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Abstract: In recent decades, there has been an increase in the search for more detailed information
on population dynamics, given the growing demand for more sustainable economic, social, and
environmental planning. The dissemination of Geographic Information Systems (GIS) has contributed
to the development of methodologies for the field of population estimates for small areas. To support
more sustainable policies, this study aims to evaluate the capacity and contribution of the orbital
images (Landsat ETM+) for the production of post-census population estimates for the municipality of
Contagem, Minas Gerais, Brazil. Firstly, models were built using the average of the reflectance of the
spectral bands of the Landsat 7 ETM+ for each special intra-municipal unit, called the census sector,
as explanatory variables for the population density. Secondly, this study constructed models that use
the reflectance and the distributed population at the level of the pixels of the images. All models were
tested through internal validation procedures, external validation, and comparative analyses with
post-census estimates. Internal validation presented excellent results (below 7%), while in external
validation, the method at the level of the pixels presented consistent results, below 1% relative error.
These results provide useful clues and can help policymakers in the development of more sustainable
and effective public policies, insofar as population estimates are extremely important for the planning
of any society.

Keywords: remote sensing; dasymetric mapping; population estimates; small areas; Brazil;
sustainable development

1. Introduction

Information on the size, composition, and pace of population change has been the subject of
increasing interest in the public sector, for economic policy and for policy-making in other areas,
including health, education, sustainability, and the environment. To date, the most complete and
reliable type of source for data on the population of countries and their geographical subdivisions has
been a census based on household interviews.

If, on the one hand, the periodic enumeration of censuses in many countries allows the capture of
population dynamics, the time interval (every 5 or 10 years) is usually not adequate to the pace of
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population change. Moreover, census information is limited due to high costs, despite the growing
demand for more detailed information, as the social and economic demands on governments become
increasingly complex [1–5].

Alternative sources of information are used, such as sample surveys (although equally expensive),
civil records (especially for the enumeration of vital statistics), school censuses, and various government
registries, although this information is not available for most countries (or its administrative
subdivisions). Added to this, there are problems with underreporting and the quality of information is
sometimes lacking [1–3].

Therefore, a set of methods that use symptomatic variables has been developed for the production
of estimates of small areas; these approximations of population change are fundamental for planning
in various sectors [2–7]. A symptomatic variable is an auxiliary variable strongly correlated with the
population growth of a given locality, and one that changes in time in accordance with changes in the
population volume. It is usually used for the production of estimates in smaller areas [4,8], but also for
estimates of some large areas.

For some time, the use of data derived from space programs, in particular satellite imagery
data, has drawn attention to the possibility of its use in population estimates [8,9]. The dissemination
and intensification in the use of Geographic Information Systems (GIS), the development of spatial
analysis techniques, and the growth of the availability of remote sensing images have contributed to
the development of a set of methods with very promising applications for population estimates of
small areas [10–19].

There are several elements in the area of remote sensing, in addition to spatial resolution, such as
spectral and/or radiometric images, which can interfere with the construction of reliable estimates.
Some examples are the level of cloud cover, the procedures adopted in the image processing and
classification steps, in addition to the assumptions and limitations of the dasymetric method (which is
a population distribution method) and the model used for the calculation of the estimates. However,
spatial resolution is a key component in the production of the estimates, and the choice of the
image (with a given spatial resolution) determines, to a large extent, the processing and classification
methods, the statistical model to be adopted and, in the end, the quality and accuracy of the estimates
produced [10,20].

In recent years, advances in remote sensors and in the dissemination of high spatial resolution images
have expanded the studies and applications of remote sensing for the calculation of estimates [21–23].
However, most high spatial resolution images (with pixel resolution from approximately 5 meters) are
not available for free. Among those that are freely available, there is no historical series that includes the
period of two censuses, a fundamental element for assessment of the quality of the estimates produced.
Roughly speaking, the parameters of the models are defined in the first census, while in the next census,
the models are used to calculate the estimates, based on comparison with the data generated from the
last census.

Another limitation of high-resolution images is their limited scope of application to more extensive
areas, since a smaller area for the field of view for each scene makes the construction of large mosaics
practically unviable in relation to the quantity and processing time of the images (except for large
private sector companies, such as Google, Amazon, etc.). In the public sector, the systematic production
of estimates for large areas (states / country), as well as the cost and processing time of high-resolution
images, limit the production of official estimates. It is true that this statement is dated, as technological
advances tend, at an accelerated pace, to overcome processing restrictions. However, the demand for the
production of estimates of small areas, replicable to large areas, justifies the choice of free-access images,
with a historical series available and consolidated in relation to the quality of the calculated estimates.

In the direction of these advances, this paper aims to contribute to the evaluation of the capacity
of orbital images of medium spatial resolution (Landsat ETM+) in the production of post-census
population estimates at the municipal level, as a way to provide useful clues that can help policymakers
in the development of more sustainable and effective policies. The choice of the Landsat ETM+ satellite
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sensor is justified because its images have relatively good spatial resolution, among the satellites that
offer free images and have time series available.

Remote sensing estimates were calculated for the municipality of Contagem (Minas Gerais, Brazil)
in 2000, 2010, and 2015. Over the decades, there has been an evolution in the methods used to produce
estimates via Remote Sensing. The first methods considered the direct relationship between growth
in urban areas and population size [9,24–26]. In order to advance studies that relate population to
the expansion of urban areas, methods have been developed that analyze the correlation between
population and different types of land use [12,27–30]. There is also a set of methods that estimate
the population through the product of the number of housing units and the number of people who
normally live in these units [21–23]. In these methods, the population density was associated with
characteristics or land-use classes. More recently, a set of pixel-based methods has emerged, in which
the population can be directly correlated to the spectral reflectance of the pixel image values [10].

In general, the data structure consists of the construction of regression models, based on census
data and orbital images, for the years 2000 and 2010. In these models, the dependent variable is the
population, while the explanatory variables are the reflectance of the bands of the Landsat images,
in addition to some additional variables that have been tested in relation to their ability to predict,
such as whether the area is urban, rural or slums. The models constructed from 2000 and 2010 data
were calibrated using 2/3 of the pixels of the Landsat images. The other 1/3 of the pixels were selected
randomly for the test sample, that is, for the analysis of the error of the models in relation to the
population size prediction capacity, a step that was called “internal validation”.

Secondly, the estimates calculated for 2010, based on the models constructed with data from
2000, were compared with the population listed in the 2010 census, a step called “external validation”.
Finally, models constructed from 2000 and 2010 data were used to prepare estimates for the year 2015,
which, in turn, were compared with other post-census estimates, including a projection by the Brazilian
Institute of Geography and Statistics (IBGE) and estimates produced via three other demographic
methods that use symptomatic variables (simple extrapolation, vital rates and census ratios). In this
way, we hope to contribute to the evaluation of the capacity of orbital images of medium spatial
resolution for the production of post-census estimates at the municipal level.

2. Materials and Methods

Contagem is a municipality in the state of Minas Gerais, located in the southeast region of the
country. It is the third most populous municipality in the state (31st most populous in the country, out
of a total of 5,570), with an estimated population of 659,070 inhabitants in 2018, a population density of
3090.33 hab/km2 in 2010, and an annual growth rate of 1.15%. It is a metropolitan municipality with
very peculiar occupation characteristics that justify its selection. Contagem is characterized by the
presence of extensive vertical areas with high population density, as well as neighborhoods with less
verticalization and lower density, in addition to an important industrial complex.

One of the biggest problems in producing population estimates in urban areas is industrial
complexes. Their occupation profile is marked by scattered residences, but they are normally classified
as having a high degree of urbanization (that is, high population density) due to the dense road
networks and extensive impermeable areas, which result in spectral behaviors consistent with areas of
intense occupation [29]. The heterogeneous characteristics of Contagem, therefore, justify its choice,
due to the challenge of the classification stage (largely due to the presence of industry), and due to
the type of growth observed in the municipality, marked both by the expansion of the urban area,
and by verticalization. In addition, the selection of a high-density site represents the most explored
municipality profile in the literature on remote sensing estimates.

In general, the construction of estimates through remote sensing begins with census years.
Through the use of auxiliary data (satellite imagery), the geographic distribution of population data
with a high level of spatial detail obtained in the census (census tracts) is transformed into a spatial
distribution of the population that is even more refined. This procedure is called a surface or dasymetric
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mapping. After performing the dasymetric mapping for a given census year, an econometric model
is constructed, based on the relationship between population (dependent variable) and reflectance
(explanatory variables), which is information contained in the pixels of the satellite images of the
occupied areas, as defined by dasymetric mapping. The econometric model is then applied to another
dasymetric map corresponding to a post-census year, and the estimate for that year is thereby obtained.

2.1. Dasymetric Mapping

In this study, two geographic units were used to construct the estimates: census tracts and
statistical grids cells. Census tracts correspond to the smallest administrative unit of the Brazilian
demographic census (of IBGE) in which information on population size is available. In 2010, the
municipality of Contagem had 884 census tracts. The statistical grids cells, in turn, is a dasymetric
mapping application provided by IBGE, which starts with the use of satellite images to represent
population size data in grids cells, independently of the official administrative divisions. Thus, statistical
grids cells make it possible to analyze data in small geographical units. They also solve the problem of
area incompatibility (MAUP) over time [31]. The grids cells have a resolution of 200 meters for urban
areas and 1 km for rural areas. In 2010, Contagem presented 4462 cells (statistical grids cells).

Dasymetric mapping, in turn, consists of taking the source unit population totals (census tracts and
statistical grids cells, in the case of this paper) and distributing them to target unit grid cells (i.e., pixels)
of some defined spatial resolution, where the disaggregation may be informed by some data detected
remotely. The dasymetric process consists, therefore, in census counts tied to some GIS-administrative
boundary at a given level of detail, depending on the location and year. Those counts can then
be disaggregated based on remote sensing information [10,15,19,28–30,32–39]. These models allow
the discrimination between occupied and unoccupied physical space structures (such as vegetation
and rivers, among others), although it is important to observe the uncertainties inherent in this
process [29,33,36,38]. Important programs monitor the special distribution of the population in grids
cells, such as the Gridded Population of the World (GPW) project at Columbia University [18], the Urban
Atlas project [34,35] by the European Environment Agency, and the WorldPop project at the University
of Southampton [40].

For the construction of models and estimates, the first step was the selection of Landsat ETM+

satellite images for the years 2000, 2010 and 2015. Landsat imagery [41] is freely available, and with a
spatial resolution of 30 meters, it has a large field of view, which reduces processing time and enables
it to be used for more extensive areas. The imagery includes a long historical series (for example,
including the period of the last two Brazilian censuses), which enables the construction and validation
of models for the calculation of estimates. Despite the existence of a large international literature on the
use of Landsat imagery for the calculation of estimates for small areas [8,11,13,23,25,27,30,32,33,42,43],
in Brazil there are still few studies that use this imagery for this type of application (exceptions are the
works of [21,26,44–46], which justify the choice of this type of image with medium spatial resolution).

The Landsat ETM+ satellite images are composed of eight spectral bands, six bands with a spatial
resolution of 30 meters, a panchromatic band with a resolution of 15 meters, and the thermal band with
a resolution of 60 meters. Table 1 shows the main characteristics of the ETM + sensor, with emphasis
on the spectrum bands (defined for each band).

The digital numbers of the satellite images correspond to the radiance, for each band of the
image. However, the regression models used to calculate the estimates consider the surface reflectance.
The United States Geological Survey (USGS) has a project, called ESPA, which provides satellite images
with atmospheric correction and with the surface reflectance data in the pixels. The ESPA project
eliminated the need to calculate reflectance for the construction of regression models. In addition,
the images of the ESPA project have geometric correction; that is, they are registered and made available
in “GeoTiff” format, in the WGS84 system [47].
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Table 1. Main characteristics of the ETM+ Sensor.

Characteristics Sensor Parameters

Spectral bands (µm)

Band 1 - 0.45 a 0.52
Band 2 - 0.53 a 0.61
Band 3 - 0.63 a 0.69
Band 4 - 0.78 a 0.90
Band 5 - 1.55 a 1.75

Band 6 - 10.4 a 12.50
Band 7 - 2.09 a 2.35
Band 8 - 0.52 a 0.90

Spatial resolution
15 meters (panchromatic band)
30 meters (bands 1 to 5 and 7)

60 meters (band 6)
Radiometric resolution 8 bits (256 gray levels)

Size of the scenes 170 km (north-south)/183 km (east-west)
Source: USGS, 2017.

In order to produce estimates for the municipality of Contagem (Minas Gerais, Brazil), images
were selected for 2000, 2010, and 2015 with a percentage of clouds below 10%, and with dates that
are closest to the reference date of the 2000 and 2010 censuses. The Landsat 7 scenes collected from
30 May, 2003 have data gaps due to the failure of the Scan Line Corrector (SLC). Therefore, there is loss
of information in 22% of the pixels of all images from that date. In order to use a single sensor for
the period under analysis, this study used a filter procedure (pixel interpolation) for the correction of
pixels with no information.

The next step consisted of the classification of Landsat ETM+ satellite imagery (recorded, with no
atmospheric correction and with low cloud percentage), in which the occupied area of Contagem was
mapped for the three years under analysis (2000, 2010, and 2015). For this, the Maxver supervised
classification method was applied to 4 classes (occupied areas, vegetation, water and soil) and the
3 selected images, from the SCP plugin of the QGIS software. In the Maxver method, a set of training
samples is selected for each of the classes previously defined. In order to determine which class a pixel
belongs to, the Maximum Likelihood (Maxver) classification assesses the probability that a given class
wi is the correct one for a pixel x (where: M is the total number of classes):

p(wi
∣∣∣x), i = 1, . . . , M. (1)

x ∈ wi if ⇒ p (wi
∣∣∣x > p(w j

∣∣∣x)) for all i , j (2)

From the training samples, it is possible to estimate the probability distribution of each class,
and each pixel is assigned to the class with the highest probability [20]. For example, a limit of 95%
means that 5% of pixels, the least likely, will be ignored. This procedure aims to compensate for the
possibility of errors in the training phase, which tend to increase the overlap between the probability
distributions of the classes, or even pixels that are at the limit between two classes. In addition to
the certain degree of arbitrariness in the selection of training samples, the automatic classification
method used in medium resolution images presents classification errors between exposed soil cover
and areas of human occupation, as well as relief problems (shadows generated), which in many cases
makes it difficult to define urban areas. Further, the variety of coverage existing in urban areas (such
as concrete, asphalt, roofs, vegetation within urban areas, among others) makes the distinction by
automatic classification complex, due to the various spectral responses existing in the occupied areas.
In view of the importance of qualitative analysis for a good classification, this study adopted the hybrid
method, which consists of automatic classification followed by the visual interpretation of images
with the aim of improving the distinction between occupied and unoccupied areas, and, consequently,
the estimates produced. With this procedure to minimize problems related to the classification stage,
it was possible to analyze the results of the estimates in light of the advantages and limitations of
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the proposed model, and, mainly, in light of the different occupation characteristics existing in the
municipality of Contagem. Then, a second classification step was carried out, which consisted in the
manual interpretation of high spatial resolution satellite imagery (Google) for the areas and years
studied, representing an important quality gain in the delimitation of areas of human occupation.

After classification of the occupied areas, the next step consisted of the dasymetric mapping of
the population, which was based on the distribution of the population on the same spatial scale as
the Landsat ETM+ satellite images (pixels with a resolution of 30 meters). With the distribution of
the Contagem population on the pixel scale—by the criterion of homogeneous distribution for each
set of pixels located in a given census tract and in the statistical grids cells—georeferenced databases
were constructed and made compatible between the population information and the reflectance of
each spectral band of Landsat imagery (bands 1 to 5 and 7) by means of the use of vector grids cells.
This information served as a basis for building the models in the next step.

2.2. Methods by Zones and Pixels

2.2.1. Method by Zones

Harvey’s works [48,49], the most cited in international literature, are considered classics among those
that deal with the correlation between population and the pixels of satellite imagery. Therefore, this study
used the methodologies proposed by him and replicated by [44,46], which deal with this relationship.
Nevertheless, several other methods (with different satellite imagery of different resolutions) were used for
the production of estimates through remote sensing [8,11,13,16,17,21–23,25,26,28,29,33,43,48,49].

Harvey [48] used images from the TM sensor of the Landsat satellite to estimate the population of
two districts in Australia: Ballarat statistical district, which was used for the construction of regression
models, and the Geelong statistical district, used for the external validation of the models. Starting from
the pixels belonging to the same intra-urban spatial unit (individual zones), the average values of
the reflectance of bands 1 to 5 and 7 of the Landsat imagery (for each individual zone) were used as
explanatory variables in a linear regression model. Ordinary Least Squares Models, with normal error
distribution, were used in this study:

pi = β0 +
k∑

j=1

β jri j + εi (3)

In the model above, pi represents the population density of census tract i, ri j is the average
reflectance of the pixels of census tract i in the j-th sensor band, β0, and βj, j = 1, 2, ... k, are the
parameters to be estimated and εi represents the part of the population density of the census tracts that
is not explained by the regression model.

Each explanatory variable usually represents a band of the satellite imagery, being the average of
the reflectance of the pixels inserted in a given spatial unit (called individual zones by the author).
On the other hand, the dependent variable can be transformed to improve model estimates (such as
population transformation to logarithmic function) [50].

After internal validation of the regression models, from the selection of training samples for the
same district with which the model was created, the regressions were analyzed from 132 spatial units.
The dependent variable chosen was the mean of the population density, while the explanatory variables
were the means of the reflectance of the pixels belonging to the same spatial unit [48]. The results
showed that the application of the models to the Geelong district reached R2 = 0.84 and the linear
correlation coefficient was equal to 0.92 between the estimated and actual values of the population
density, while the median error was 17.4% in the training sample and 18.4% in the external validation.
On the other hand, the urban population obtained errors of 1% and -3%, to the training sample and
external validation, respectively (application to the Geelong district).
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2.2.2. Method by Pixels

In contrast to the models used in [48], [49] proposed a method of disaggregating populations
located in spatial units to the level of pixels. The model is based on an iterated regression procedure,
using Dempster’s expectation-maximization (EM) algorithm [49], which corresponds to a statistical
method for the estimation of parameters in situations of absence of data (or incomplete data). The model
allows for the association between population and the reflectance of each pixel of the image, improving
the performance of the estimates, especially under extreme conditions of population density.

From the same districts (Ballarat and Geelong), [49] used Landsat TM imagery pixels, initially
classified as residential or non-residential. The initial population estimate for each pixel, pi, is given
by dividing the population of the individual zone by the number of pixels in that zone, so that
the population density in each individual zone is homogeneous or constant. In these zones, the
expectation-maximization (EM) algorithm is used to construct and re-estimate an iterated regression of
population pixels. First, the regression equation in (3) is estimated and the predicted (estimated) values
for pi are adjusted so that the total population of the individual zone after the adjustment is maintained
as the known total population of the zone. According to Reis [43–45], the adjusted population of pixel
i is given by the sum of the estimated population of the pixel i and the mean of the residues of the
census tract to which the pixel belongs. In the next iteration, the previously adjusted pi’s replace the
initial population estimates in the dependent variable and the regression equation is estimated again.
The new adjusted pi’s are calculated and replace the current pi’s in the next iteration. The iterations
continue and the stopping criterion can be defined according to some measure of fit quality such as
the determination coefficient (R2) or the mean square of the residuals, for example. The iterations
would end when one of these measures had no changes considered relevant from one iteration to
another [43–45].

According to Harvey [49], the multicollinearity between the reflectance in the TM bands can
cause convergence problems in this iterated regression process. Another logical problem is that of the
negative estimates for the populations associated with the pixels, since the linear regression model used
has no restrictions. In an attempt to solve this problem, an alternative procedure was used: At each
iteration, the negative estimates were turned to zero and adjustments to the estimates of the other
pixels were made in order to keep the total population of the census constant. The predictive validity
of the model was also tested from the application of the adjusted regression equation in the second
image (from the second district, as in Harvey [48]).

The lower relative error median found for the population in spatial units was 14%. The model
based on pixels proved to be more robust than the model based on area, especially in areas of extreme
population density, although the effectiveness of the model was not the same in these situations: That is,
even in the model at the pixel level, there was a tendency of underestimation in the most densely
populated areas and overestimation in the less dense areas.

In Brazil, the works that use remote sensing for population estimates are still scarce. Reis [44]
and [46], for example, applied the techniques to the estimation of the population by census tracts in
Belo Horizonte, Minas Gerais, for the year 1996 with the help of the TM Landsat 5 sensor (bands 1 to 5
and 7). The results showed a relative median error of 30.4% (versus 14% in Harvey [48]), but much
higher at the aggregate level (i.e. at the municipal level), with a total relative error of only −0.06%.

2.3. Data Structuring

The structuring of the data consisted of the creation of a database with information from the
demographic censuses of 2000 and 2010, and Landsat satellite images for the years 2000, 2010, and
2015. From these data, models of both types (census tracts [48] and pixels [49]) were built from data
from 2000 and 2010.
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2.3.1. Estimates Based on 2000 Data

Regression models at the level of census tracts (as in Harvey [48]) and at the level of pixels (as in
Harvey [49]) were created from data from 2000, and were used to construct estimates for the three years:
2000 (internal validation), 2010 (external validation) and 2015 (comparison with other post-census
estimates, such as the official IBGE projection). To that end, the dasymetric mapping was carried out
for the year 2000, by disaggregating the population by census tracts (from the 2000 census) to the pixel
level of the Landsat images. This procedure allowed for compatibility, for the same unit of analysis
(the pixels), between the population and surface reflectance information, which was necessary for the
construction of the regression models, as in [49]. On the other hand, for the construction of models at
the census tract level (as in Harvey [48]), the opposite procedure was carried out: The average of the
reflectance from the pixels belonging to each census tract was calculated for each census tract in the
2000 census.

Therefore, the two types of models, based on census tracts [48] and pixels [49], were calculated
for the three years, which allowed for the evaluation of the results both in the context of internal and
external validation. External validation is a procedure not yet performed in the literature among the
works that use Harvey’s methods [48,49]. The external validation of the estimates calculated by Harvey
was carried out for the same year, while the validation step of [33] was restricted to internal validation.

2.3.2. Estimates Based on 2010 Data

Regression models were created from data from 2010, also at the level of the census tracts [48] and
pixels [49], and used for the construction of estimates for two years: 2010 (internal validation) and 2015.
Dasymetric mapping was carried out for the year 2010 by disaggregating population data from two
sources: census tracts (2010 census) and the statistical grids cells [31], using the method based on the
level of pixels for each [49]. As in the case of the 2000 models, this procedure allowed the compatibility,
at the pixel level, of the population and surface reflectance information necessary for the construction
of the regression models [49], based on data from 2010. For the construction of the models at the level
of census tracts [48], the average reflectance coming from the pixels belonging to each census tract in
2010 was calculated.

It is important to note that there were changes in the administrative boundaries of the census
tracts between 2000 and 2010. During the period, new census tracts were created, from the subdivision
of pre-existing census tracts in 2000, in addition to changes in the geographical boundaries of a portion
of the census tracts. This inconsistency was not a problem, as estimates were calculated for the entire
municipality. The changes occurred at the boundary of the census tracts and within the municipality.
However, such inconsistency was actually positive because it allowed for the comparison between
the models adjusted from data from 2000 and 2010 in relation to the differences in the calculated
estimates. One hypothesis is that the models calculated with data from 2010, which are based on a
larger number of census tracts, will present better results of internal validation when compared with
models calculated with data from 2000. The same logic applies to the models calculated from the
2010 statistical grids cells. These models are expected to have a better fit when compared to the models
from the 2000 data.

The estimates calculated for the year 2015—for the models built with data from 2000 and 2000
were compared with four data sources: IBGE projection (by the method of demographic components
for the state level, and disaggregated for the municipality by the method AiBi) and by three types of
demographic methods that use symptomatic variables to calculate the estimates (simple extrapolation,
vital rates and census ratio). Given the absence of census surveys, the 2015 data sources were restricted
to estimates. Thus, the comparisons between the 2015 estimates did not constitute “external validation”.
Nevertheless, the comparison between different methods can contribute to the analysis of effectiveness
of estimates produced via orbital images. Very similar results between the different methods, for
example, can be analyzed in the light of the costs related to the time and processing required to calculate
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the estimates via remote sensing. At the same time, very different results can be indicative of possible
problems and/or limitations of some methods.

The simple extrapolation method was chosen for comparison with the remote sensing estimates
produced for 2015 due to the extremely short time required for the calculation and under the hypothesis
that this method is suitable for the work proposed, which is to produce estimates for short intervals
of time (in post-census periods). The vital rate method, in turn, was chosen for comparison due to
the advances achieved in recent years in terms of reducing the under-enumeration of birth and death
records. Finally, the census ratio method was chosen for comparison with the remote sensing estimates
produced for 2015 because it is a method that uses only one symptomatic variable. For this method,
this study chose to use information on enrollment in elementary school, obtained from the School
Census, motivated by the fact that Brazil achieved the universalization of primary education a few
years ago.

2.4. Dependent and Explanatory Variables

Table 2 shows the set of variables for the construction of models based on Harvey [48], at the level
of the census tracts.

Table 2. Variables used for the construction of models based on census tracts.

Abbreviation Variables Source
Dens00 Density of the Census tract in 2000 IBGE
Dens10 Density of the Census tract in 2010 IBGE

Log(Dens)00 Logarithm of the density of the census tract in 2000 IBGE
Log(Dens)10 Logarithm of the density of the census tract in 2010 IBGE

TM1 Average reflectance in the band 1 (Landsat 7 ETM+) USGS
TM2 Average reflectance in the band 2 (Landsat 7 ETM+) USGS
TM3 Average reflectance in the band 3 (Landsat 7 ETM+) USGS
TM4 Average reflectance in the band 4 (Landsat 7 ETM+) USGS
TM5 Average reflectance in the band 5 (Landsat 7 ETM+) USGS
TM7 Average reflectance in the band 7 (Landsat 7 ETM+) USGS

AreaOcup00 Percentage of occupied area in 2000 USGS/IBGE
AreaOcup10 Percentage of occupied area in 2010 USGS/IBGE

AgSub00 Subnormal agglomerate in 2000 IBGE
AgSub10 Subnormal agglomerate in 2010 IBGE

Below is the list of the 7 models at the level of the census tracts that were based on [44,46,48]:

• Model 1: dependent variable = density; explanatory variables: bands 1 to 5 and 7;
• Model 2: dependent variable = density logarithm; explanatory variables: bands 1 to 5 and 7;
• Model 3: dependent variable = density logarithm; explanatory variables: bands 1 to 5 and 7 and

percentage of occupied area;
• Model 4: dependent variable = density logarithm; explanatory variables: bands 1 to 5 and 7 and

percentage of occupied area and subnormal agglomerate (slums);
• Model 5: dependent variable = density logarithm; explanatory variables: bands 1, 4, 5 and 7,

percentage of occupied area and subnormal agglomerate (slums);
• Model 6: dependent variable = density logarithm; explanatory variables: bands 1, 4 and 7,

percentage of occupied area and subnormal agglomerate (slums);
• Model 7: dependent variable = density logarithm; explanatory variables: bands 1, 4 and 7,

percentage of occupied area and subnormal agglomerate (slums) and three interaction variables
between bands 1, 4 and 7 and subnormal agglomerate(slums).

First, the models were tested with the incorporation of all bands, as observed in [48]. However,
the best adjustments were verified in the models in which the dependent variable was the density
logarithm. Thus, models 2 to 7 incorporated this change, with model 3 incorporating the variable
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percentage of occupied area (which, in many cases, improved the predictive power of the models, as
discussed in the results). In model 4, the subnormal agglomerate (slums) variable was incorporated; in
model 5, bands 2 and 3 were removed; in model 6, band 5 was removed; and in model 7, interaction
variables between bands 1, 4 and 7 with subnormal agglomerate were incorporated, in order to verify
the influence of the slum on the effect that each band has on density.

The linear correlation was high between the reflectances of bands 1, 2 and 3, as well as between
bands 5 and 7, while band 4 showed the lowest correlations with the other bands, as commented
in the results. According to Reis [44], these relationships between independent variables can cause
multicollinearity problems, affecting the estimation of the model coefficients. In general, the removal
of bands 2, 3 and 5 resulted in better adjusted models [44].

Table 3 shows the set of variables for the construction of models based on Harvey [49], at the
pixel level.

Table 3. Variables used for the construction of models based on pixels.

Abbreviation Variables Source
Pop00pixel(census tract) Population of the pixel in 2000 IBGE

Pop10pixel(cens tract or grid) Population of the pixel in 2010 IBGE
TM1 Reflectance of the pixel in the band 1 (Landsat 7 ETM+) USGS
TM2 Reflectance of the pixel in the band 2 (Landsat 7 ETM+) USGS
TM3 Reflectance of the pixel in the band 3 (Landsat 7 ETM+) USGS
TM4 Reflectance of the pixel in the band 4 (Landsat 7 ETM+) USGS
TM5 Reflectance of the pixel in the band 5 (Landsat 7 ETM+) USGS
TM7 Reflectance of the pixel in the band 7 (Landsat 7 ETM+) USGS

Urban00 Situation (Urban / Rural) in 2000 IBGE
Urban10 Situation (Urban / Rural) in 2010 IBGE
AgSub00 Subnormal agglomerate in 2000 IBGE
AgSub10 Subnormal agglomerate in 2010 IBGE

Below is the list of the 6 models at the level of pixels that were based on [44,46,49]:

• Model 1: dependent variable = population; explanatory variables: bands 1 to 5 and 7;
• Model 2: dependent variable = population; explanatory variables: bands 1 to 5 and 7 and

subnormal agglomerate (slums);
• Model 3: dependent variable = population; explanatory variables: bands 1 to 5 and 7, subnormal

agglomerate (slums) and situation (urban / rural);
• Model 4: dependent variable = population; explanatory variables: bands 1, 4, 5 and 7, subnormal

agglomerate (slums) and situation (urban / rural);
• Model 5: dependent variable = population; explanatory variables: bands 1, 4 and 7, subnormal

agglomerate (slums) and situation (urban / rural);
• Model 6: dependent variable = population; explanatory variables: bands 1, 4 and 7, subnormal

agglomerate (slums), situation (urban / rural) and three interaction variables between bands 1, 4
and 7 and subnormal agglomerate(slums).

Similarly, the models based on [49] started from model 1, which presented all bands as explanatory
variables. Model 2 was the incorporation of the variable referring to subnormal agglomerate, which
generally better predicts the models’ power, while model 3 incorporated the urban/rural variable.
Model 4 corresponded to the exclusion of bands 2 and 3, while model 5 referred to the exclusion
of band 5. Finally, model 6 incorporated three interaction variables between bands 1, 4 and 7 and
subnormal agglomerate.
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2.5. Error Measures

The error measures used for the analysis of the internal validation were the median relative error,
R2

back and the total error. The median relative error corresponded to the median of the absolute values
of the relative errors, observed for each census tract (in the applications of [48]) and pixel (in the case
of [49]). The second measure was R2

back, which corresponded to the square of the linear correlation
coefficient between population estimates for tracts (or pixels) and the actual population values of those
tracts (or pixels). The closer to one (1), the greater the fit of the model. As it is calculated at the sector
level, R2

back is more connected to the median relative error than to the total error, and therefore tends
to have low values. The third measure was the total relative error, which represented the variation
of the estimated total in relation to the total observed for the set of tracts (or pixels), that is, for the
municipality as a whole [48,49].

3. Results

Figure 1 shows the RGB345 composition of the Landsat ETM+ satellite imagery for Contagem in
2000 and 2015, where the urban concentration in the southeast and eastern regions of the municipality is
observed. In the central, southwest and northern regions of the municipality, there is a predominance of
areas of low population density, marked by rural areas and absence of occupation. Figure 2 complements
Figure 1 showing the evolution of occupancy spots between 2000 and 2015.

In 2000, 2010 and 2015, 57,174, 63,857 and 69,565 pixels were classified, respectively, as human
occupation areas, representing a growth of 11.7% in the period 2000-2010 and 8.9% between 2010 and
2015. Among the total of pixels classified as areas occupied in the period, 95.5% (2000), 96.5% (2010)
and 95.2% (2015) are located in urban census tracts. Unlike Reis [44], the rural census tracts were not
excluded from the databases for the production of the estimates, which allowed the incorporation
of the explanatory variable "urban/rural" in the study. Regarding subnormal agglomerate, only 5%
of the pixels were located in slums in 2000, a percentage that increased to 5.6% in 2010 and 5.4% in
2015. Figure 3 shows the dasymetric mappings from the census tracts of 2010 and the 2010 statistical
grids cells.
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3.1. Models and Estimates at the Level of Census Tracts

For the definition of explanatory variables and models at the level of the census tracts (as in
Harvey [48]), this study first verified the correlation between the bands of the selected Landsat ETM+

satellite imagery. A high correlation between the neighboring bands (as expected, due to the overlap
between the bands of the spectrum) was observed, especially between bands 1, 2 and 3 (close to 1).
In 2010, the behavior of the correlations between density and bands was quite similar, as well as in the
models based on pixel (which, for this reason, are not presented in this paper).

For the construction of the models, 2/3 of the databases were randomly defined to fit each model,
while the other 1/3 were used for the internal validation test. Table 4 presents the internal validation
results of models at the level of census tracts, constructed from the 2000 and 2010 data.

Table 4. Internal validation of models at the census tract level (2000 and 2010) - municipality of Contagem.

Indicators Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

2000
(sector)

R2 (back) 0.061 0.032 0.232 0.323 0.322 0.341 * 0.341
Median relative error 0.361 0.399 0.346 0.349 0.330 0.340 * 0.321

Total error (%) 115.7 44.40 10.52 6.56 6.81 6.29 * 6.18

2010
(sector)

R2 (back) 0.262 0.179 0.281 0.322 0.335 0.341 * 0.341
Median relative error 0.316 0.386 0.305 0.308 0.292 0.300 * 0.298

Total error (%) 25.82 17.42 −0.26 −1.82 −1.76 −1.50 * −1.52

* Model used to calculate the estimates.

In general, R2
back was relatively weak for all models, either in 2000 or 2010. It is important to

remember that, because it is calculated at the sector level, R2
back is more related to the average error on

census tracts than to total error. In the total error (macro level), census tracts in which the population
was overestimated were compensated for by census tracts in which the population was underestimated.
As the total error works with the sum of the estimated populations, the individual errors of the census
tracts end up being diluted. R2

back does not have this chance of "error compensation" because the
calculation "sees" the individual values of the census tracts. Regarding the median relative error (MRE)
of the census tracts, this study observed little difference between models (ranging between 0.321 and
0.399 in 2000, and 0.292 and 0.386 in 2010).

In the internal validation, the models that obtained the best results were model 7 (with a total error
of 6.18% in 2000) and model 3 (with a total error of −0.26% in 2010). The use of the logarithm in the
dependent variable drastically reduced the total error (from 115.7% to 44.4% in 2000 and from 25.82%
to 17.42% in 2010). Similarly, the incorporation of the variable occupied area (%) (model 3) greatly
improved the results to levels of approximately 10.52% in 2000 and −0.26% in 2010. The incorporation
of the subnormal agglomerate variable decreased the total error from 10.5% to 6.56% in 2000, while
in 2010 the error increased from −0.26% to -1.82%. At much lower intensity, the exclusion of bands
2, 3 and 5 and the exclusion of interaction terms (from model 7) did not significantly improve the
predictive power of the models.

Table 5 shows the results of the external validation, through the percentage differences between
the 2010 remote sensing estimate (constructed using the model created in 2000 at the tract level) and the
2010 census population. The table also shows the percentage differences of the Contagem population,
obtained through IBGE projections (revisions 2008 and 2013) with the 2010 census population.

In 2000, although the lowest total error was observed in model 7 (6.18%), model 6 had a very
similar total error (6.29%), but without the need to incorporate the interaction variables between the
bands and subnormal agglomerate. Therefore, model 6 was used to calculate the estimates for the
external validation (2010) and for comparison with other demographic estimates (2015). Regarding 2010,
although model 3 presented the lowest total error (−0.26%), model 6 presented a very small total error
(−1.5%) and a MRE lower than observed in model 3 (0.300 vs. 0.305). Thus, model 6 was adopted as a
reference for calculating the 2010 and 2015 estimates.



Sustainability 2020, 12, 3565 14 of 20

The 2000 model, when applied to the 2010 data, resulted in a MRE of 27.0%, while the 2010 estimates,
produced from this model, showed a total error of 11.1% (670,287), when compared to the population
of Contagem (603,442, obtained in the 2010 Census). This error can be considered acceptable [51,52].
On the other hand, the disaggregation of the IBGE projections (revisions 2008 and 2013) to the municipal
level of Contagem (via the application of the AiBi method) presented total errors of 5.0% (633,361) and
4.5% (630,352), respectively; that is, errors lower than that of the estimate produced by remote sensing
(calculated by models constructed with data at the level of the 2000 census tracts).

Table 5. External validation: Percentage differences of the estimates via remote sensing for the year
2010 (based on a model created in 2000, at the sector level) and the official estimates of 2010, in relation
to the population of the 2010 census - municipality of Contagem.

Municipality Abs/Diff (%) Census 2010
Pop of 2010
(Projection
IBGE 2013)

Pop de 2010
(Projection
IBGE 2008)

Model of 2000 -
Census Tracts

Contagem Absolute 603,442 630,352 633,361 670,287

Difference (%) 0.0 4.5 5.0 11.1

It is important to emphasize that the good results found in the internal validation stage are
in line with international and national references on the subject. On the other hand, the external
validation of this study is an innovation, since the external validation performed by [48] is restricted to
the application of models for the same year (and another area). In addition, the external validations
proposed in this paper were tested for another census year (and, consequently, from another image),
which increased the challenge in relation to the assertiveness of the estimates.

The 2000 and 2010 models were used for the construction of estimates for the year 2015, and, for
comparative analysis, were used as parameters to post-census IBGE estimates for the municipality of
Contagem (which, in 2015, was 648,766 people). Table 6 shows the percentage differences between
the estimates by remote sensing calculated through models at the level of census tracts (based on
data from 2000 and 2010) and the IBGE post-census estimate; it also compared these estimates (IBGE
post-census estimate) with the demographic estimates by simple methods of extrapolation, vital rates
and census ratio.

Table 6. Comparative analysis: Percentage differences of the estimates via remote sensing (based on
models created in 2000 and 2010, at the tract level) and demographic estimates, for the year 2015, in
relation to the IBGE's post-census estimates - municipality of Contagem.

Municipality Abs/Diff (%) IBGE Post-Census
Estimate (2015)

Simple
Extrapolation

Vital
Rates

Census
Ratio

Model of 2000 -
Census Tracts

Model of 2010 -
Census Tracts

Contagem Absolute 648,766 636,155 666,439 622,170 701,389 691,204

Difference (%) 0.0 −1.9 2.7 −4.1 8.1 6.5

The model based on data from 2000 presented an estimated 701,389 people (difference of 8.1%
in relation to the IBGE estimate), while the model based on data from 2010 estimated the population
at 691,204 (difference of 6.5% in relation to IBGE’s estimate). Demographic estimates by simple
extrapolation, vital rates, and census ratios showed percentage differences of −1.9%, 2.7%, and −4.1%,
respectively, smaller errors compared to the estimates by remote sensing.

However, the search for assertiveness in relation to the population of 2015 is not a good alternative.
It should be considered that the IBGE population for 2015 is only a post-census estimate, calculated
by disaggregation of the projection by IBGE components (revised 2013) at the municipal level using
the AiBi method, and has limitations (like any extrapolation method). The AiBi method projects the
population of a small area from its contribution to the absolute population growth expected in the larger
area, and assumes a linear relationship between the growth of the larger area and the smaller area,
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which may not be verified, especially in smaller areas, such as municipalities. The idea of comparing
post-census estimates in the year 2015 with demographic projections is to analyze only whether there
is a large discrepancy with official estimates.

3.2. Models and Estimates at the Level of Pixels

As in models based on census tracts, for the construction of the models at the pixel level, 2/3 of the
databases were randomly selected. Table 7 shows the internal validation results of models based on
pixels, constructed from data from 2000 (by census tracts) and 2010 (by census tracts and statistical
grids cells).

In all models based on pixels (data of census tracts 2000 and 2010, and statistical grids cells 2010),
the R2

back showed relatively low values. This refers to the weak relation between population and the
explanatory variables at the level of the pixels. This is corroborated by high MREs at the pixel level.
However, when analyzing the internal validation of the models, the estimates show very low total
errors, lower than 2% in all models in the three databases under analysis, which can be considered an
excellent result.

Table 7. Internal validation of models at the pixel level (2000 and 2010) - municipality of Contagem.

Indicators Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

2000
(sector)

R2 (back) 0.077 0.184 0.110 0.126 * 0.110 0.146
Median relative error 0.353 0.315 0.317 0.314 * 0.316 0.318

Total error (%) 1.73 0.09 1.61 0.02 * 1.67 0.84

2010
(sector)

R2 (back) 0.144 0.186 0.154 0.171 0.170 0.269 *
Median relative error 0.312 0.293 0.302 0.282 0.281 0.280 *

Total error (%) 0.15 0.68 1.85 1.28 1.17 −0.40 *

2010
(statistical

grid)

R2 (back) 0.099 0.127 0.136 0.110 0.170 * 0.141
Median relative error 0.330 0.323 0.328 0.315 0.318 * 0.319

Total error (%) -0.28 −1.19 −1.16 −1.22 0.40 * −1.34

* Model used to calculate the estimates.

The models at the level of pixels using data from 2000 census tracts had the highest R2 observed
in model 2 (0.184), followed by models 6 (0.146) and 4 (0.126), while the lowest MRE was detected in
model 4 (0.314). The lowest total error was also noticed in model 4 (0.02%), below even the results
found by [44], of −0.06%. This is considered an excellent result. Therefore, model 4 was chosen for the
calculation of estimates from the data of census tract 2000. It should be noted that the incorporation of
the variable subnormal agglomerate (model 2) greatly improved the total estimated error, while the
incorporation of the variable urban/rural situation (model 3) did not improve the calculated estimate.
On the other hand, model 6 was the one that obtained the best results among those that use data
from the 2010 census tracts. With R2

back of 0.269, model 6 had the lowest MRE (0.280) and the lowest
total error (−0.40%). It is worth noting that the incorporation of the variables subnormal agglomerate
(model 2) and urban/rural situation (model 3) did not improve the total error, when compared to the
model that used only the reflectance of bands 1 to 5 and 7 (model 1).

The models that used statistical grids cells obtained the best fit observed in model 5, with 0.170
of R2

back, 0.318 of MRE, and 0.4% of total error (being chosen to calculate the estimate). Neither the
incorporation of the variables subnormal agglomerate (model 2) and urban/rural situation (model 3)
nor the use of data from the census tracts of 2010 improved the total error, when compared to the model
that used only the reflectance of bands 1 to 5 and 7 (model 1). The results show that the models based
on pixels fit better when compared to models at the level of the census tracts, especially in relation to
the internal validation. Total errors were found to be less than 0.5% in the models at the level of pixels,
against 6.29% and -1.5% in the models at the level of the census tracts for the 2000 and 2010 databases.

In addition, the indicators showed that the database by statistical grids cells did not present the
best results, although the difference was very small. The results were similar to the models constructed
by 2010 census tracts. It is also observed that, in the three databases under analysis, the models with
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the best internal validations (4, 5 and 6) are those that do not consider bands 2 and 3, as well as those
that use iteration terms variables.

The model 4 at the level of pixels, based on data from the census tracts of 2000, was used to
produce estimates for the year 2010, in order to perform the external validation (Table 8). On the other
hand, model 6, based on data from the census tracts of 2010, and model 5, based on the statistical grids
cells of 2010, were used to produce estimates for the year 2015 (Table 9). As already mentioned, the
objective is to carry out a comparative analysis of these post-census estimates based on pixels with
demographic estimates, having as reference the post-census estimates of the IBGE.

Table 8. External validation: Percentage differences of the estimates via remote sensing for the year
2010 (based on a model created in 2000, at the pixel level) and the official estimates of 2010, in relation
to the population of the 2010 census - municipality of Contagem.

Municipality Abs/Diff (%) Census 2010
Pop of 2010
(Projection
IBGE 2013)

Pop of 2010
(Projection
IBGE 2008)

Model of 2000 -
Pixels

Contagem Absolute 603,442 630,352 633,361 599,371

Difference (%) 0.0 4.5 5.0 −0.7

Regarding the external validation, the application of the model at the pixel level based on data
from 2000 to the production of estimation in 2010 resulted in MRE of the census tracts of 28.9%, and an
estimated population of 599,371, which represented a percentage difference of only −0.7% in relation
to the population of Contagem. The IBGE projections (revision 2008 and 2013), disaggregated by
the AiBi method for the municipal level, presented a total error of 5.0% (633,361) and 4.5% (630,352),
respectively. This shows, at first, the best fit of the estimates calculated at the pixel level, via Landsat
ETM+ satellite imagery and data from the 2000 Census tracts.

With regard to the comparative analysis for the year 2015, Table 9 shows the results of the models
based on pixels and the comparisons with the IBGE estimate and the post-census demographic estimates.

Table 9. Comparative analysis: Percentage differences of the estimates via remote sensing (based on
models created in 2000 and 2010, at the pixel level) and demographic estimates, for the year 2015, in
relation to the IBGE's post-census estimates - municipality of Contagem.

MunicipalityAbs/Diff (%)
IBGE

Post-Census
Estimate (2015)

Simple
Extrapolation Vital Rates Census Ratio

Model of 2000
- Pixels (From

Census)

Model of 2010
- Pixels (From

Census)

Model of 2010 -
Pixels (From

Statistical Grids)

Contagem Absolute 648,766 636,155 666,439 622,170 701,199 664,205 683,835

Difference (%) 0.0 −1.9 2.7 −4.1 8.1 2.4 5.4

The estimates using orbital images Landsat 7 for the year 2015 resulted in estimated populations
and total errors of 701,199 and 8.1% (2000 model, from census tracts), 664,205 and 2.4% (2010 model,
from census tracts), and 683,835 and 5.4% (2010 model, from statistical grids cells), which represented
excellent results, although the errors were larger when compared to the demographic estimates.

4. Discussion

4.1. About Internal Validation

For the municipality of Contagem, marked by high population density, the results showed the
potential of the methods used for various purposes in the field of estimation for small areas. First,
very low errors were found in the internal validation step for both models at the level of census tracts
(6.29% for the 2000 model and -1.5% for 2010 model), and for all models at the pixel level (0.02%
for 2000 model, −0.4% for the 2010 model from census tracts, and 0.4% for the 2010 statistical grids
cells model). These results are in line with the literature. The studies of [44,46] presented a relative
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error in the pixel method of −0.06%, while in [48] the total relative error was -4.8%. The results show
the potential of these methods (especially the one based on [49], at the pixel level) for estimating the
distribution of the population in the continuous space and in the production of intercensal estimates,
via Landsat imagery. The good results of the internal validation for Contagem also demonstrate the
great potential to estimate areas of high density for the same year and the same scene, which can be
very useful in areas where census coverage has not been satisfactory.

4.2. About External Validation

This paper contributes to the existing literature on carrying out external validations between
censuses through the construction of models in one year and the calculation and analysis of error of
estimates in another year, over a period of 10 years. The results obtained in steps of external validation
and comparative analysis, especially in models of the pixels, show the potential of this method for the
production of reliable post-census estimates for cities with high population density.

The 2000 model, when applied to the 2010 data, showed a total error of 11.1% (670,287), when
compared to the population of Contagem, obtained in the 2010 Census. Therefore, the model at the
pixel level presented external validation of −0.7%, while in the comparative analysis with the IBGE
post-census estimate (in 2015), the total errors were between 8.1% and 2.4% (respectively, to the 2000
and 2010 models by census tracts). This may be considered acceptable, although they were at levels
higher than the demographic estimates, which were between 2% and -4%. It should be remembered
that the real population of 2015 is not known, but the small percentage differences represent a good
indication of the adjustment of the models by orbital images.

The external validation obtained through a model at the pixel level, based on data from 2000
(−0.7%), does not present a pattern of similarity to the total error of the same model calculated for
the year 2015 (8.1%), which may be associated with either the error of the IBGE post-census estimates
for 2015 or, more likely, the difficulty of obtaining an error pattern between images of different years
applied to the same model. This may have occurred because of the different responses that reflectance
can provide for different images at different time periods, or because of the two factors together.

5. Conclusions

Our results show that there is no single model that can be used (census tracts and pixels), or
application (internal and external validation), or for each image. In fact, the quality of the estimates
at the level of pixels is conditioned on the maintenance of the relationship between population and
reflectance (of spectral bands) over time, between different images, and the pattern of change in
this relation seems to be not well established. The changes in the relationship between reflectance
and population can occur due to the differences in the level of solar illumination, as well as due to
atmospheric interference (such as the differences in the level of cloud cover, although images with low
cloud percentage were used), or even due to the loss of 22% of information in Landsat 7 images from
2003 (referring to a noise problem), which, to some extent, can compromise the results.

Regarding the limitations, it was possible to verify that there is no model (or, in other words, a
set of explanatory variables) that can be defined as the standard to be replicated. The best fit varied
according to the method used, but also according to the image with which the model was constructed.
Some limitations of the results found may be associated with the choices defined in this paper.
The inefficiency of the database by statistical grids cells in the production of better-quality estimates,
when compared to the databases by census tracts, serves as an agenda for future studies. The way
forward is to focus processing efforts on a larger number of municipalities to increase the variability
of the results in order to contribute to more assertive conclusions, for example, on the possibility of
replicability of the method to larger areas.

Another limitation concerns the scale at which estimates are produced. If, on the one hand, dasymetric
mapping allows for the calculation of estimates for any administrative unit (including intra-municipal), the
MREs of the sectors—with results of approximately 35%, close to that found by [48], of 30.4% and above
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that found in [49] of 14%—prevent estimates being produced for highly disaggregated units. Other studies
have used Landsat imagery to calculate population estimates [13,14,33,43,53,54]. However, in these studies,
different methodologies were used, either in relation to the classification of the area occupied, or the
statistical model adopted, which makes it impossible to directly compare the results of those studies with
the results of this study for an analysis of the limitations and contributions of the proposed methodology.

However, in spite of the limitations, either from the point of view of the estimates themselves, as
a tool for sustainable economic, social, and environmental planning, or as an auxiliary tool in data
analysis, for the definition of trends in population projection studies, the results for the municipality of
Contagem can be considered promising. These methods have a range of application possibilities for
areas of high population density, and great potential for the estimation of small areas in several fields
of knowledge.
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