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Abstract 
Landslides are a natural phenomenon that happens all around the world. 
When happening in urban areas they become a disaster, disrupting the life-
style of a community or society. Human losses, social impacts, and structural 
damage are some of the landslide’s effects. The current climate variability 
shows an increase in extreme weather conditions, either with long periods of 
drought or heavy and long-term rainfall. In Brazil, landslides are one of the 
deadliest disasters; they are usually preceded and triggered by heavy rainfall 
and already have affected more than 4 million people. Moreover, with the 
population growth, areas with high declivities have been occupied and turned 
into urban areas. Those people living there are vulnerable to suffering from 
landslides, losing their homes, and in extreme cases, losing their life. The 
identification and monitoring of landslide-prone areas are crucial to avoid 
disasters. Several advanced models, with different approaches, were devel-
oped to identify the landslide-prone areas. Aiming to decide the model that 
provides more satisfactory results, this paper presents a literature review of 
the applicability and limitations of three advanced models. The three models 
are Sinmap, Shalstab and TRIGRS. The analysis determined that all three mod-
els are adequate for stability management in slope areas. Moreover, TRIGRS 
results are more accurate than Shalstab, and the Sinmap model provides an 
over-estimation of landslide-prone areas. 
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1. Introduction 

Natural disasters happen worldwide, and an increase in their occurrences has 
been observed during the last few decades. The population has grown, changing 
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the society’s vulnerability, and the global climate changes might have some in-
fluence [1] [2] [3] [4]. With the current climate variability, there is an increase in 
extreme weather conditions, either with long periods of drought or heavy and 
long-term rainfall [5]. 

The landslides are usually preceded and triggered by heavy rainfalls. When 
a landslide happens in urban areas, they affect community, causing damages 
to structures, destroying houses, and sometimes killing people [6]-[16]. For 
instance, since the 1980s in the Loess Plateau of China, 53 landslides have oc-
curred, causing 717 deaths [17]. In Brazil, from 1991 to 2012, 699 landslides 
were registered. The most deadly landslide happened in January 2011, in the 
mountainous area of Rio de Janeiro state, resulting in more than 1500 deaths and 
millions of injuries [13] [16]. According to World Health Organization (WHO), 18 
million deaths by landslides were registered from 1998 to 2017 [18]. These sce-
narios show the importance of identifying and monitoring the landslide-prone 
areas.  

The identification of these areas can be performed using machine learning 
and statistical methods, such as bivariate-statistical methods, Weight of Evi-
dence, Fuzzy Logic, Logistic Regression, Neural Networks, and even fractal 
analysis [10] [19]-[30]. Another approach is through physically-based models 
such as the Shallow Slope Stability Model (SHALSTAB) [31] [32] [33], Stability 
Index Mapping (SINMAP) [34] [35], Transient Rainfall Infiltration and Grid- 
based Regional Slope-Stability Model (TRIGRS) [36], TRIGRS-unsaturated [37], 
physically-based Slope Stability Model (dSLAM) [38], SLOPE/W and SEEP/W 
[39].  

Each of these models has a different approach and level of complexity. The 
results are also strongly dependent on the quality of input data. Considering that 
shallow landslides are mostly triggered during extreme precipitation events, the 
models are coupled with hydraulic models [31] [35] [38] [40] [41] [42]. They at-
tempt to simulate the soil and rainfall conditions to calculate slope stability [42]. 
However, these models have limited applicability due to their simplifying as-
sumptions. During the slope stability analysis, some models, such as Shalstab 
and Sinmap, use a unique value across the whole area for rainfall and geotech-
nical data. It creates an unrealistic scenario due to soil heterogeneity. Further-
more, TRIGRS model considers the transient effects of the rainfall infiltration in 
different soil layers for the stability calculation. However, there are more input 
data, and the parameters rely on the uncertainty of vertical and horizontal dis-
tribution [43].  

The combined use of different models improves each method’s quality and re-
liability, highlighting and identifying the most critical geotechnical parameters 
(soil cohesion, internal friction angle, specific weight), which caused the landslides 
[12]. The choice of the best model to mapping landslide-prone areas is deter-
mined by the geological, geomorphological, and geotechnical data available since 
each model needs different input. 

This paper compares three different advanced models: Shalstab, Sinmap, and 
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TRIGRS, highlighting the applicability and limitations of each model. They were 
chosen for being free of charge when compared with Geoslope. Moreover, the 
model dSLAM will not be further discussed because it exclusively identifies 
landslides in forested areas, and in Brazil, the landslides that become disasters 
happen in urban areas.  

2. Model’s Analysis and Applicability 

This section presents a brief explanation of each model’s approach and its appli-
cability. The study cases presented above were chosen considering the different 
geological contexts of study areas. They were used to determine slope stability in 
several countries. Furthermore, a few studies acquired the soil properties by lite-
rature and others by collecting soil samples, which provide a deeper analysis of 
the model’s applicability. A more detailed explanation of mathematical formula-
tions are presented in [32] [34], and [36] for Shalstab, TRIGRS, and Sinmap re-
spectively. 

2.1. Shalstab Model 

Reference [31] identifies the landslide-prone areas calculating the critical thre-
shold of rainfall that induce surface rupture [31] [32] [44]. As presented in Equ-
ation (1), Shalstab is a deterministic model that associates the Mohr-Coulomb 
law with the steady-state hydrological model developed by [45].  

2 1 1

sin tanlog 1
cos tan tan
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  ′    = ∗ + ∗ −      ∗ ∗ ∗ ∗      
      (1) 

In Equation (1): q is the rain recharge, t is the soil transmissivity, θ is the in-
clination (degrees), a is the contribution area (m2), b is the contour size (m), c' is 
the soil cohesion (kPa), φ is the internal soil angle (degrees), ρs is the soil density 
(kg∙m−3), g is the gravitational acceleration, z is the soil thickness (m), and ρw is 
the water density (kg∙m−3). 

A digital elevation model (DEM) and, soil physical and mechanical properties 
(cohesion, soil density, internal friction angle) are required by Shalstab as input 
data. The result is a seven-class classification map, based on a logarithmic value 
for q/t, as presented in Table 1 [8] [46] [47].  

Shalstab have been applied in different study areas [15] [44] [47] [48] [49] and 
presents satisfactory results. 

The slope stability in Cunha River watershed—SC, Brazil was analyzed using 
Shalstab model by [47]. With declivities ranging from 15˚ to over 30˚, this area is 
predominantly covered by forest. The soil is characterized as Cambisols (poorly 
developed shallow soils related to the original bedrock). The input data includes 
a DEM with 15 meters of spatial resolution, and geotechnical parameters ac-
quired in situ and tested in the laboratory. The results validation was performed 
by using landslides scars inventories and land-cover maps. This study shows that 
landslides might occur in forested areas with declivities higher than 20˚. 
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Table 1. Shalstab stability classes. 

log q/t 

Chronic instability 

log q/t < −3.1 

−3.1 < log q/t < −2.8 

−2.8 < log q/t < −2.5 

−2.5 < log q/t < −2.2 

log q/t > −2.2 

Stable 

Source: Adapted from [32]. 
 

Sometimes, the acquisition of geotechnical parameters is difficult due to the 
location of the study area, time, and resources. Reference [48] evaluates the pa-
rameterization of the soil properties due to the limited availability of field or la-
boratory measurements. The study area is in Rio de Janeiro—RJ, Brazil, the in-
put data were a 2-meter DEM, and a landslide inventory prepared based on pre-
vious studies. Geotechnical parameters were acquired from the literature and 
laboratory tests. To evaluate the parameterization of the soil properties, the au-
thors made several combinations of the geotechnical parameters and performed 
simulations using Shalstab. The best-fit scenario uses a high value for the inter-
nal friction angle and a low value for cohesion. As a result, the landslide scars 
were located within the two most unstable classes: the chronically unstable and 
log q/t < −3.1. They concluded that Shalstab correctly identified the most unsta-
ble areas, and the high-resolution and high-quality topographic data are more 
important than the precise soil properties data. 

A similar approach was applied by [15] in Campos do Jordão—SP, Brazil. This 
study compares how the input parameters change slope susceptibility. Therefore, 
three scenarios were modeled, changing the input values of soil depth, cohesion, 
and internal friction angle. The area, located in the Mantiqueira Mountains, is 
known for its high hills and erosive depressions. It presents steep slope areas, 
colluvial soil layer, and declivity ranging from 20˚ to 50˚. Moreover, there are 
unauthorized human settlements in declivities higher than 30˚, and even some 
above 50˚. The geotechnical parameters were acquired from the literature, and a 
DEM with 4 meters of spatial resolution was used. The validation method in-
cludes landslide scars inventory and a susceptible map. As a result, the authors 
identified that soil depth is an essential parameter for stability analysis, and 
Shalstab correctly identified the most susceptible areas. 

Reference [44] also applied the Shalstab model using geotechnical parameters 
acquired from the literature. The study area is the Guaxinduba River watershed, 
in the municipality of Caraguatatuba—SP, Brazil. It is a mountainous area of 
Serra do Mar, with steep slope declivities higher than 40˚ [44]. The validation 
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method consisted in landslide scars inventory and statistical analysis (quantita-
tive indexes). As a result, 50% of the landslide scars are at chronic instability 
class, while the rest were distributed among other unstable classes. In this study, 
the authors conclude that Shalstab provides excellent results for identifying 
landslide-prone areas and is a useful tool for urban planning. 

The geotechnical parameters have significant importance for the quality of 
Shalstab’s result, however, [49] evaluate how the quality of DEMs influences the 
performance of Shalstab. Two different approaches were used for the DEM data: 
flooding and the Physical Erosion Model for PIT removal (PEM4PIT). The first 
approach assigns the downstream flow direction by changing the pit elevation. 
And the PEM4PIT uses an equilibrium equation to adjust the pit and flat points. 
Two study areas were selected: Sardinia, and an area between Basilicata and Ca-
labria regions, in Italy. The areas, formed by soil layers of silt and sand-clay, are 
very erodible. The landslides are usually triggered by rainfall and tectonics move-
ments. As a result, the PEM4PIT approach provides better performance in con-
junction with Shalstab. The model is a useful tool for mapping landslide-prone 
areas, but the quality of input data, especially the DEM, has a considerable in-
fluence on the results. 

2.2. TRIGRS Model 

Reference [36] developed the mathematical model TRIGRS (Transient Rainfall 
Infiltration and Grid-based Regional Slope-Stability Model) to calculate the vari-
ation of the Factor of Safety (FS), due to changes in the transient pore-pressure 
and soil moisture, during a rainfall infiltration.  

This model, written in FORTRAN, associates the hydrological model based on 
[40], which linearized the one-dimensional analytical solutions of Richards Equ-
ation (Equation (2)), and a stability model based on the equilibrium limit prin-
ciple, giving rise to its final formulation (Equation (3)). It represents the vertical 
rainfall infiltration in homogeneous isotropic materials [50]. 

( ) 2

1 1
cos

K
t z z
θ ψ

δ
∂ ∂  ∂Ψ  = −  ∂ ∂ ∂  

                (2) 

where θ is the soil volumetric moisture content (dimensionless), t is the time (s), 
z is the soil depth (m), K(ψ) is the hydraulic conductivity (m/sKPa) in the 
z-direction, and Ψ is the groundwater pressure head (kPa).  

( ), tantan
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s
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γ φφ
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= +                 (3) 

where c is the cohesion (kPa), ϕ is the internal friction angle (deg.), γw is the unit 
weight of groundwater (kN/m3), γs is the soil specific weight (kN/m3), Z is the 
layer depth (m), α is the slope angle (0 < α < 90˚), and t is the time (s).  

TRIGRS input data are the geotechnical parameters (cohesion, soil specific 
weight, hydraulic conductivity, and internal friction angle), as well as hydrolog-
ical data (initial infiltration rate and initial depth of water table), and rainfall 
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duration and intensity. The model allows the changing of input values cell by 
cell, because it considers the horizontal heterogeneity. 

According to [36], the initial depth of water table has a significant impact in 
TRIGRS accuracy. Figure 1 represents how TRIGRS calculates the FS. During a 
rainfall event, infiltration and surface run-off happen simultaneously. There is 
an increase in the groundwater table and consequently, an increase in water 
pore-pressure, which precede soil rupture.  

TRIGRS has been widely used to identify slope stability and predict unstable 
areas. Reference [41] applied the TRIGRS model in the steep coastal bluff of Pu-
get Lowland, north of Seattle—Washington, USA. The hillslope process, fluvial, 
and wave erosion formed the deposit materials that cover the studied area. 
Long-duration storms usually trigger low-intensity landslides in Puget Lowland. 
The rainy season of the area occurs during winter, from November to April, and 
it partially melts the snow, increasing the soil moisture. The landslides occurred 
in the thin (up to 3 meters) colluvium soil layer, and in steep slope areas with 
declivity higher than 30˚. The input data consists of a 1.86-meter DEM, elabo-
rated using LiDAR elevation data. The hydraulic and geotechnical data were 
collected in situ and tested in a laboratory, and the landslide inventory was pre-
pared from aerial photography. Due to its geological heterogeneity, the study 
area was divided into three different geological units. TRIGRS shows better re-
sults compared with static models, however, to this study area the model tends 
to underpredict the spatial extent of landslides. To improve results, the authors 
recommended a refined geotechnical and hydrological parameter. 
 

 
Figure 1. Representation of how TRIGRS model calculates the variation of the Factor of 
safety, based on the rainfall infiltration in soil layer and groundwater table variation [50]. 
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The authors [51] applied the TRIGRS model in Tenliao Mountain, the north-
ern part of Taipei County, Taiwan area. The area has declivities ranging from 
20˚ to 50˚, with soil characterized as a colluvial deposit. In situ measurements to 
collect soil samples were performed, and further analyzed in the laboratory to 
provide geotechnical and hydrological data. The authors used a DEM with 10 
meters of spatial resolution and a time series of rainfall intensity. The initial 
condition of the analysis consists of saturated soil, due to the accumulation of 
more than 500 mm of rain in the previous days. As a result, the unstable areas 
classified by TRIGRS correspond to those unstable areas identified during the 
field survey. The rainfall infiltration during the analyzed period had a significant 
impact on triggering landslides and debris flow. Moreover, an expressway tunnel 
was under construction only 167 meters far from the soil rupture. This fact, as-
sociated with the rainfall infiltration and increase of soil moisture, probably was 
the trigger mechanism that caused the landslides. 

Reference [52] investigates the landslide-prone areas in the Ta-Chia River wa-
tershed, Taiwan. The area’s declivity ranges from 40˚ to 80˚, with annual average 
rainfall above 2000 mm. During the summer (June to August), this region is 
frequently hit by typhoons, and the daily accumulated rainfall can exceed 500 
mm. The authors assumed that the geotechnical properties of the soil are 
strongly related to geological units and use these values as input to the TRIGRS 
model. They used a DEM with 40 meters of spatial resolution, the daily rainfall 
intensity from local rain gauges, and satellite images to prepare the landslide in-
ventory. As a result, the model underestimated the unstable zone compared with 
the landslides occurrences, but this might be related to the initial conditions: 
differences in the initial groundwater table and shear strength of the soil layer. 
Despite the results, the authors agree that TRIGRS is useful for identifying 
landslide-prone areas.  

Reference [53] uses the TRIGRS model to identify the landslide-prone area, 
during the hurricane Ivan (2004). The study area is Macon County in North 
Carolina, USA, with soil characterized as sandy loam. The input was a DEM 
with 30 meters of spatial resolution, and hourly rainfall data from hurricane 
Ivan, provided by the River Forecast Center. Geotechnical parameters were ex-
tracted from the State Soil Geographic, which mapped the soil over the USA, 
and the landslide inventory was acquired from the North Carolina Geological 
Survey. The initial conditions of analysis consisted of a saturated soil layer due 
to Hurricane Frances striking the area a week before Hurricane Ivan. As a result, 
the model was able to predict almost 98% of the landslides, proving to be a use-
ful tool for Early Warning System of landslides events. 

Reference [54] applied TRIGRS in Woomyeon Mountain—Seoul, South Ko-
rea. The area is covered by forest (mostly oak trees), have declivities higher than 
25˚, and buildings and roads surround it. The soil is characterized by a colluvial 
layer of 3 meters of depth, and underneath it, there is a clay layer of 0.5 meters of 
thickness. A DEM with 10 meters of spatial resolution and hydrological parame-
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ters obtained from laboratory tests was used as input. The geotechnical parame-
ters were acquired from the National Forestry Cooperative Federation, Korean 
Society of Civil Engineers, and Korean Geotechnical Society, which have con-
ducted geological investigations in this region. The results generated by the 
model show that 3% of the area has a Factor of Safety < 1, meaning that it is 
highly unstable, and 33% of the landslides happened within these unstable areas. 
This study shows satisfactory results in the prediction of unstable areas using the 
TRIGRS model. 

2.3. Sinmap Model 

The Sinmap—Stability Index Mapping, developed by [34], has a similar ap-
proach to Shalstab. It bases upon the steady-state hydrologic concepts with the 
infinite slope stability model. Despite the similar approach, Sinmap is a proba-
bilistic model that obtains the input information, such as slope and specific cat-
chment area, from a DEM. This model considers the real uncertainties about the 
estimation of the other input parameters. It accepts values for upper and lower 
bounds, using a uniform distribution. Therefore, the model requires the calibra-
tion regions, which are sub-samples of the study area based upon the difference 
between soil, vegetation, or geological data [12] [34] [35] [46] [55] [56] [57]. 

The input parameters are the lower and upper bound of T/R (Transmissivity 
ratio to effective Recharge), cohesion, and internal friction angle. The output of 
Sinmap is a Stability Index (SI) defined as the probability of the area stability, 
ranging from 0, most unstable, to 1, stable, as presented in Table 2. 

According to the Sinmap approach, the Factor of Safety (FS) is calculated 
when the most conservative set of parameters still results in stable areas. They  
 
Table 2. Sinmap stability index. Source: Adapted from [34]. 

Condition Predicted state Parameter range 
A possible influence of 

factors not modeled 

SI > 1.5 Stable slope zone 
Range cannot model 

instability 

Significant destabilizing 
factors are required for 

instability 

1.5 > SI > 1.25 
Moderately 
stable zone 

Range cannot model 
instability 

Moderate destabilizing 
factors are required for 

instability 

1.25 > SI > 1.0 
Quasi-stable 
slope zone 

Range cannot model 
instability 

Minor destabilizing factors 
could lead to instability 

1.0 > SI > 0.5 
Lower threshold 

slope zone 
Pessimistic half of range 
required for instability 

Destabilizing factors are 
not required for instability 

0.5 > SI > 0.0 
Upper threshold 

slope zone 
Optimistic half of range 

required for stability 
Stabilizing factors may be 
responsible for stability 

0.0 > SI 
Defended 
slope zone 

Range cannot model 
stability 

Stabilizing factors are 
required for stability 
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are usually represented by values greater than 1. Equation (4) presents the FS 
formula, 

( ) ( )cos 2 tan
sin cos

r s s w s w w

s

C C g D D g g D
FS

D g
θ ρ ρ ρ φ

ρ θ θ

 + + − + − =       (4) 

where Cr is root cohesion [N/m2]; Cs is soil cohesion [N/m2]; θ is slope angle; ρs 
is wet soil density [kg/m3]; ρw is the density of water [kg/m3]; g is gravitational 
acceleration [9.81 m/s2]; D the vertical soil depth [m]; Dw the vertical depth of 
the water table within the soil layer [m] and ϕ the internal friction angle of the 
soil [degrees]. The slope angle θ is the arctangent of the slope; S expressed as a 
decimal drop per unit of horizontal distance. 

Several studies have used the advanced model Sinmap in different study areas. 
Reference [57] used the Sinmap to study the municipality of Nova Friburgo–RJ, 
Brazil, located in the mountainous area of Serra do Mar. It is a steep slope area 
with a declivity ranging from 15˚ to more than 35˚ degrees. Colluvial deposits 
characterize the soil. The colluvial layer is a gravitational deposit of weathered 
soil, where the physical and geotechnical characteristics are strongly related to 
bedrock.  

The Sinmap input data were a 10 meters DEM, a landslide scars inventory 
produced based on GeoEye-1 satellite data, and soil parameters acquired from 
the literature. Considering the geotechnical parameters’ uncertainty, the authors 
simulated three scenarios, changing the range of the cohesion and internal fric-
tion angle. As a result, the model provides excellent results and successfully 
identified 90% of the landslides (55% within the unstable zones, and 35% in 
areas with critical conditions for soil rupture). However, the authors claim that 
geotechnical and hydraulic parameters performed in situ and tested in laborato-
ries would provide more accurate results.  

Reference [58] studied landslide-prone areas in the Córrego Matirumbide wa-
tershed, Juiz de For-MG, Brazil. The area has clayish soils, an annual average 
rainfall of 1300 mm, and unauthorized human settlement on steep slope areas. 
The researchers used a DEM with 1 meter of spatial resolution, extracted from 
LiDAR images, as input data. Geotechnical data were acquired from the litera-
ture, and a landslide scars inventory was made during the field survey. As a re-
sult, the instability area identified by Sinmap was validated with the presence of 
landslide scars. The authors verified a correlation between most of the unstable 
areas and their location in the steepest slope areas, with human settlement. The 
model proved its efficacy in the identification of landslide-prone areas.  

The researchers [59] used the Sinmap model to identify the unstable areas in 
the Ultrafertil watershed, Cubatão-SP, Brazil. The area, located in the Serra do 
Mar Mountains, has declivities ranging from 30˚ to 50˚ degrees. Input data were 
geotechnical and hydrological parameters acquired from the literature. A Digital 
Terrain Model, with 2 meters of spatial resolution was used. The landslide in-
ventory was elaborated based on aerial orthophotos from 1985, the year when 
more than a thousand landslides were registered. Three scenarios were proposed 
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to analyze the sensitivity of each parameter in slope stability. The model cor-
rectly identified 90% of the landslides in unstable areas. The authors concluded 
that hydraulic parameters are the most sensitive ones. 

Reference [56] applied the Sinmap model in two different study areas: Swa-
bian Alb, Germany, and Wudu County, China. The lithology of the area in 
Germany is characterized by clay soil underlying marl and limestone. The slopes 
are covered by debris from previous landslides, usually triggered by rainfall, 
snow melting, and earthquakes. A small town, named Eningen, is in the study 
area. The input data were a DEM with 1 meter of spatial resolution, geotechnical 
parameters acquired from the literature, a landslide inventory extracted from 
LiDAR images, and field mapping. As a result, 8% of the study areas were classi-
fied as unstable, and the model correctly identified 80% of the landslides. The 
high quality of topographic data provided excellent results.  

The Chinese study area lithology is characterized by slates, schist, loess depo-
sits, and is predominantly used for agriculture. The landslides are usually trig-
gered by rainfall, especially during summer, and by tectonic activity. The input 
data used was a DEM with 30 meters of spatial resolution, geotechnical parame-
ters acquired from laboratory tests, and a landslide inventory prepared from 
optical remote sensing data. As a result, 22.6% of the area was classified as unst-
able, and 67.5% of landslides were correctly mapped. The low resolution of to-
pographic data justified the relatively poor results for Wudu.  

Reference [60] applied the Sinmap model in Oahu, Hawaii, USA. The geology 
of the study area is the result of volcanism. It has steep slope areas with declivi-
ties higher than 80˚ and a colluvial layer on the slopes formed from weathered 
basalt. The annual precipitation ranges from 650 mm to 700 mm [60]. The to-
pographic characteristics of the study area might generate flash floods. A landslide 
inventory was prepared using aerial photography, hydrological and geotechnical 
parameters were acquired from the Soil Survey Geographic (SSURGO) database 
and literature. A 10 meters DEM was used as input data. Four calibration re-
gions were chosen, according to geological, geomorphological, and land-cover 
characteristics. As a result, the Sinmap correctly identified all the landslides within 
the most unstable classes. The model identified 18% of the study area as very 
high susceptibility, and 21% as high susceptibility. The authors also compare the 
Sinmap results with the debris-flow-hazards maps and realize that the model can 
be used as a tool to identify both hazards. 

3. Discussion 

The previous analyzed papers show the applicability of the three advanced mod-
els Shalstab, Sinmap, and TRIGRS, in different study areas. Each studied area 
had different geological and geomorphological aspects, proving that the applica-
tion of these models is not limited to specifics conditions. Notwithstanding, 
there are similarities: the soil layer where the landslides occurred is colluvial. The 
most unstable areas identified by the models are in steep slope areas, with dec-
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livities higher than 25˚. The models were tested in both natural and forested 
slope areas [41] [44] [47] [52] [53] [54] [60] [61] and areas with unauthorized 
human settlements [15] [57] [59].  

Some geotechnical data were acquired from the literature, and others were 
measured in situ. The authors agreed that the models are sensitive to the quality 
of input data, especially those related to the spatial resolution of DEM, depth to 
the water table, and the initial soil moisture content. It is essential to highlight 
that most of the studied areas presented in the papers reviewed have landslides 
triggered by rainfall. In some cases, earthquakes, volcanism, and hurricanes/typhoons 
contribute to triggering the landslides. Then, to correctly simulate the initial soil 
moisture conditions, known accumulated rainfall values are required. 

The landslide inventories are critical to validate the results. Therefore, the 
correct localization of initial soil rupture will provide a better analysis of model’s 
efficiency. Moreover, from the fifteen types of research presented, ten used a 
landslide inventory to validate the results. Statistical analysis, such as the Re-
ceiver Operating Curve (ROC) analysis, quantitative indexes (Scar Concentra-
tion—SC and Landslides Potential—LP; Probability of Detection—POD, False 
Alarm Ratio—FAR, Critical Success Index—CSI), and Success-Error index (SI 
and EI) also help to assess the performance and reliability of each model [12] 
[41] [43] [46] [54] [60] [62] [63] [64]. Table 3 presents a summary of the mod-
el’s main characteristics based on the literature review. 

The three advanced models prove their efficiency for identifying the most un-
stable areas and are a useful tool to elaborate susceptibility maps. Despite the 
different validation methods, the mentioned studies’ results were satisfactory. 
Some researchers used a landslide inventory to validate the results, calculating 
the percentage of landslides in unstable classes [41] [44] [48] [49] [54] [57] [58] 
[59] [60] [61]. Others verified how the spatial distribution of unstable areas 
agree with Typhoon trajectory [52] or compare the soil rupture with the varia-
tion of pore-water pressure [51]. Risk maps and PEM4PIT methods were also 
used to analyze the model’s performance [15] [49]. Therefore, the models were 
applied in distinguished regions, with different objectives, and the outcomes 
were excellent and in agreement with reality.  

Each model assumes a different hydrological approach and, consequently, the 
input parameters vary. The Shalstab and Sinmap input parameters are a DEM 
and geotechnical parameters (soil cohesion, internal friction angle, specific 
weight, and depth). The TRIGRS inputs are the geotechnical parameters (cohe-
sion, internal friction angle, specific weight, and depth), a DEM, the hydrological 
parameters (hydraulic conductivity and diffusivity), the initial depth of water ta-
ble, and rainfall data. TRIGRS allows the use of different geotechnical parame-
ters cell by cell, considering the soil horizontal heterogeneity. Sinmap also allows 
the user to make improvements in small areas, due to the multi-calibration 
process, while Shalstab’s parameters are constant and uniformly distributed over 
the study area. 
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Table 3. Summary of literature review. 

Model Study Area 
Triggered 

Mechanism 
Acquisition 

data 
Validation Results 

Sinmap 

Nova Friburgo, RJ, Brazil Rainfall Literature Landslide’s inventory 
55% landslides in 

unstable areas 

Juiz de Fora, MG, Brazil Rainfall Literature 
Landslide’s inventory 

and Susceptibility maps 
78.5%landslides in 

unstable areas 

Cubatão, SP, Brazil Rainfall Literature Landslide’s inventory 
90% landslides in 

unstable areas 

Swabian Alb, Germany 
Rainfall, Snow 

melting, 
Earthquakes 

Literature Sensitivity analysis 
80% landslides in 

unstable areas 

Wudu county, China 
Rainfall and 
Earthquakes 

Laboratory tests Sensitivity analysis 
67,5% landslides in 

unstable areas 

Oahu, Hawaii, USA 
Rainfall and 
Volcanism 

Literature 
Landslide’s inventory 

and Susceptibility maps 
92% landslides in 

unstable areas 

Shalstab 

Rio dos Cedros, SC, Brazil Rainfall Laboratory tests 
Landslide’s inventory 
and land-cover maps 

21% of total area are 
unconditionally 

unstable 

Caraguatatuba, SP, Brazil Rainfall Literature 
Landslide’s inventory 

and Sensitivity analysis 
55% landslides in 

unstable areas 

Campos do Jordão, SP, Brazil Rainfall Literature 
Landslide’s inventory 

and Susceptibility maps 

Shalstab unstable 
areas corroborate 

with risk maps 

Rio de Janeiro, RJ, Brazil Rainfall 
Literature and 

Laboratory tests 
Landslide’s inventory 

and quantitative analysis 
80% landslides in 

unstable areas 

Sardinia, Italy 
Rainfall and 
Earthquakes 

Calculate during 
PEM4PIT 
procedure 

ROC analysis 
Shalstab had better 
performance using 
PEM4PIT method 

TRIGRS 

Seattle, USA Rainfall Laboratory tests ROC analysis 
80% landslides in 

unstable areas 

Taipei county, Taiwan area Rainfall Laboratory tests 
Landslide’s inventory 

and Variation of 
pore-water pressure 

Variation of 
pore-water pressure 

change the soil 
rupture mechanism 

Tai Chi, Taiwan area 
Rainfall and 

Typhoon 
Literature 

Landslide’s inventory 
and Typhoon data 

Landslides and 
unstable areas 

agreeing with typhoon 
trajectory 

Macon County, 
North Carolina, USA 

Rainfall and 
Hurricane 

Literature POD/FAR/CSI 
98% landslides in 

unstable areas 

Woomyeon Mountain, 
Seoul, South Korea 

Rainfall 
Literature and 

Laboratory tests 
ROC analysis, SI/EI, 

SC/LP, POD/FAR/CSI 
33% landslides in 

unstable areas 
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As a result, Shalstab generates a seven-class classification map, based on a lo-
garithmic value for q/t, ranging from chronic instability class to stable. The Sin-
map model generates a Stability Index (SI), defined as the probability of a loca-
tion to be stable, and TRIGRS calculates the variation of the Factor of Safety (FS) 
due to changes in the transient pore-pressure and soil moisture.  

The program interfaces of these three models also differ from each other. 
Shalstab and Sinmap are performed as an extension of ArcView 3.3, and the 
output can be saved as a shapefile. TRIGRS is executed with a command-line in-
terface with limited user interactivity [36] and generates an ASCII file. Regard-
less of most input data and output results, these three models must be prepared 
and analyzed using GIS (Geographic Information System) programs. The dif-
ferences and similarities of the models are summarized in Table 4.  

Literature shows that Shalstab and Sinmap provided quite similar results and 
that both models correctly predicted unstable areas. The results of a comparative 
study between Shalstab and Sinmap for the identification of landslide-prone 
areas [55] show that Sinmap correctly identified 78% of the 44 registered landslides, 
whereas Shalstab identified 88%. Nevertheless, regarding the classification of the 
most unstable areas, the models present a disagreeing behavior: 53% of the study 
area is classified by Sinmap as having a SI lower than 1, meaning that those areas 
are highly unstable. Furthermore, Shalstab classified as chronic unstable only 
24% of the area. Similar results were found in [12] [46] [55] [65], presented in 
Table 5. 

The study performed by [63] corroborates the results presented in Table 5. 
Using the ROC analyses, the authors compare the results obtained from Sinmap  
 
Table 4. Characteristics of Sinmap, Shalstab, and TRIGRS models. 

 
Sinmap Shalstab TRIGRS 

Input parameters 

Cohesion Cohesion Cohesion 

Internal 
friction angle 

Internal 
friction angle 

Internal 
friction angle 

R/T Soil depth Soil depth 

DEM DEM DEM 

- - 

Hydraulic Conductivity 

Hydraulic Diffusivity 

Initial depth of water 
table 

Data over the 
study area 

Multi-resolution 
calibration 

Uniformly spatially 
distributed 

Cell by 
cell parameters 

Output results Stability Index (SI) Log q/t Factor of Safety (FS) 

Output file format Shapefile Shapefile ASCII 

Interface ArcView 3.3 ArcView 3.3 Command Line 
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Table 5. Comparison of model results. 

  
Sinmap Shalstab TRIGRS 

S. Giuletta, Northern Apennines, 
Italy [55] 

Landslides 78% 88% 
- 

Unstable areas 53% 24% 

Rio dos Cedros, SC, Brazil [46] 
Landslides 71% 100% 

- 
Unstable areas 30% 13% 

Oltrepo Pavese, Italy [12] Unstable areas 18.70% 11% 6.90% 

Pizzo D’Alvano, Campania, 
Italy [65] 

Landslides - 60% 70% 

Unstable areas - 12% 7.30% 

 

and Shalstab in Northeastern of Korea. The probabilistic model correctly identi-
fied 62.58% of the unstable areas, whereas Shalstab identified 82.4%. 

The Sinmap probabilistic approach and the range of input values increased 
the uncertainty of the results, due to the overestimation of unstable classes. Ad-
ditionally, the model could not predict the failure-size of landslides or even the 
volume of mobilized material. However, the multi-calibration regions allow the 
improvement of small areas according to the soil’s different physical properties. 
Shalstab input parameters are constant and uniformly distributed over the study 
area while still providing more realistic results [12] [46] [55] [60].  

Reference [12] compared the performance of different models TRIGRS, Shals-
tab, and Sinmap in Oltrepo Pavese-Italy, and the results are presented in Figure 
2.  

The author’s further analysis of the results shows that Sinmap produced the 
least realistic scenario. Shalstab generated the spatial distribution of critical rain-
fall, allowing the identification of soil rupture, and TRIGRS correctly identified 
the areas that experienced landslides. 

The best model for identifying unstable areas is those where the most unstable 
class coincides with the landslide scars, which accounts for the minor area of the 
study basin [12] [33] [46] [54] [59] [66].  

The TRIGRS model has been providing the most realistic scenarios compared 
to both Shalstab and Sinmap, due to its capability to evaluate the transient pore- 
water pressure during rainfall events. The steady-state hydrology approach from 
Sinmap and Shalstab leads to widespread landslide-prone areas [43] [64] [65]. 
To compare the efficiency between TRIGRS and Shalstab in the identification of 
the landslide-prone area in Pizzo d’Alvano massif, [43] defined two indexes: 
Success Index (SI), which correspond to the percentage of correctly classified 
unstable classes, and the Error Index (EI), which indicates when the computed 
unstable class does not correspond with verified landslide scars. As a result, the 
steady-state model generates high values of SI and higher values of EI. TRIGRS, 
on the other hand, generates for the same values of SI, a lower value of EI, and 
this result agrees with the reality. Figure 3 presents the instability results from 
the comparative analysis between Shalstab and TRIGRS. The results show an  
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Figure 2. Susceptibility map of Oltrepo Pavese, Italy from: (a) Sinmap, (b) Shalstab, and (c) TRIGRS. Adapted from [12]. 
 
overestimation of the unstable classes by Shalstab leading to higher values of EI, 
while TRIGRS identified just the small areas where landslides occurred.  

Other studies presented similar results. According to [53], the TRIGRS model 
has correctly predicted 98% of the landslides in Macon County, North Carolina, 
USA, with a low false rate (18%). Reference [67] found similar results applying 
the model on Oltrepò Pavese, Northwestern of the Italian Apennines: The True 
Positives (TP) were 73.3%, and False Positives were only 10%. The research 
conducted by Zhuang et al. (2017) analyzed the TRIGRS performance during a 
24-hour rainfall, and generated four maps of instability, corresponding to 6:00, 
12:00, 18:00, and 24:00 hrs. As a result, the model predicted how the total 
amount of unstable areas (FS < 1) scaled with the increase of the rainfall duration  
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Figure 3. Instability results of Pizzo d’Alvano area from (a) Shalstab and (b) TRIGRS. 
Source: [43]. 
 
(Figure 4). At the beginning of rainfall (6:00), the areas with FS < 1 represented 
just 0.2% of the total area. As time passed, the area increased to 3.3%, 3.8%, and 
5.1%, respectively. 

https://doi.org/10.4236/ijg.2022.133010


T. König et al. 
 

 

DOI: 10.4236/ijg.2022.133010 190 International Journal of Geosciences 
 

 

Figure 4. Unstable classes of Yan’an, China during (a) 6:00, (b) 12:00, (c) 18:00 and (d) 
24:00 hours. Source: [64]. 
 

The TRIGRS model has proven efficient in predicting the landslide-prone 
areas, primarily due to its dynamic approach, which allows a time-varying anal-
ysis. Furthermore, the model can become a useful tool for Early Warning Sys-
tems. Another advantage is the input parameters that vary from cell to cell, tak-
ing into account the soil heterogeneity [36] [41] [43] [51] [52] [53] [54] [62] [64] 
[65] [67] [68]. 

The literature review shows that the three advanced models TRIGRS, Sinmap, 
and Shalstab, are useful for identifying landslide-prone areas. Both steady-state 
models correctly identified the areas with landslide scars, and those with a high 
probability of soil rupture. However, the probabilistic approach from Sinmap over-
estimates the unstable areas, whereas the deterministic approach from Shalstab 
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generates a more realistic scenario. Moreover, Shalstab is recommended to pro-
vide the assessment of initial steady-state groundwater conditions. The transient 
approach from TRIGRS, which allows the calculation of the variation in pore- 
pressure and soil moisture during a rainfall infiltration, has proved to be more 
accurate in identifying unstable areas than the steady-state models. Despite the 
need for more specific input data (initial depth to the water table, hydraulic 
conductivity, and diffusivity), which are not always simple to acquire, the model 
is more precise in the classification of the unstable areas and allows for a time- 
varying analysis. Such analysis is useful in determining how the Factor of Safety 
decreases during a rainfall event. Future studies can associate the weather fore-
cast with TRIGRS, to predict the unstable areas and develop an Early Warning 
System. This type of system could avoid disasters and deaths.  

Therefore, each model has its advantages and its limitations. Both Shalstab 
and Sinmap produce excellent results in identified landslide-prone areas. Be-
sides, the geotechnical input data are similar and easy to acquire. Soil cohesion 
and internal friction angle can be estimated from the geology and type of soil in 
the study area. Even though they correctly identify the most unstable areas, these 
two models tend to overestimate the results. It is a useful tool to enhance the 
quality of risk maps and verify the slope stability of large areas. As previously 
mentioned, Shalstab is recommended to provide the assessment of initial steady- 
state groundwater conditions. TRIGRS results are more accurate, and its use is 
recommended for small areas. Furthermore, they can be used for temporal anal-
ysis of rainfall events and might become a useful tool for Early Warning Sys-
tems. The disadvantage is that input data are more specific and not always easy 
to acquire.  

Determining which model should be used to analyze slope stability will de-
pend on the study objective and data availability. In areas where soil samples can 
be collected, providing the hydraulic conductivity and diffusivity, cohesion and 
internal friction angle, the model TRIGRS are recommended. Moreover, TRIGRS 
is recommended to predict instability areas, using weather forecast and time- 
varying analysis.  

However, some slope areas have difficult access, and collecting soil samples is 
not an option. Therefore, the models Shalstab and Sinmap are the best choice. 
Both models provide good results identifying landslide-prone areas.  

Landslides are usually triggered by rainfall. Notwithstanding, it is essential to 
highlight that the critical threshold of rain that causes the soil ruptures changes 
from place to place, depending on soil properties, geological, geomorphological 
aspects, and climate properties. Such information is necessary for Early Warning 
Systems. 

In Brazil, the Serra do Mar critical threshold for landslides is an accumulated 
rainfall of 80 mm in 72 hours [16] [69]. An incident of heavy rainfall that trig-
gered several landslides happened in Baixada Santista-SP, located on the Sou-
theastern coast of Brazil, on March 3rd of 2020. During 24 hours, an accumu-
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lated rainfall of 320 mm was recorded, whereas 263 mm of rainfall was expected 
for the entire month [70]. The use of TRIGRS and weather forecast to predict 
the unstable area could avoid many disasters, such as this one.  

Another critical aspect that needs attention is the fact that there is an inverse 
correlation between declivity and slope stability. The higher the declivity, the less 
stable the slope. Nonetheless, the literature reveals the presence of human set-
tlements in those steep slope areas. According to [15] [16], areas with declivity 
above 25˚ are inappropriate for anthropic land uses, either in urban or rural 
areas. In Brazil’s particular case, it is very common to have human settlements 
(usually unauthorized) in steep slope areas. Additionally, the anthropic changes 
such as inappropriate discharge wastewater, leakages, inefficient garbage collec-
tion, and vertical cuts in slopes, contribute to decreasing the slope stability [8] 
[14] [15] [16] [71]. 

4. Conclusions 

The present paper evaluates the applicability of three advanced models: the 
probabilistic steady-state model Sinmap, the deterministic steady-state model 
Shalstab, and the transient model TRIGRS. Each model has a different approach 
and distinct mathematical formulas to calculate and identify the landslide-prone 
areas. Consequently, the input data differ from each other. The steady-state 
models need a DEM, geotechnical parameters, and landslide inventory. The 
transient model inputs include those mentioned above and additional hydrolog-
ical parameters, such as the initial depth to the water table and rainfall data. 
Moreover, TRIGRS runs using a command line, while Sinmap and Shalstab are 
executed as an extension of ArcView 3.3. Despite the differences, the models re-
sult in susceptible maps. Shalstab susceptible maps are classified based on a lo-
garithmic relation between rain recharge and soil transmissivity (q/t). Sinmap 
output is a Stability Index (SI) defined as the probability of the area stability, 
ranging from 0, most unstable, to 1, stable. TRIGRS results classified the area 
due to variation in Factor of Safety. 

A literature review was proposed to analyze and compare each model’s appli-
cability, showing its applicability and limitations. The studies presented applied 
the models in areas with diverse geological and geomorphological characteris-
tics. It emphasizes that the three models are not developed only for a specific 
condition. In some cases, the landslides were triggered by intense rainfall, others 
by earthquakes, typhoons, and hurricanes. Moreover, a few similarities were 
found in the landslide-prone areas: colluvial layers and declivities higher than 
25˚. Human settlement, roads, and tunnels might decrease slope stability, be-
coming landslide-inducing factors. To validate the model’s results, researchers 
used landslides inventory to calculate the percentage of landslides that occurred 
in the most unstable classes. Some studies used statistical analysis, such as the 
Successful and Error index, ROC analysis, among others. 

The three advanced models proved to be a useful tool for the identification of 
landslide-prone areas. Results presented in the literature show that the regions 
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classified by these models as unstable have suffered from landslides. Additional-
ly, some of the unstable areas have human settlements, and other constructions, 
which might become a disaster when a landslide occurs. Researchers and gov-
ernment institutions should use Shalstab, Sinmap, and TRIGRS to improve the 
quality of susceptible maps and enhance their monitoring.  

However, the steady-state models, due to their mathematical approach, over-
estimate the unstable areas, whereas TRIGRS generates a more realistic and pre-
cise result. Although TRIGRS inputs are more specific (i.e., hydrological para-
meters, initial depth of water table), the calculation of the transient effects of the 
rainfall infiltration allows a time-varying analysis, serving as a proper tool for 
Early Warning Systems. Moreover, Shalstab and Sinmap can be used for the 
primary knowledge of susceptible areas, while TRIGRS should be used for spe-
cific events and Early Warning systems. 

The authors recommend the use of a steady-state model to identify the unsta-
ble areas and prepared landslide-susceptible maps. Furthermore, TRIGRS should 
be used to analyze small areas due to the complexity of input data. Additionally, 
this model should be developed to improve the risk analysis of small areas and 
become a useful Early Warning tool to avoid disasters. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Marcelino, E.V., Nunes, L.H. and Kobiyama, M. (2006) Banco De Dados De Desastres 

Naturais: Análise De Dados Globais E Regionais. Caminhos da Biogeografia, 7, 130- 
149.  
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/15495/8774  

[2] Nicholls, N. (2001) Atmospheric and Climatic Hazards: Improved Monitoring and 
Prediction for Disaster Mitigation. Natural Hazards, 23, 137-155. 
https://doi.org/10.1023/A:1011130223164  

[3] Pielke, R.A. (2006) Disasters, Death, and Destruction Making Sense of Recent Cala- 
mities. Oceanography, 19, 138-147. https://doi.org/10.5670/oceanog.2006.83  

[4] Pielke, R.A. (2005) Making Sense of Trends in Disaster Losses. The OST's Publication 
on Science & Technology Policy, 7. 

[5] Houghton, J. (2003) Global Warming: The Complete Briefing. Cambridge University 
Press, Cambridge.  
http://www.gci.org.uk/Documents/Global-Warming-the-Complete-Briefing.pdf  
https://doi.org/10.1017/CBO9781139165044  

[6] Montgomery, D.R. (1994) Road Surface Drainage, Channel Initiation, and Slope In-
stability. Water Resources Research, 30, 1925-1932. 
https://doi.org/10.1029/94WR00538  

[7] Cruden, D. and Varnes, D. (1996) Landslides: Investigation and Mitigation. Chapter 
3-Landslide Types and Processes. Transportation Research Board Special Report, 
36-75. 

https://doi.org/10.4236/ijg.2022.133010
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/15495/8774
https://doi.org/10.1023/A:1011130223164
https://doi.org/10.5670/oceanog.2006.83
http://www.gci.org.uk/Documents/Global-Warming-the-Complete-Briefing.pdf
https://doi.org/10.1017/CBO9781139165044
https://doi.org/10.1029/94WR00538


T. König et al. 
 

 

DOI: 10.4236/ijg.2022.133010 194 International Journal of Geosciences 
 

[8] König, T., Kux, H.J.H. and Mendes, R.M. (2019) Shalstab Mathematical Model and 
WorldView-2 Satellite Images to Identification of Landslide-Susceptible Areas. Natu-
ral Hazards, 97, 1127-1149. https://doi.org/10.1007/s11069-019-03691-4  

[9] Larsen, M.C. and Torres-sanchez, A.J. (1998) The Frequency and Distribution of 
Recent Landslides in Three Montane Tropical Regions of Puerto Rico. Geomorphol-
ogy, 24, 309-331. https://doi.org/10.1016/S0169-555X(98)00023-3  

[10] Zêzere, J.L., Trigo, R.M. and Trigo, I.F. (2005) Shallow and Deep Landslides In-
duced by Rainfall in the Lisbon Region (Portugal): Assessment of Relationships with 
the North Atlantic Oscillation. Natural Hazards and Earth System Sciences, 5, 331- 
344. https://doi.org/10.5194/nhess-5-331-2005  

[11] Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W.Z. (2008) 
Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Plan-
ning. Engineering Geology, 102, 85-98. https://doi.org/10.1016/j.enggeo.2008.03.022  

[12] Zizioli, D., Meisina, C., Valentino, R. and Montrasio, L. (2013) Comparison between 
Different Approaches to Modeling Shallow Landslide Susceptibility: A Case History 
in Oltrepo Pavese, Northern Italy. Natural Hazards and Earth System Sciences, 13, 
559-573. https://doi.org/10.5194/nhess-13-559-2013  

[13] Netto, A.L.C., et al. (2013) January 2011: The Extreme Landslide Disaster in Brazil. In: 
Margottini, C., Canuti, P. and Sassa, K., Eds., Landslide Science and Practice, Sprin-
ger, Berlin, 377-384. https://doi.org/10.1007/978-3-642-31319-6_51  

[14] Mendes, R.M. and Filho, M.V. (2015) Real-Time Monitoring of Climactic and Geo-
technical Variables during Landslides on the Slopes of Serra do Mar and Serra da 
Mantiqueira (São Paulo State, Brazil). Engineering, 7, 140-159. 
https://doi.org/10.4236/eng.2015.73012  

[15] Prieto, C., Mendes, R.M., Simões, S.J.C. and Nobre, C.A. (2017) Comparison be-
tween the Application of SHALSTAB Model with Slide Susceptibility and Risk Maps 
in Piracuama Stream Basin in Campos do Jordão-SP. Revista Brasileira de Cartogra-
fia, 69, 71-87. 

[16] Mendes, R.M., Andrade, M.R.M.D., Tomasella, J., Moraes, M.A E.D. and cofield, G. 
B.S (2018) Understanding Shallow Landslides in Campos do Jordaõ Municipality- 
Brazil: Disentangling the Anthropic Effects from Natural Causes in the Disaster of 
2000. Natural Hazards and Earth System Sciences, 18, 15-30. 
https://doi.org/10.5194/nhess-18-15-2018  

[17] Xu, X.Z., et al. (2017) Landslides on the Loess Plateau of China: A latest Statistics 
Together with a Close Look. Natural Hazards, 86, 1393-1403. 
https://doi.org/10.1007/s11069-016-2738-6  

[18] UNISDR (2017) Economic Losses, Poverty & Disasters 1998-2017. 
https://www.preventionweb.net/files/61119_credeconomiclosses.pdf  

[19] Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V. and Reichenbach, P. (1991) 
GIS Techniques and Statistical Models in Evaluating Landslide Hazard. Earth Sur-
face Processes and Landforms, 16, 427-445.  
https://doi.org/10.1002/esp.3290160505  

[20] Li, Y. and Chen, W. (2020) Landslide Susceptibility Evaluation Using Hybrid Inte-
gration of Evidential Belief Function and Machine Learning Techniques. Water 
(Switzerland), 12, Article 113. https://doi.org/10.3390/w12010113  

[21] Lei, X.X., Chen, W., and Pham, B.T. (2020) Performance Evaluation of GIS-Based 
Artificial Intelligence Approaches for Landslide Susceptibility Modeling and Spatial 
Patterns Analysis. ISPRS International Journal of Geo-Information, 9, Article 443. 
https://doi.org/10.3390/ijgi9070443  

https://doi.org/10.4236/ijg.2022.133010
https://doi.org/10.1007/s11069-019-03691-4
https://doi.org/10.1016/S0169-555X(98)00023-3
https://doi.org/10.5194/nhess-5-331-2005
https://doi.org/10.1016/j.enggeo.2008.03.022
https://doi.org/10.5194/nhess-13-559-2013
https://doi.org/10.1007/978-3-642-31319-6_51
https://doi.org/10.4236/eng.2015.73012
https://doi.org/10.5194/nhess-18-15-2018
https://doi.org/10.1007/s11069-016-2738-6
https://www.preventionweb.net/files/61119_credeconomiclosses.pdf
https://doi.org/10.1002/esp.3290160505
https://doi.org/10.3390/w12010113
https://doi.org/10.3390/ijgi9070443


T. König et al. 
 

 

DOI: 10.4236/ijg.2022.133010 195 International Journal of Geosciences 
 

[22] Chen, W. and Li, Y. (2020) GIS-Based Evaluation of Landslide Susceptibility Using 
Hybrid Computational Intelligence Models. Catena, 195, Article ID: 104777. 
https://doi.org/10.1016/j.catena.2020.104777  

[23] Ermini, L., Catani, F., and Casagli, N. (2005) Artificial Neural Networks Applied to 
Landslide Susceptibility Assessment. Geomorphology, 66, 327-343. 
https://doi.org/10.1016/j.geomorph.2004.09.025  

[24] Bai, S.-B., Wang, J., LÜ, G.-N., Zhou, P.-G., Hou, S.-S. and Xu, S.-N. (2009) GIS- 
Based and Data-Driven Bivariate Landslide-Susceptibility Mapping in the Three 
Gorges Area, China. Pedosphere, 19, 14-20. 
https://doi.org/10.1016/S1002-0160(08)60079-X  

[25] Cervi, F., Berti, M., Borgatti, L., Ronchetti, F., Manenti, F. and Corsini, A. (2010) 
Comparing Predictive Capability of Statistical and Deterministic Methods for Landslide 
Susceptibility Mapping: A Case Study in the Northern Apennines (Reggio Emilia 
Province, Italy). Landslides, 7, 433-444.  
https://doi.org/10.1007/s10346-010-0207-y  

[26] Li, C., Ma, T., Sun, L., Li, W. and Zheng, A. (2012) Application and Verification of a 
Fractal Approach to Landslide Susceptibility Mapping. Natural Hazards, 61, 169-185.  
https://doi.org/10.1007/s11069-011-9804-x  

[27] Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M. and Guzzetti, F. (2018) A Re-
view of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 
180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001  

[28] Mandal, S. and Mandal, K. (2018) Modeling and Mapping Landslide Susceptibility 
Zones Using GIS Based Multivariate Binary Logistic Regression (LR) Model in the 
Rorachu River Basin of Eastern Sikkim Himalaya, India. Modeling Earth Systems 
and Environment, 4, 69-88. https://doi.org/10.1007/s40808-018-0426-0  

[29] Pham, B.T., et al. (2019) Landslide Susceptibility Modeling Using Reduced Error 
Pruning Trees and Different Ensemble Techniques: Hybrid Machine Learning Ap-
proaches. Catena, 175, 203-218. https://doi.org/10.1016/j.catena.2018.12.018  

[30] Zhao, X. and Chen, W. (2020) Optimization of Computational Intelligence Models 
for Landslide Susceptibility Evaluation. Remote Sensing, 12, Article 2180. 
https://doi.org/10.3390/rs12142180  

[31] Montgomery, D.R. and Dietrich, W.E. (1994) A Physically Based Model for the To-
pographic Control on Shallow Landsliding. Water Resources Research, 30, 1153-1171. 
https://doi.org/10.1029/93WR02979  

[32] Dietrich, W.E. and Montgomery, D.R. (1998) Shalstab: A Digital Terrain Model for 
Mapping Shallow Landslide Potential. Technical Report, National Council for Air 
and Stream Improvement. 

[33] Dietrich, W.E., Bellugi, D. and Real de Asua, R. (2011) Validation of the Shallow 
Landslide Model, SHALSTAB, for Forest Management. Applied Water Science, 2, 
195-227. https://doi.org/10.1029/WS002p0195  

[34] Pack, R.T. (1998) The SINMAP Approach to Terrain Stability Mapping. 8th Con-
gress of the International Association of Engineering Geology, Vancouver, British 
Columbia, 21-25 September 1998, 1157-1166. 

[35] Pack, R.T., Tarboton, D.G. and Goodwin, C.N. (1998) Terrain Stability Mapping 
with SINMAP, Technical Description and Users Guide for Version 1.00. 

[36] Baum, R.L., Savage, W.Z. and Godt, J.W. (2008) TRIGRS—A Fortran Program for 
Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Ver-
sion 2.0. USGS Open-File Report 2008-1159, 75 p. 
https://doi.org/10.3133/ofr20081159  

https://doi.org/10.4236/ijg.2022.133010
https://doi.org/10.1016/j.catena.2020.104777
https://doi.org/10.1016/j.geomorph.2004.09.025
https://doi.org/10.1016/S1002-0160(08)60079-X
https://doi.org/10.1007/s10346-010-0207-y
https://doi.org/10.1007/s11069-011-9804-x
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1007/s40808-018-0426-0
https://doi.org/10.1016/j.catena.2018.12.018
https://doi.org/10.3390/rs12142180
https://doi.org/10.1029/93WR02979
https://doi.org/10.1029/WS002p0195
https://doi.org/10.3133/ofr20081159


T. König et al. 
 

 

DOI: 10.4236/ijg.2022.133010 196 International Journal of Geosciences 
 

[37] Savage, W., Godt, J. and Baum, R. (2004) Modeling Time-Dependent Areal Slope 
Stability. Landslides: Evaluation and Stabilization/Glissement de Terrain: Evaluation 
et Stabilisation, 2, 23-36. https://doi.org/10.1201/b16816-4  

[38] Wu, W. and Sidle, R.C. (1995) A Distributed Slope Stability Model for Steep Fo-
rested Basins. Water Resources, 31, 2097-2110.  
https://doi.org/10.1029/95WR01136  

[39] GEO-SLOPE (2016) Stability Modeling with GeoStudio. 2546 p.  
https://downloads.geoslope.com/geostudioresources/books/11/2/SLOPE%20Modeli
ng.pdf  

[40] Iverson, R.M. (2000) Landslide Triggering by Rain Infiltration. Water Resources Re-
search, 36, 1897-1910. https://doi.org/10.1029/2000WR900090  

[41] Godt, J.W., Baum, R.L., Savage, W.Z., Salciarini, D., Schulz, W.H. and Harp, E.L. 
(2008) Transient Deterministic Shallow Landslide Modeling: Requirements for Sus-
ceptibility and Hazard Assessments in a GIS Framework. Engineering Geology, 102, 
214-226. https://doi.org/10.1016/j.enggeo.2008.03.019  

[42] de Lima Neves Seefelder, C., Koide, S. and Mergili, M. (2017) Does Parameteriza-
tion Influence the Performance of Slope Stability Model Results? A Case Study in 
Rio de Janeiro, Brazil. Landslides, 14, 1389-1401. 
https://doi.org/10.1007/s10346-016-0783-6  

[43] Sorbino, G., Sica, C. and Cascini, L. (2010) Susceptibility Analysis of Shallow Land- 
slides Source Areas Using Physically Based Models. Natural Hazards, 53, 313-332.  
https://doi.org/10.1007/s11069-009-9431-y  

[44] Vieira, B.C. and Ramos, H. (2015) Aplicação do modelo Shalstab para mapeamento 
da suscetilidade a escorregamentos rasos em Caraguatatuba, Serra do Mar (SP). 
Geography Department University of Sao Paulo, 29, 161-174. 
https://doi.org/10.11606/rdg.v29i0.102087  

[45] O’Loughlin, E.M.O. (1986) Prediction of Surface Saturation Zones in Natural Cat-
chments by Topographic Analysis. Water Resource, 22, 794-804. 
https://doi.org/10.1029/WR022i005p00794  

[46] Michel, G.P., Kobiyama, M. and Goerl, R.F. (2014) Comparative Analysis of 
SHALSTAB and SINMAP for Landslide Susceptibility Mapping in the Cunha River 
Basin, Southern Brazil. Journal of Soils and Sediments, 14, 1266-1277. 
https://doi.org/10.1007/s11368-014-0886-4  

[47] Reginatto, G.M.P., et al. (2012) Shalstab Application to Identify the Susceptible Areas 
of Shallow Landslides in Cunha River Watershed, Rio Dos Cedros City, Sc, Brazil. 
Proceedings of the 4th GEOBIA, Rio de Janeiro, 7-9 May 2012, 108-113.  
http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m18/2012/05.16.20.05/doc/034.pdf  

[48] Guimaraes, R.F., Montgomery, D.R., Greenberg, H.M., Fernandes, N.F., Gomes, 
R.A.T. and de Carvalho Junior, O.A. (2003) Parameterization of Soil Properties for 
a Model of Topographic Controls on Shallow Landsliding: Application to Rio de 
Janeiro. Engineering Geology, 69, 99-108. 
https://doi.org/10.1016/S0013-7952(02)00263-6  

[49] Santini, M., Grimaldi, S., Nardi, F., Petroselli, A. and Rulli, M.C. (2009) Pre-Pro- 
cessing Algorithms and Landslide Modelling on Remotely Sensed DEMs. Geomor-
phology, 113, 110-125. https://doi.org/10.1016/j.geomorph.2009.03.023  

[50] Grelle, G., et al. (2014) Space-Time Prediction of Rainfall-Induced Shallow Landslides 
through a Combined Probabilistic/Deterministic Approach, Optimized for Initial 
Water Table Conditions. Bulletin of Engineering Geology and the Environment, 73, 
877-890. https://doi.org/10.1007/s10064-013-0546-8  

https://doi.org/10.4236/ijg.2022.133010
https://doi.org/10.1201/b16816-4
https://doi.org/10.1029/95WR01136
https://downloads.geoslope.com/geostudioresources/books/11/2/SLOPE%20Modeling.pdf
https://downloads.geoslope.com/geostudioresources/books/11/2/SLOPE%20Modeling.pdf
https://doi.org/10.1029/2000WR900090
https://doi.org/10.1016/j.enggeo.2008.03.019
https://doi.org/10.1007/s10346-016-0783-6
https://doi.org/10.1007/s11069-009-9431-y
https://doi.org/10.11606/rdg.v29i0.102087
https://doi.org/10.1029/WR022i005p00794
https://doi.org/10.1007/s11368-014-0886-4
http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m18/2012/05.16.20.05/doc/034.pdf
https://doi.org/10.1016/S0013-7952(02)00263-6
https://doi.org/10.1016/j.geomorph.2009.03.023
https://doi.org/10.1007/s10064-013-0546-8


T. König et al. 
 

 

DOI: 10.4236/ijg.2022.133010 197 International Journal of Geosciences 
 

[51] Chen, C.-Y., Chen, T.-C., Yu, F.-C. and Lin, S.-C. (2005) Analysis of Time-Varying 
Rainfall Infiltration Induced Landslide. Environmental Geology, 48, 466-479.  
https://doi.org/10.1007/s00254-005-1289-z  

[52] Tan, C.H., et al. (2008) Assessment of Regional Rainfall-Induced Landslides Using 
3S-Based Hydro-Geological Model. In: Chen, Z.Y., Zhang, J.-M., Ho, K., Wu, F.-Q. 
and Li, Z.-K., Eds., Landslides and Engineered Slopes, Taylor & Francis Group, 
London, 1639-1645.  

[53] Liao, Z.H., Hong, Y., Kirschbaum, D., Adler, R.F., Gourley, J.J. and Wooten, R. (2011) 
Evaluation of TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional 
Slope-Stability Analysis)’s Predictive Skill for Hurricane-Triggered Landslides: A 
Case Study in Macon County, North Carolina. Natural Hazards, 58, 325-339.  
https://doi.org/10.1007/s11069-010-9670-y  

[54] Park, D.W., Nikhil, N.V. and Lee, S.R. (2013) Landslide and Debris Flow Suscepti-
bility Zonation Using TRIGRS for the 2011 Seoul Landslide Event. Natural Hazards 
and Earth System Sciences, 13, 2833-2849.  
https://doi.org/10.5194/nhess-13-2833-2013  

[55] Meisin,a C. and Scarabelli, S. (2007) A Comparative Analysis of Terrain Stability 
Models for Predicting Shallow Landslides in Colluvial Soils. Geomorphology, 87, 
207-223. https://doi.org/10.1016/j.geomorph.2006.03.039  

[56] Thiebes, B., Bell, R., Glade, T., Wang, J. and Bai, S. (2016) Application of SINMAP 
and Analysis of Model Sensitivity-Case Studies from Germany and China. Revue 
Roumaine de Geographie, 60, 3-25. 

[57] Cardozo, C., Lopes, E. and Monteiro, A.M. (2018) Shallow Landslide Susceptibility 
Assessment Using SINMAP in Nova Friburgo (Rio de Janeiro, Brazil). Revista Bra-
sileira de Cartografia, 70, 1206-1230. https://doi.org/10.14393/rbcv70n4-46139  

[58] Pechincha, M.G.H. and Zaidan, R.T. (2015) Zoneamento de Risco à ocorrência de 
escorregamentos: uma aplicação na bacia do Córrego Matirumbide, Juiz de Fora, 
MG. Revista Espinhaço, 4, 45-57. 

[59] Nery, T.D. and Vieira, B.C. (2015) Susceptibility to Shallow Landslides in a Drai-
nage Basin in the Serra do Mar, São Paulo, Brazil, Predicted Using the SINMAP 
Mathematical Model. Bulletin of Engineering Geology and the Environment, 74, 
369-378. https://doi.org/10.1007/s10064-014-0622-8  

[60] Deb, S.K. and El-Kadi, A.I. (2009) Susceptibility Assessment of Shallow Landslides 
on Oahu, Hawaii, under Extreme-Rainfall Events. Geomorphology, 108, 219-233. 
https://doi.org/10.1016/j.geomorph.2009.01.009  

[61] Beguería, S. (2006) Validation and Evaluation of Predictive Models in Hazard As-
sessment and Risk Management. Natural Hazards, 37, 315-329. 
https://doi.org/10.1007/s11069-005-5182-6  

[62] Kim, D., Im, S., Lee, S.H., Hong, Y. and Cha, K.S. (2010) Predicting the Rainfall- 
Triggered Landslides in a Forested Mountain Region Using TRIGRS Model. Journal 
of Mountain Science, 7, 83-91. https://doi.org/10.1007/s11629-010-1072-9  

[63] Pradhan, A.M.S. and Kim, Y.T. (2015) Application and Comparison of Shallow Land- 
slide Susceptibility Models in Weathered Granite Soil under Extreme Rainfall Events. 
Environmental Earth Sciences, 73, 5761-5771. 
https://doi.org/10.1007/s12665-014-3829-x  

[64] Zhuang, J., et al. (2017) Prediction of Rainfall-Induced Shallow Landslides in the 
Loess Plateau, Yan’an, China, Using the TRIGRS Model. Earth Surface Process and 
Landforms, 42, 915-927. https://doi.org/10.1002/esp.4050  

https://doi.org/10.4236/ijg.2022.133010
https://doi.org/10.1007/s00254-005-1289-z
https://doi.org/10.1007/s11069-010-9670-y
https://doi.org/10.5194/nhess-13-2833-2013
https://doi.org/10.1016/j.geomorph.2006.03.039
https://doi.org/10.14393/rbcv70n4-46139
https://doi.org/10.1007/s10064-014-0622-8
https://doi.org/10.1016/j.geomorph.2009.01.009
https://doi.org/10.1007/s11069-005-5182-6
https://doi.org/10.1007/s11629-010-1072-9
https://doi.org/10.1007/s12665-014-3829-x
https://doi.org/10.1002/esp.4050


T. König et al. 
 

 

DOI: 10.4236/ijg.2022.133010 198 International Journal of Geosciences 
 

[65] Frattini, P., Crosta, G.B., Fusi, N. and Dal Negro, P. (2004) Shallow Landslides in 
Pyroclastic Soils: A Distributed Modelling Approach for Hazard Assessment. Engi-
neering Geology, 73, 277-295. https://doi.org/10.1016/j.enggeo.2004.01.009  

[66] Huang, J.C. and Kao, S.J. (2006) Optimal Estimator for Assessing Landslide Model 
Performance. Hydrology and Earth System Sciences, 10, 957-965. 
https://doi.org/10.5194/hess-10-957-2006  

[67] Bordoni, M., Meisina, C., Valentino, R., Bittelli, M. and Chersich, S. (2015) Site- 
Specific to Local-Scale Shallow Landslides Triggering Zones Assessment Using TRIGRS. 
Natural Hazards and Earth System Sciences, 15, 1025-1050. 
https://doi.org/10.5194/nhess-15-1025-2015  

[68] Alvioli, M. and Baum, R.L. (2016) Parallelization of the TRIGRS Model for Rain-
fall-Induced Landslides Using the Message Passing Interface. Environmental Mod-
elling & Software, 81, 122-135. https://doi.org/10.1016/j.envsoft.2016.04.002  

[69] Santoro, J., Mendes, R.M., Pressinotti, M.M.N. and Manoel, G. R. (2010) Correlação 
entre chuvas e deslizamentos ocorridos durante a operação do Plano Preventivo De 
Defesa Civil em São Paulo, SP. 7º Simpósio Brasileiro de Cartografia Geotécnica e 
Geoambiental, Maringá-PR, 1-15 August 2010, 1-15.  

[70] CEMADEN (2020) Nota de esclarecimento sobre o desastre na Baixada Santista em 
03 de Março 2020. 

[71] Mendes, R.M., de Andrade, M.R.M., Graminha, C.A., Prieto, C.C., de Ávila, F.F. 
and Camarinha, P.I.M. (2018) Stability Analysis on Urban Slopes: Case Study of an 
Anthropogenic-Induced Landslide in São José dos Campos, Brazil. Geotechnical 
and Geological Engineering, 36, 599-610.  
https://doi.org/10.1007/s10706-017-0303-z  

 
 

https://doi.org/10.4236/ijg.2022.133010
https://doi.org/10.1016/j.enggeo.2004.01.009
https://doi.org/10.5194/hess-10-957-2006
https://doi.org/10.5194/nhess-15-1025-2015
https://doi.org/10.1016/j.envsoft.2016.04.002
https://doi.org/10.1007/s10706-017-0303-z

	Advanced Models Applied for the Elaboration of Landslide-Prone Maps, a Review
	Abstract
	Keywords
	1. Introduction
	2. Model’s Analysis and Applicability
	2.1. Shalstab Model
	2.2. TRIGRS Model
	2.3. Sinmap Model

	3. Discussion
	4. Conclusions
	Conflicts of Interest
	References

