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ABSTRACT: This paper provides a real example of applying COCOMO II as an estimation technique for the required software 
development effort in a safety-critical software application project following the DO-178C processes. The main goal and 
contribution of the case study is to support the research on software effort estimation and to provide software practitioners with 
useful data based on a real project. We applied the method as it is, by correlating the effort multiplier factors with the complexity 
and objectives introduced by the DO-178C level A application, resulting in an estimated effort. The rationales for each scale 
factor and effort multiplier selection were also described in detail. By comparing the estimated values with the actual required 
data, we found a magnitude of relative error (MRE) of 40% and provided alternatives for future work in order to increase the 
effort estimation accuracy in safety-critical software projects.
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INTRODUCTION

 Th e soft ware industry is, by far, one of the businesses that have been introducing most of the major innovations in the modern 
world (WIPO 2016). Since the creation of the smartphone concept, a variety of opportunities came up for entrepreneurs and 
soft ware developers in general (Capaldo et al. 2003). Th e way to order a sandwich, call a cab, get a ride from a stranger, and even 
to fi nd a date have changed completely in the past years. Th e soft ware development industry is highly responsible for this huge 
evolution (Chesbrough et al. 2006). However, this considerable innovation also requires some additional care regarding the 
responsibility that the soft ware product carries in our everyday life. Calling a cab by an app on a smartphone, for example, will 
depend upon a series of safety issues, once the car will likely be unmanned, which will be possible due to the use of autonomous 
navigation technology (Scaramuzza et al. 2014)environment monitoring, security surveillance, and inspection. If they are further 
realized in small scale, they can also be used in narrow outdoor and indoor environments and represent only a limited risk for 
people. However, for such operations, navigating based only on global positioning system (GPS. Such caution regarding safety is 
already a reality for the soft ware development industry, known as safety-critical (Rierson 2013)soft ware technology is changing, 
projects are pressed to develop soft ware faster and more cheaply, and the soft ware is being used in more critical ways. Developing 
Safety-Critical Soft ware: A Practical Guide for Aviation Soft ware and DO-178C Compliance equips you with the information you 
need to eff ectively and effi  ciently develop safety-critical, life-critical, and mission-critical soft ware for aviation. Th e principles also 
apply to soft ware for automotive, medical, nuclear, and other safety-critical domains. An international authority on safety-critical 
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software, the author helped write DO-178C and the U.S. Federal Aviation Administration\u2019s policy and guidance on safety-
critical software. In this book, she draws on more than 20 years of experience as a certification authority, an avionics manufacturer, 
an aircraft integrator, and a software developer to present best practices, real-world examples, and concrete recommendations. 
The book includes: An overview of how software fits into the systems and safety processes Detailed examination of DO-178C 
and how to effectively apply the guidance Insight into the DO-178C-related documents on tool qualification (DO-330, which 
means that the software is safety-critical for the human being and demands a large amount of money (Pries and Quigley 
2011).

In the aviation industry, for instance, the flight control of an aircraft equipped with the Fly-By-Wire (FBW) technology is the 
full responsibility of the embedded software that manages all actuators and pilot commands. In the past, the biggest challenge in 
the development of an airplane was to deal with the aerodynamic issues; currently, the software is the item of greatest concern and, 
in some cases, it is responsible for long delays in launching a new product (Kuznecova 2017). In this context, the effort estimation in 
software development projects presents itself as an alternative to reduce delays and losses because it offers methods to predict the 
cost, time, and effort required to achieve the desired results.

This paper presents a specific literature review on effort estimation methods in general, the concept of critical software, and a 
case study of effort estimation of software development using the COCOMO II (Boehm et al. 2000) method in a critical software 
project that follows the processes defined by the DO-178C (RTCA 2011e) standard.

The next sections of this article are organized as follows: section 2 shows the related work; in section 3, the main methods 
of effort estimation are presented; section 4 describes the critical software concept in more detail and the DO-178C; the case 
study of a critical software development project in the aeronautical industry is presented in section 5; a discussion of the results 
obtained is presented in section 6; and, finally, section 7 presents the final considerations and future work.

RELATED WORK

Estimating effort in software development projects is a subject widely researched by academia. The study reported in have 
identified 304 articles on this subject in an extensive systematic review (Jørgensen and Shepperd 2007). The various estimation 
techniques, as well as their imprecision problems, have been the subject of study by several researchers. Several models or variations 
have been created and improved over the years.

In the paper, Idri et al. (2000) proposed an adaptation of COCOMO using Fuzzy Logic. The same approach was discussed by 
Sheta and Aljahdali (2013) and Sarno et al. (2015). In Boehm and Valerdi (2008), many variations of COCOMO over the years 
and new methods that were derived from it due to specific calibrations for a given segment were presented. In spite of the well-
known use of COCOMO, Jørgensen and Shepperd (2007) raised a concern regarding the low number of records of studies and 
results obtained with the application of COCOMO in the scientific databases.

In de Barcelos Tronto et al. (2008) and Finnie et al. (1997), the authors proposed a better precision in the effort estimation 
techniques involving neural networks. And Velarde et al. (2016) proposed a method based also on lines of code, one of the entries 
of the COCOMO method.

Khatibi and Jawawi (2011) also present the results of using COCOMO as a method of estimating effort in a real project.
Due to the complexity of safety-critical software applications and the number of processes and activities involved in the 

DO-178C standard, different metrics and management approaches are also objects of research.
In Estrada et al. (2013), the authors provided different approaches and best practices for model-based design to develop a 

software certified by DO-178C. Paz and El Boussaidi (2016) also focused on model-based design as a support for DO-178C 
compliant projects.

Finally, a set of compliance metrics for DO-178C objectives, which aims to prevent delays in the certification schedule of 
the aircraft, was proposed by Yelisetty et al. (2015). It must be mentioned, however, that the software development effort was not 
the goal of their research, but instead metrics regarding the technical aspects of the software product itself.
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SOFTWARE DEVELOPMENT PROJECT EFFORT ESTIMATE

In this article, we adopt the definition of effort estimation used by Basten and Mellis (2011) “the effort that is most likely to be 
needed to implement the task that is estimated (excluding any risk buffer)”. This definition is also aligned with the recommendation 
made by Jørgensen (2014); he suggests that the meaning of “effort estimation” must be understood and communicated as a 
probability-based terminology.

There are several techniques for estimating effort in software development projects. Different authors classify them in several 
ways. Khatibi and Jawawi (2011), for instance, classify all techniques in only two groups: (a) non-algorithmic and (b) algorithmic 
methods.

Non-algorithmic methods are based on comparisons, inferences, analogies, or opinion of specialized and experienced people to 
estimate the effort required in a project. Basically, it does not implement any kind of mathematical equation to obtain the results 
(Basten and Mellis 2011).

Algorithmic methods are those that use a given mathematical equation to relate software metrics to the effort required (Jørgensen 
and Shepperd 2007; Abbas et al. 2012). In general, the main input of the algorithm is the software’s size, measured in number of 
lines of code, for example, which is then processed by the model and converted into the required effort estimate, usually a measure 
of the total development hours.

Of the 304 articles surveyed by Jørgensen and Shepperd (2007), for example, 148 (49%) dealt with algorithmic methods. In 
this category, the well-known COCOMO is included, being developed by Boehm (1981) and the main method to be explored 
in this paper.

COnstructive COst MOdel 
The COCOMO method is named according to the initials in English for COnstructive COst MOdel, being originally proposed 

by Boehm in 1981, and therefore also known as COCOMO’81. The COCOMO II (Boehm et al. 2000) was then published from 
this first version, incorporating about 20 years of evolution of the software engineering discipline in general. To avoid repetition 
of references, this entire section is based on the book Software Cost Estimation with COCOMO II (Boehm et al. 2000), except 
when specified.

The two main formulas of the method are used to calculate the effort (Eq. 1) and the required scheduled (Eq. 3) for certain 
projects. These formulas are presented as follows.

The measure of effort in PM (person-months) is defined by Eq. 1 and Eq. 2, as follows:

where PM is person-months (1PM = 152h); NS is nominal-schedule; A is constant based on model calibration; Size is the software’s 
size in source lines of code (SLOC) or function points; EM is effort multiplier; and n is number of EM taken in consideration.

(1)
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where D is constant based on model calibration; SF is scale factor; and E and B were described in Eq. 2.
The term nominal-schedule (NS) in the equations means that it excludes the multiplicative scale factor (SCED), which will 

be detailed in this paper. The term scale factor (SF) is described as follows.
The COCOMO II method presents five scale factors and they basically determine the savings and costs of the project under 

development. The scale factors are listed as follows:
• PREC (precedentedness): Defines the level of similarity with previous projects (Khatibi and Jawawi 2011).
• FLEX (development flexibility): Indicates the level of software flexibility according to the development process, interface 

constraints, requirement, and schedule.
• RESL (architecture/risk resolution): Based on the risk assessment analysis results (Khatibi and Jawawi 2011).
• TEAM (team cohesion): Indicates the integration level of the team and human factors.
• PMAT (process maturity): Related to the process maturity level according to CMMI (CMMI Product Team 2010) or 

similar.
Each scale factor has six levels, from very low to extremely high, and each level has an associated weight suggested by the 

method (Boehm et al. 2000). In addition to the scale factors, the method also presents 17 multiplicative cost factors. They are 
organized into four categories:

• Product factors: In this category, there are the factors that may cause variation in the required effort due to the product 
itself and its characteristics – required software reliability (RELY), database size (DATA), product complexity (CPLX), 
developed for reusability (RUSE), and documentation needs (DOCU).

• Hardware factors: This category considers the factors related to the hardware in which the software will be executed – 
execution time constraint (TIME), main storage constraint (STOR), and platform volatility (PVOL).

• Human factors: This factor is related to the influence that the team can have under the required effort – analyst capability 
(ACAP), programmer capability (PCAP), personnel continuity (PCON), application experience (APEX), platform 
experience (PLEX), and language and tool experience (LTEX).

• Project factors: In this category, there are the project factors that influence the effort, such as the use of modern tools, 
location of the team, level of interaction, etc. The factors are use of software tools (TOOL), multisite development 
(SITE), and required development schedule (SCED).

Each of these attributes determines a multiplication factor that estimates their effect on the software development effort. 
These attributes are classified on a six-level scale from “very low” to “extremely high”, and for each level a weight is also given 
by the method.

Summarizing the COCOMO method, it can be considered a framework, which groups 17 multiplicative cost factors in 
four different categories, as described in Fig. 1.

To situate the reader in applying this method in a critical software development project, the next section details the concepts 
of this type of software and its definition.

SAFETY-CRITICAL SOFTWARE

NASA has a critical software development guide called the NASA Software Safety Guidebook (NASA 2004), which defines 
critical software as follows: “software is considered critical to safety if it controls or monitors hardware or software that is dangerous 
or critical to safety”. In general, such applications are embedded and considered real-time applications, which means that they 
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operate at an extremely high frequency and have strict response requirements in which a single fault can generate catastrophic 
events (McCormick et al. 2011). Romani et al. (2010) emphasize the importance of requirements for space soft ware systems 
according to the NASA criticality scale.

A soft ware for such applications is generally developed following rigorous process standards. In this context, the following 
are the three of the most used standards in their segments, the DO-178C for the aeronautical industry, the NASA-STD-8719.13C 
(NASA 2013) for the aerospace industry, and the ISO/IEC62304 (BSI 2006) for the medical segment.Because it is a case study of 
an aeronautical sector project, the concepts of DO-178C will be further described. To avoid repetition of references, this entire 
section is based on the standard itself, unless otherwise specifi ed.

Because it is a case study of an aeronautical sector project, the concepts of DO-178C will be further described. To avoid 
repetition of references, this entire section is based on the standard itself, unless otherwise specifi ed.

As clearly summarized by Marques and Marques da Cunha (2017), “the DO-178C establishes considerations for developers, 
installers, and users when designing an embedded equipment”. Th e DO-178C classifi es the criticality of the eff ect of failures on the 
crew or plane into fi ve categories. Due to the eff ects of each failure, the DO-178C then classifi es the soft ware in fi ve diff erent levels 
(A, B, C, D, and E), according to its contribution to the potential system failures, where the level A is the most rigorous. For each 
soft ware level, the standard presents a set of objectives that must be achieved in order to certify such an embedded application.

Th e soft ware level determination is done by a system safety assessment process, identifi cation of potential failures, loss of 
function or malfunction, and their impacts. According to DO-178C, the soft ware level implies that the level of eff ort required to 
show compliance with certifi cation requirements varies with the failure condition category. Th e necessary eff ort to approve the 
soft ware increases as the number of objectives increases according to its level. Th e Table 1 describes the system failure condition 
associated with the soft ware level and the number of objectives. 

Th e DO-178C standard also presents supplementary documents including special recommendations for tools qualifi cation 
(RTCA 2011a); model-based development (RTCA 2011b); object-oriented (RTCA 2011c); and formal methods (RTCA 2011d)

Given the DO-178 usage history through its diff erent revisions, in addition to the level of confi dence, this document has 
earned from industry and certifi cation agencies, including the world’s leading aeronautical certifi cation agency, the Federal 
Aviation Administration (FAA), the recognition of this standard and its supplements as a valid mean to show compliance with 
the regulations for certifi cation of soft ware aspects, by issuing the AC20-115D (FAA 2017).

Th e case study described in this paper addresses all the concepts presented to the reader up to this moment, being a critical 
soft ware, following the processes established by the DO-178C, and applying the COCOMO II method as a development eff ort 
estimation. Since it is a project that was concluded in 2017, it is possible to present not only the estimated data, but also the actual 
values demanded by the project.

• Required so�ware reliability; 
• Database size
• Product complexity
• Developed for reusability
• Documentation needs

• Analyst capability
• Programmer capability
• Personnel continuity
• Application experience
• Platform experience
• Language and tool experience

• Execution time constraint
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• Platform volatility

Product

People Project

COCOMO

Hardware

• Use of so�ware tools
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• Required development schedule

F igure 1. COCOMO II diagram. 



J. Aerosp. Technol. Manag., São José dos Campos, v11, e1819, 2019

Santos LP; Ferreira M xx/xx06/16

CASE STUDY – AERONAUTICAL SECTOR

We report in this article a case study of the COCOMO II method applied in a safety-critical level A software development 
project of an aeronautical company. It begins with the contextualization of the company Harpia, environment in where the case 
study was based, following the description of the project and the software development process adopted. Finally, we present the 
results estimated by the COCOMO II method and the effort that was actually necessary to develop the software under analysis.

THE HARPIA COMPANY
Harpia is the fantasy name of the company responsible for the project and was created especially for this article in order to 

protect the real name of the company being portrayed in this section for commercial and intellectual property reasons. Harpia has 
more than 20 years in the software development market in Brazil and it is specialized in software embedded in mission systems for 
defense aircraft and real-time applications for critical systems. Since its founding, it has grown exponentially and has about 200 
software engineers currently. Its main clients are aviation companies from all over the world, which subcontract their services in 
the defense projects carried out by the Navy, the Army, and the Air force, as well as the development of applications for systems 
of flight control, called Fly-By-Wire.

In addition to embedded software, the complete company’s portfolio includes simulation systems and desktop applications 
for the planning and debriefing of tactical missions conducted by military Air forces.

THE FLY-BY-WIRE APPLICATION
The project in this case study refers to the software development of the FBW system of the Harpia-H2 program. The complete 

project development cycle was from June 2013 to December 2017, totaling 4.5 years and consuming at peak 48 software engineers 
working full time.

PROJECT SCOPE
The embedded software development project of the Harpia-H2 FBW system was split into two companies. A US vendor was 

hired to develop low-level hardware and platform software, which was responsible for basic hardware interface functions and 
management of data inputs and outputs through digital communication channels. Harpia was then responsible for developing 
the control law application, the testability functions, and the failures management.

EFFORT ESTIMATION
During the project-planning phase, at the beginning of development, the COCOMO II method was adopted to assist in the 

estimating effort and development time required to complete the software development.
The method was then applied in its essence, without performing a dedicated calibration for the company, and with the factors 

of scale and multiplicative factors of cost being answered considering the complete software application developed by both 
companies, Harpia and its supplier.

Table 1. Failure condition categories, software level, and number of objectives.

Failure condition category Software level Number of objectives

Catastrophic A 71

Hazardous B 69

Major C 62

Minor D 24

No safety effect E 0
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In order to estimate the software’s size (the parameter KLOC of the COCOMO II method), by applying the methods based 
on expert opinion and analogy, the team agreed in considering a value of 140KLOC, based mainly on data from previous project 
values similar to this one.

The scale factors of the COCOMO II method were analyzed by a team of experienced software engineers and the result is 
indicated in Table 2. Once the level for each scale factor was identified, its respective value was then automatically obtained as 
presented by the method itself.

The Table 2 shows all the values for each selection of the scale factors.

Table 2. Scale factor.

Scale factors Selection Value

Precedentedness Nominal 3.72

Development flexibility Very low 5.07

Architecture/risk resolution Nominal 4.24

Team cohesion Very low 5.48

Process maturity Very high 1.56

By the concepts of the COCOMO II method, the selection of project scale factors is somewhat subjective. In this way, it 
is necessary to detail the premises and considerations taken into account by the project team during the selection.

The PREC parameter, which indicates the level of similarity of the current project to previous projects, was selected 
as nominal, since the company has only one similar previously developed project; however, it has conducted a long-term 
research project in this area. This balancing between years of research, but only one previous project, led the team to select 
the nominal option.

The FLEX parameter, which indicates the level of flexibility of the software in terms of the development process, the 
interface constraints, requirements, and deadline, was selected as very low, since the need for certification of such software, 
as well as compliance with the standard DO-178C, made the process less flexible. In addition, the project was born with a 
tight schedule, little flexibility to adjust the deadline due to the required date of launching the product on the market, and 
the fact that it involved the development by an external supplier, which limited the changes of interface.

The RESL parameter, which reflects the result of the risk analysis, was selected as nominal, since the company had a good 
risk management, but the low precedence index and previous experience, identified by the PREC factor, could introduce 
hidden and not mapped risks, as well as the involvement of a third-party company as a supplier.

The TEAM parameter, which indicates the level of team integration and human factors, was also selected as very low, 
since in the project planning phase the team was not yet fully formed, people did not know each other, or they were new to 
the company, which made it difficult to analyze this parameter. On top of that, the development team includes the supplier 
personnel, which was based in a different country, with a different culture and background. Therefore, not only technical 
aspects, but also human factors and culture should be considered in this parameter. 

Finally, the PMAT parameter, which indicates the level of maturity of the company’s processes, was selected as very high 
due to the accumulated experience and the maturity of the processes developed and experienced in the research projects 
prior to the development of this product.

Once the scale factors were defined, it was possible to calculate the parameter “E” according to Eq. 2:

E = 0.91 + 0.01 * (3.72 + 5.07 + 4.24 + 5.48 + 1.56) = 1.1107

It can be observed that the project presented E > 1.0; in other words, the project presented increasing costs as the scale increases. 
If the product’s size doubled, the project effort is more than doubled.
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Following the method steps, the same group of engineers then dedicated themselves to identify the multiplicative factors of 
project effort. They were all analyzed and answered according to Table 3. Similar to scale factors, once the level for each multiplicative 
effort factor was identified, its respective value was then automatically obtained as presented by the method itself. The values for 
each selection of the multiplicative stress factors are presented by the method itself (Boehm et al. 2000).

Table 3. Effort multipliers.

Cost drivers (as in COCOMO II) Selection Value

Required software reliability (RELY) Very high 1.26

Database size (DATA) Nominal 1

Product complexity (CPLX) Very high 1.34

Developed for reusability (RUSE) Nominal 1

Documentation needs (DOCU) Very high 1.23

Execution time constraint (TIME) High 1.11

Main storage constraint (STOR) Nominal 1

Platform volatility (PVOL) Nominal 1

Analyst capability (ACAP) Low 1.19

Programmer capability (PCAP) Very high 0.76

Personnel continuity (PCON) Very high 0.81

Applications experience (APEX) Low 1.1

Platform experience (PLEX) Nominal 1

Language and tool experience (LTEX) Nominal 1

Use of software tools (TOOL) Very high 0.78

Multisite development (SITE) Very low 1.22

Required development schedule (SCED) Low 1.14

As with scale factors, the selection of multiplicative cost factors for the project is also subjective. In this context, it is 
again necessary to detail the assumptions and considerations taken into account by the project team during the selection.

The RELY parameter, which measures the effect of a software failure on the function which it must run over a period, 
has been selected as very high; because it was a flight control software, the requirements and reliability and safety of the 
product are the highest. This was certainly one of the factors that contributed to the multiplication of project costs.

The DATA parameter, which relates to the effect of testing large amounts of data on product development, was selected 
as nominal to not influence the estimation, since little was known about the amount of test data that would be needed.

The CPLX parameter measures the complexity of the product divided into five areas: (1) operation control; (2) 
computational operations; (3) devices operations; (4) data management; and (5) user interface operations; it was selected 
as very high. Although the application is extremely complex, following the method of the project in question did not 
present the characteristics that would qualify it to be selected as extremely high, since there was no distributed processing 
or graphical interface.

The RUSE parameter, which relates to the additional effort that will be required to develop the software with the intention 
of being reused by future projects, was selected as nominal to not interfere with the estimation, since no development was 
planned to be reused in the future.

The DOCU parameter, which is evaluated in terms of the need for documentation throughout the life cycle of the project 
under development, was selected as very high, depending on the amount of documents required throughout the life cycle 
of a software development project level A, according to DO-178C.
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The TIME parameter, which is the measure related to the constraint for software runtime, was selected as high, since there 
was a clear requirement that the software should have consumed a maximum of 70% of the processing throughput by the time 
of certification.

The STOR parameter, which represents the degree of restriction of the main data storage medium of the system, was selected 
as nominal to not influence the estimation, as little was known about the amount of data that would be needed.

The PVOL parameter, which is measured from the point of view of the number of platform changes, was selected as nominal 
to not influence the estimation, since platform software is the responsibility of the vendor.

The ACAP parameter, which analyzes the analyst’s ability, efficiency, and accuracy, also the ability to communicate and cooperate 
with other team members regarding the requirements, architecture, and detail of the project, was selected as low since the team, 
as already mentioned, was still in training and several members of the team had little experience.

The PCAP parameter, which analyzes the analyst’s ability, efficiency, and accuracy, also the ability to communicate and cooperate 
with other team members regarding programming, was selected as very high, since even if it was a new and recently-trained team, 
all had prior experience with programming and software development.

The PCON parameter, which is selected in terms of the annual turnover of the project team, the percentage of people leaving 
the team during development, was selected as very high, which in this case should be considered as a reduction of effort in the 
project, since the turnover rate of the company is less than 3% per year.

The APEX parameter, which measures the level of applications experience of the project team developing the software system, 
was selected as low for the same reasons previously mentioned, the team was still under construction and with several newly 
hired members.

The PLEX and LTEX parameters, which consider the influence on productivity of the development team experience level in 
the platform in question, were selected as nominal to not influence the estimation, since platform software was the responsibility 
of the supplier.

The TOOL parameter, which considers the use of sophisticated tools in software development, was selected as very high, 
since the project used sophisticated tools qualified by the DO-330, such as generated automatic code. The use of such tools in fact 
should be treated as a cost reduction factor, since its value is < 1.0, which means that it reduces the final value of the product of 
all multiplicative cost factors.

The SITE parameter, which measures the effect of the globalization and the distribution of development teams, was selected 
as very low because the development involved three different locations (São Paulo, Minas Gerais, and the United States) and the 
communication tools were limited, mainly between Brazil and USA.

Finally, the SCED parameter, which considers the scheduling restrictions imposed on the software development team, was 
selected as low because the project schedule had only 85% of the nominal value.

Once all the necessary entries were defined, it was possible to calculate the estimated number of PM, according to the Eq. 1. 
In this first moment, the nominal value was calculated by excluding the SCED parameter of the product of all multiplicative cost 
factors. Thus, n = 16.

PMNS = 2.94 * (140)1.1107* (1.767) = 1257 PM

It should be emphasized that the PM parameter refers to the estimated value of person-months. A PM is the amount of time 
a person devotes working on software development per month. The COCOMO method adopts as a reference value the factor 
of 152 hours per PM (Boehm et al. 2000), which means 1PM = 152 hours. According to Eq. 3, the TDEV development time was 
calculated in its nominal schedule definition:

TDEVNS = 3.67 * (1257)F

where, from Eq. 4, we have:
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F = 0.28 + 0.2 * (1.1107- 0.91) = 0.32014.

Thus:

TDEVNS = 3.67 * (1257)0,32014 = 36.05 months.

However, considering the SCED parameter pointing to 85% of the original schedule, we have new TDEV, now considering 
the SCED influence:

TDEV = 36.05 months × 0.85 = 30.6 months.

Once PM and TDEV parameters were calculated, it was possible to calculate the average team size:

Team size = PM/TDEV = 1257/30.6 = 41 people.

 The Table 4 summarizes the results of all the main estimated parameters.

 Table 4. COCOMO II estimated values.

Parameter Estimated effort

Thousands Lines of Code 140
PM (person-month) 1257

Time to development (schedule) 30.6 months
Full-time software personnel 41 people

By applying the Rayleigh distribution, the model itself suggests the calculation of the full-time equivalent software personnel 
(FSP), which is about the allocation of the team over the months of project in an approximate way, as presented in Eq. 5:

where FSP means full-time equivalent software personnel; PM means person-month; TDEV means time to development; and t 
means time in months.

Considering the values already calculated for PM and TDEV and applying the Rayleigh equation for values of “t” from 0 (zero) 
to 30 (thirty), we finally had the estimated distribution presented in Fig. 2.

The Fig. 2 shows the average size of 41 people, as calculated previously, but suggests a peak period, reaching up to 50 people. 
This type of early analysis helps project managers to budget for overtime or hiring outsourced workers on the right time for 
development.

The COCOMO method also foresees the distribution of the team throughout the phases of the project. Using as reference the 
software development model known as Waterfall methodology, the theoretical distribution of the team would be as presented in 
Table 5.

The percentages of the “plans and requirements” and “transition” phases are additional to the effort estimated by COCOMO. 
In this way, the sum exceeds 100%.
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It has to be mentioned, however, that the project did not follow a perfect Waterfall model, but a variation in the representation 
of the waterfall model instead, called the V-model (Pressman 2009), as represented in Fig. 3.

Once the project effort estimate is presented, the next section presents how the project’s effort demand was, as well as the 
variances in the estimate.

Figure 2. Team average distribution. FSP = full-time equivalent software personnel.

Table 5. Team distribution by phase.

Phase Effort (%) Team size

Plan and requirements 7 3
Detailed design 17 7

Coding 52 21
Integration and tests 31 13

Transition1 12 5

Figure 3. The V-Model adopted by Harpia-H2 Fly-By-Wire development process.
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ACTUAL REQUIRED EFFORT
After presenting the estimated effort of the project, this section describes the real effort that was required for the development 

of the software object of this case study. As presented in the previous section, the COCOMO method uses as reference the software 
development model known as Waterfall (Boehm et al. 2000). The project in question followed the procedure established by standard 
DO-178C. Thus, before comparing the actual versus the estimated, it is necessary to co-relate the phases of the two development 
processes, as presented in Table 6, as follows.

 Table 6. Waterfall phases and DO-178C processes.

Waterfall phase DO-178C process

Plan and requirement Planning requirement

Detailed design Design

Coding Coding

Integration and tests Integration verification

Transition –

Then, adopting the processes established by DO-178C, the project demanded the following amount of people, according to 
the Table 7.

 Table 7. Actual demanded effort.

DO-178C process Number of people

Planning 7

Requirement 12

Design 40

Coding 45

Integration 50

Verification 55

Table 7 shows that the peak of number of people occurred in the verification phase, reaching a total of 55 people. The greater 
need in this process meets the objectives required by the DO-178C; of the 71 objectives, 43 are related to software verification 
activities, which is the vast majority.

In terms of development time, the project required a total of 4.5 years (54 months) to run through all phases in the life-cycle 
process, from conception to certification. The Fig. 4 shows graphically the number of people required by the project during the 
54 months of development.

After software certification by regulatory agencies, there is a natural fall in the demand for personnel, since the activities are 
limited to minor fixes or modifications. The maintenance phase of this software is beyond the scope of this case study, so there is 
no information available on how the personnel was distributed in the later stages.

Considering only the development phase and the number of people from month to month, from the first to the last month of 
the project, there was a demand for a total of 270.560 hours of development. Adopting the value of 152 hours per PM, it results 
in a PM value of:

PM = 1780 (1780 = 270.560/152).

The average team size is obtained in the same way as in the estimation method, PM/TDEV. So, we have 1780/54 months, which 
results in an average value of approximately 32.9 people.
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During the 54 months of the project, a total of approximately 170KLOC was developed and all DO-178C objectives were 
reached, a relatively close number to the 140KLOC used as input of the COCOMO model in the soft ware size estimation.

Table 8 summarizes the results of all the main parameters of the project.

 T able 8. Summary of actual effort.

Parameter Actual effort

Th ousands lines of code 170

PM (person-month) 1780

Time to development (schedule) 54 months

Full-time soft ware personnel 32.9 people

Aft er presenting the estimated eff ort and the real eff ort required by the project, the following section presents a discussion of 
the results obtained with the application of COCOMO II method in the project studied.

DISCUSSION

As adopted by several authors (Jørgensen 2010; Khatibi and Jawawi 2011; Jørgensen and Sjoberg 2001; Basten and Mellis 
2011; Grimstad and Jørgensen 2007; Tronto et al. 2006; Jørgensen and Shepperd 2007), the magnitude of relative error (MRE) 
is also adopted in this paper, as a measure to evaluate the accuracy of the estimation model in relation to actual results (Eq. 6).
 where MRE is the magnitude of relative error.

Figure 4. Actual effort during the full life-cycle project.

60

50

40

30

20

10

0
12 24 36 48

Time (months)

Te
am

 si
ze

0

12

40
45

50
55

7

MRE = |actual eff ort – estimated eff ort|/actual eff ort

Table 9 presents the values obtained by the estimate and the values actually demanded by the project.
By applying the calculation of MRE to analyze the precision of the estimated eff ort value (PM), it results as following:

MRE = | 1780 – 1257|/1780= 0.40

Based on numbers only, it can be observed in Table 9 that the project meets the statistics presented by Th e CHAOS Report 
(Standish Group 1995), as well as Moløkken and Jørgensen (2003), because there is clearly a project delay and an over-budget 

(6)
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when compared to the estimated values. In many cases, such difference between the expected 30,6 months and the actual 54 
months required for completion could lead the project to failure or even to the collapse of the company. However, it should be 
considered that the “delay” in the project is due to an over-optimistic estimate, which may lead to a decrease in project quality 
(de Barcelos Tronto et al. 2008).

The MRE calculation shows that the estimate presented a relative error of about 40% in relation to the actual project. Such 
value, when compared to the results obtained by other projects, can be considered as a poor estimate, since it is not difficult to find 
in the literature values of MRE below 25% (Khatibi and Jawawi 2011; Jørgensen et al. 2003; Grimstad and Jørgensen 2006). Some 
techniques of statistical analysis that consider the performance of the estimation of several projects together, such as PRED(25), 
do not consider in its sample projects with MRE > 25% (Basten and Mellis 2011); in this case, this project would be discarded 
from the sample. 

On the other hand, a value of 40%, as MRE based on COCOMO II method without any type of calibration and not considering 
the fact that it is a safety-critical application, should not be totally discarded and considered a poor estimation, since in the 
literature there are also several examples with MRE values in the range of 30% or even > 50% (Velarde et al. 2016; Grimstad and 
Jørgensen 2007; Hughes et al. 1998).

Our hypothesis for such estimation error is that the COCOMO II does not address the aspects related to a safety-critical software 
development that follows the DO-178C processes, especially the number of necessary activities to meet all the 71 objectives for a 
software level A. Such activities (e.g., requirements review, code review, test results review, structural coverage, etc.) are extremely 
time consuming and, in some cases, require people independence, which means that the verification activity must be performed 
by a person other than the developer of the item being verified.

Finally, this case study presents a real use of COCOMO II in a safety-critical software development project following the 
processes of DO-178C level A. Even considering a reasonable result, the need of an adaptation to the method is evident in order 
to consider the objectives and specific characteristics of safety-critical projects that must follow the DO-178C.

CONCLUSION AND FUTURE WORK

Finding the root cause for the various fails and delays in software development projects has been the object of study by several 
researchers in recent years. Properly estimating project costs and deadlines before starting is an important step in the development 
process that should not be ignored.

In this paper, we present a summary of the main methods of estimating effort in software development projects and the case 
study of a critical software development aeronautical project that applied COCOMO II in the effort estimation.

The result showed a 40% error in relation to the actual effort, however during the case study it was observed that even an 
estimate with such error is better than a project without any estimate. The numbers offered by COCOMO II served as a basis for 
the project management team and a reference to cost and time considered reasonable.

The great contribution of this article is to present the researchers the result of an actual application of the effort estimation 
method, as well as the factors considered for the selection of each of the levels of the multiplicative factors of cost.

Table 9. Estimated × actual analysis.

Parameter Estimated effort Actual effort

Thousands lines of code 140 170

PM (person-month) 1257 1780

Time to development (schedule) 30.6 months 54 months

Full-time software personnel 41 people 33 people

Team size peak number 50 people 55 people
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The next step of this research is to make an adaptation of the COCOMO II method so that it is more adherent to the aspects 
that involve the development of a safety-critical software guided by the processes defined by the DO-178C standard, in order to 
obtain more accurate estimates for safety-critical software development projects.
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