DISTRIBUTION OF THE CUT LOGIC BLOCKS

Macro ID Logic Block ID Fault Probab.
AND2 26 0.022
AND3 22, 23, 25, 28, 30, 32 0.020
AOI1B 7, 8, 9, 10, 11, 12 0.030

DFN1C1 13, 14, 15, 16, 17, 18, 19, 20 0.034
INV 35 0.020

NOR2A 6 0.020
NOR2B 1, 2, 5 0.022
NOR3B 3 0.018
NOR3C 4 0.020
XOR2 21, 24, 27, 29, 31, 33, 34 0.037

occurred). The saboteurs of the Faulty CUT are controlled
by a Fault Distribution Controller, that reports the injection of
faults through another serial interface. This report contains the
fault-injection location (Logic Block ID) and a time-tag (the
clock cycle in which the fault was injected).

The fault-injection environment was implemented in the
ProASIC3/E Starter Kit [7], with the target device A3PE1500-
PQ208, from the flash-based ProASIC3E FPGA family [8].

C. Fault Model

The transient pulse is generated using a programmable clock
delay block (macro CLKDLY [9]) and a D flip-flop, with
enable and reset (macro DFN1E1C1 [9]), as proposed in [10].

D. Saboteur

The Faulty CUT was instrumentalized with saboteurs at
each logic block output. When enabled and in the presence of
a fault, the saboteur inverts the logic value of the intercepted
signal (eq. 2).

outputsignal = inputsignal ⊕ (sab enable · fault) (2)

All saboteurs are connected to the same fault signal, while
each sab_enable has a different driver. The delay caused
by saboteur does not interfere in the estimation, since all
saboteurs have the same delay and the transient pulses shall
be distributed at any moment, without bias. On the other hand,
the saboteur shall not distort the pulse [10].

E. Circuit Under Test

The circuit under test is an 8-bit counter analyzed in a
previous study [5]. This circuit has an 8-bit output, and a clock
and a reset inputs. Its synthesis in the target device resulted
in 35 logic blocks (1 AND2, 6 AND3, 6 AOI1B, 8 DFN1C1,
1 INV, 1 NOR2A, 3 NOR2B, 1 NOR3B, 1 NOR3C, and 7
XOR2). The probabilities reported in [5] were adopted in this
work and used for determining the weighted fault distribution
(Table I).

F. Fault-Injection Campaigns

Once started by the user, the fault-injection environment
runs autonomously, reporting each injected fault and each
observed error. To evaluate the fault-injection environment and
the CUT, two types of fault-injection campaigns were per-
formed: one with a uniform fault distribution, as a reference,
and another with a weighted distribution.

TABLE II
CUT OBSERVED ERRORS FOR UNIFORM AND WEIGHTED DISTRIBUTIONS.

Delay Uniform Dis-
tribution

Weighted
Distribution

10000 (3.9 ns) 38.8 % 39.8 %
01000 (2.3 ns) 31.1 % 32.5 %
00100 (1.5 ns) 25.1 % 27.8 %
00010 (1.1 ns) 22.5 % 24.4 %
00001 (0.9 ns) 20.7 % 22.9 %
00000 (0.7 ns) 12.6 % 15.5 %

For all fault-injection campaigns, the system clock was 40
MHz; the clock used to generate the transients was 40.1 MHz;
the test vector sequence was 1,023 cycles (10-bit PRNG); the
number of saboteurs to be controlled was 35; and the interval
between the executions of the test vector sequences was 80,000
cycles (needed to send the serial messages), resulting in 500
injected faults per second.

For the uniform distribution, a 6-bit PRNG and a one-to-
one decoder were used to control the saboteurs. On the other
hand, for the weighted distribution, a 14-bit PRNG and a range
decoder were used to control them.

III. RESULTS

For the fault-injection campaign with uniform distribution,
from 495,243 injected faults, the mean value per Logic Block
ID was 14,149.8, with a standard deviation of 0.4; and the
mean value per clock cycle was 483.64, with a standard
deviation of 27.87.

For the fault-injection campaign with weighted distribution,
from 495,565 injected faults, the mean difference between the
configured and actually injected faults per Logic Block ID was
41.38, with a standard deviation of 22.65. The mean value of
injected faults per clock cycle was 484.93, with a standard
deviation of 26.61.

The total logic blocks consumption, for uniform and
weighted distributions, were 2366 and 2562, respectively.
However, approximately 70% of these values are related to
the reporting serial interfaces. For the weighted distribution,
considering only the functional blocks used to distribute the
faults, the consumption was 495 logic blocks (14 for the fault-
time PRNG, 25 for the fault-place PRNG, 259 for the fault-
distribution logic, and 197 for the range-decoder).

Finally, the CUT observed errors are presented in Table
II, for uniform and weighted fault distributions, considering
six different delay configurations for the block CLKDLY
(with approximate resulting delay). The presented percentages
were obtained with approximately 150,000 injected faults.
A consistent greater value was observed when applying the
weighted fault distribution.

IV. DISCUSSION

The proposed fault-injection environment leads to a good
agreement between the configured and actually applied fault
distribution.

Concerning the logic blocks consumption, the functional
blocks required for the weighted distribution consumes 495

logic blocks. Adopting the independent fault probability de-
scribed in [6] to the same CUT would result in at least
875 logic blocks (the CUT has 35 functional elements, each
one with a 14-bits PRNGs, that consumes 25 logic blocks),
without considering the probability comparators. Besides this
significant area reduction, it is important to notice that the
study presented in [6] uses a different FPGA technology, with
different logic block resources.

The higher soft-error susceptibility of the CUT when adopt-
ing a weighted distribution of faults is consistent with the val-
ues observed in [5]. However, it is specific to this CUT. Others
circuits can present lower susceptibilities when compared to
those obtained with a uniform distribution of faults.

Finally, this probability aware fault-injection approach could
be adapted to use other fault model, as the one used in [3].

V. CONCLUSION

Considering the soft-error susceptibility of each functional
element of an electronic device (ASIC’s standard cells and
FPGA’s logic blocks) can improve its SER estimation. This
study presented a probability aware fault-injection approach
capable of applying a weighted distribution of faults, based
on the relative soft-error sensibility of the functional elements.
The results indicate that this approach is more efficient regard-
ing required resources than other probabilistic emulation-based
fault-injection approaches found in the literature.

ACKNOWLEDGMENT

This work was partially funded by AEB and CNPq (process
number 207364/2015-0/SWE).

REFERENCES

[1] S. Rezaei, S. G. Miremadi, H. Asadi, and M. Fazeli, “Soft error
estimation and mitigation of digital circuits by characterizing input
patterns of logic gates,” Microelectronics Reliability, vol. 54, pp. 1412–
1420, jun 2014.

[2] A. Lopes Filho and R. D’Amore, “Analysis of the error susceptibility of a
field programmable gate array-based image compressor through random
event injection simulation,” IET Computers & Digital Techniques, vol. 6,
no. 3, pp. 160–165, 2012.

[3] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso,
M. Portela Garcia, and C. Lopez-Ongil, “Soft Error Sensitivity Evalua-
tion of Microprocessors by Multilevel Emulation-Based Fault Injection,”
IEEE Transactions on Computers, vol. 61, pp. 313–322, mar 2012.

[4] C. Bottoni, M. Glorieux, J. Daveau, G. Gasiot, F. Abouzeid, S. Clerc,
L. Naviner, and P. Roche, “Heavy ions test result on a 65nm Sparc-V8
radiation-hard microprocessor,” in 2014 IEEE International Reliability
Physics Symposium, (Waikoloa), pp. 5F.5.1–5F.5.6, IEEE, jun 2014.

[5] F. B. Armelin, L. A. B. Naviner, R. D’Amore, and I. A. Azevedo,
“Impact evaluation of logic blocks configuration on FPGA’s soft error
rate estimation,” in 2016 IEEE International Conference on Electronics,
Circuits and Systems (ICECS), (Monaco), pp. 277–280, IEEE, dec 2016.

[6] D. May and W. Stechele, “A resource-efficient probabilistic fault sim-
ulator,” in 2013 23rd International Conference on Field programmable
Logic and Applications, (Porto), pp. 1–4, IEEE, sep 2013.

[7] MICROSEMI, “ProASIC3/E Starter Kit User’s Guide,” tech. rep., Mi-
crosemi Corporation, Aliso Viejo, 2012.

[8] MICROSEMI, “ProASIC3E Flash Family FPGAs with Optional Soft
ARM Support,” tech. rep., Microsemi Corporation, Aliso Viejo, 2015.

[9] MICROSEMI, “IGLOO, ProASIC3, SmartFusion and Fusion Macro
Library Guide for Software v10.1,” tech. rep., Microsemi Corporation,
Aliso Viejo, 2010.

[10] F. B. Armelin, L. A. B. Naviner, and R. D’Amore, “Using FPGA self-
produced transients to emulate SETs for SER estimation,” in 2018 IEEE
Latin American Test Symposium, 2018.

