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ABSTRACT
We present a numerical study on the stability of the 1/2, 2/1 and 1/1 retrograde mean motion resonances in the 3-body problem
composed of a solar mass star, a Jupiter mass planet and an additional body with zero mass (elliptic restricted 3-body problem)
or masses corresponding to either Neptune, Saturn or Jupiter (planetary 3-body problem). For each system we obtain stability
maps using the n-body numerical integrator REBOUND and computing the chaos indicator mean exponential growth factor of
nearby orbits (MEGNO). We show that families of periodic orbits exist in all configurations and they correspond to the libration
of either a single resonant argument or all resonant arguments (fixed points). We compare the results obtained in the elliptic
restricted 3-body problem with previous results in the literature and we show the differences and similarities between the phase
space topology for these retrograde resonances in the circular restricted, elliptic restricted and planetary 3-body problems.
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1 INTRODUCTION

A retrograde resonance configuration occurs when 2 objects orbit
a star in opposite directions and their orbital frequencies are com-
mensurable (Morais & Giuppone 2012). The study of retrograde
resonance in the framework of the circular restricted 3-body prob-
lem (Dobrovolskis 2012; Morais & Namouni 2013a; Namouni &
Morais 2015; Morais & Namouni 2016b), allowed the identification
of the first small bodies in retrograde resonances in the solar system,
namely Centaurs in retrograde resonances with Jupiter and Saturn
(Morais & Namouni 2013b) and asteroid (514107) Ka‘epaoka‘awela
in the 1/1 (co-orbital) retrograde resonance with Jupiter (Wiegert
et al. 2017; Morais & Namouni 2017; Namouni & Morais 2018).
More recently, the families of periodic orbits which are associated
with retrograde resonances have been computed in the spacial re-
stricted 3-body problem (Morais & Namouni 2019; Kotoulas & Voy-
atzis 2020a; Morais et al. 2021; Kotoulas et al. 2022) and elliptic
restricted 3-body problem (Kotoulas & Voyatzis 2020b,a; Kotoulas
et al. 2022)
The possibility of retrograde resonances in extra-solar systems has

been proposed byGayon&Bois (2008); Gayon-Markt &Bois (2009)
but no exhaustive studies on the stability of such configurations had
been conducted until now. The formation of systems with counter-
revolving planets is possible e.g. due to close encounters between
stars leading to exchange of planets between them (Malmberg et al.
2011). These captured planets may have high inclination orbits with
respect to the ones that formed in situ.
In this article we present a numerical investigation of retrograde

resonances in the planar planetary three body problem using stability
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and resonance maps. In Sect. 2 we explain our numerical search
methodology and we present results for the retrograde resonances
1/2, 2/1 and 1/1 in the elliptic and planetary three body problems.
In Sect. 3 we discuss these results and in Sect. 4 we present our
conclusions.

2 NUMERICAL STUDY OF RETROGRADE MEAN
MOTION RESONANCES

We consider the three body problem composed of a solar mass star
and two planets orbiting the star in opposite directions, one counter-
clockwise (prograde) and the other clockwise (retrograde). We use
the notation 𝑝/−𝑞 mean motion resonance to refer to a configuration
where 2 planets orbiting the star in opposite directions havemeanmo-
tions (average orbital frequencies) which are nearly commensurable
in the the ratio 𝑝/𝑞 (Morais & Namouni 2013a). We use the usual
notation for astrocentric orbital elements: 𝑎 (semi-major axis), 𝑇 (or-
bital period), 𝑒 (eccentricity), 𝐼 (inclination), 𝑀 (mean anomaly), 𝜔
(argument of pericenter), Ω (longitude of ascending node), 𝜆 (mean
longitude), 𝜛 (longitude of pericenter). Variables with subscript 𝑝
refer to the prograde planet and those without subscript refer to the
retrograde planet. The prograde planet has mass 0.001𝑀� and the
unit distance is its mean distance to the star, i.e. 𝑎𝑝 = 1. In the el-
liptic restricted 3-body problem (ER3BP) the retrograde planet has
zero mass, and in the planetary 3-body problem it has mass equal to
either Neptune (0.00005149𝑀�), Saturn (0.0002857𝑀�) or Jupiter
(0.001𝑀�). We investigate the stable configurations of planar sys-
tems in the 1/-2, 2/-1 and 1/-1 mean motion resonances.
The numerical integration of the equations of motion were per-

formed using REBOUND with the adaptive step integrator IAS15
(Rein & Spiegel 2015) and in some cases (especially high eccentric-
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ity orbits) using the Bulirsch-Stoer method implemented in MER-
CURY (Chambers 1999). The integration for a particular object was
stopped when the mutual distance to another object was smaller that
the sum of their radii (collision) or when the distance to the star was
larger than 10 𝑎𝑝 (escape).

We assume a counter-clockwise reference frame. The longitudes
defined in the orbital plane for the prograde planet (with counter-
clockwisemotion) aremeasured in the direction of the object’s orbital
motion, hence 𝜆𝑝 = Ω𝑝 +𝜔𝑝 +𝑀𝑝 ,𝜛𝑝 = Ω𝑝 +𝜔𝑝 , while those for
the retrograde planet (with clockwise motion) are measured against
the direction of the object’s orbital motion, hence 𝜆 = Ω − 𝜔 − 𝑀 ,
𝜛 = Ω−𝜔. This is also the the convention used within REBOUND.

We construct stability and resonant maps. The stability maps are
obtained by computation of the chaotic indicator MEGNO, which
converges to 2 for stable orbits while values greater than 2 indicate
chaos (Cincotta & Simó 2000; Goździewski 2003). The resonant
maps indicate regions of libration of the resonant angle of the circular
restricted 3-body problem which for a 𝑝/−𝑞 mean motion resonance
is 𝜙0 = −𝑞𝜆 − 𝑝𝜆𝑝 + (𝑝 + 𝑞)𝜛 (Morais & Namouni 2013a). There
are also regions of libration of both 𝜙0 and𝜛 −𝜛𝑝 (which indicates
a fixed point of the resonant problem), identified by a white symbol.
Regions of libration of a single resonant argument different from
𝜙0 (which we will define shortly for each resonance) are identified
by a black symbol. The color bar in the resonant maps indicates the
semi-amplitude of 𝜙0 libration i.e. themaximumvariation around the
resonant center. We identify fixed points when both 𝜙0 and 𝜛 −𝜛𝑝

librate (around either 0 or 𝜋) with semi-amplitude less than 𝜋/4.

We construct 2 types of maps: 1) eccentricity of the prograde
planet versus eccentricity of the retrograde planet with initial semi-
major axis fixed at the nominal resonance location 𝑎 = (𝑞/𝑝)2/3; 2)
eccentricity versus semi-major axis of the retrograde planet at fixed
initial prograde planet’s eccentricity. In 1) we used a grid of 80×80
initial eccentricities in the range [0, 1] while in 2) we have initial
(𝑎, 𝑒) in a 40×40 (low resolution) or 80×80 grid (high resolution).
In both cases we integrated for 2 × 105 𝑇𝑝 .

We set the initial longitudes of the nodes to be zero (Ω = Ω𝑝 = 0).
The initial inclination of the retrograde planet with respect to the
prograde planet’s orbital plane is set to 𝐼 = 179.99◦. In some cases
we will see differences between this nearly-coplanar case with results
presented for strictly 2D cases (where the zed components of the
positions and velocities of all objects are strictly zero). In practice
this means that such 2D periodic orbits are vertically unstable and
will not exist in real systems. Therefore, integrating the nearly co-
planar case is more relevant for studying the dynamics of real systems
which will never be exactly coplanar.

We investigate all possible permutations of aligned / anti-aligned
pericenters / apocenters separated by quadrants displayed in Figure
1. In 𝑄1, 𝜛𝑝 = 𝜛 = 0; in 𝑄2, 𝜛𝑝 = 0, 𝜛 = 𝜋; in 𝑄3, 𝜛𝑝 = 𝜛 = 𝜋;
in 𝑄4, 𝜛𝑝 = 𝜋,𝜛 = 0. The initial mean anomaly of the prograde
planet is 𝑀𝑝 = 𝜛𝑝 , while the mean anomaly of the retrograde body
is 𝑀 = 0 (Figure 1 (a)), or 𝑀 = 𝜋 (Figure 1 (b)). The Roman
numerals indicate pairing of initial configurations which, due to the
commensurability between the orbital periods, are equivalent with
a time-lag of half a period of the external object. This equivalence
is not exact due to the interaction between the planets during that
time-lag.

2.1 1/-2 Resonance

For resonance 1/-2 the resonant angles analyzed were:

𝜙0 = −2𝜆 − 𝜆𝑝 + 3𝜛 (1)

𝜙1 = −2𝜆 − 𝜆𝑝 + 3𝜛𝑝 (2)

𝜙2 = −2𝜆 − 𝜆𝑝 + 2𝜛𝑝 +𝜛 (3)

𝜙3 = −2𝜆 − 𝜆𝑝 +𝜛𝑝 + 2𝜛 (4)

Table 1 presents the summarized results of the 1/-2 resonant con-
figurations, indicating the object’s masses and libration angles.
In Figure 2 for 𝑀 = 0 (a) and 𝑀 = 𝜋 (b) we present the results for

the ER3BP. The color bar indicates the amplitude of the resonant an-
gle 𝜙0, where dark purple/blue indicates the resonance center. In the
1st quadrant (𝑄1) of the both maps there are periodic families where
𝜙0 and𝜛−𝜛𝑝 (hence also 𝜙1, 𝜙2, 𝜙3) librate simultaneously (fixed
point families) which we represent by overlaying white symbols in
the darker region. From Figure 1 we expect approximate symmetry
between the quadrants in Figure 2 (a) and (b). In fact, we see the
same structures in both panels but for 𝑀 = 𝜋 the fixed point family
in 𝑄1 has decreased while the 𝜙0 family has increased in quadrants
𝑄2, 𝑄3 and 𝑄4, in comparison with 𝑀 = 0.
The 1/-2 resonance at Jupiter to Sun mass ratio in the CR3BP

was studied in Morais & Namouni (2016a). In that work the 𝜙0 = 0
family starts at 𝑒 > 0.4 in agreement with our results (purple regions
at 𝑒𝑝 = 0 on right hand side of 2 (a) and (b)), while the 𝜙0 = 𝜋

exists from 𝑒 = 0 up to 𝑒 ≈ 0.8 also in agreement with our results
(purple regions at 𝑒𝑝 = 0 on left hand side of 2 (a) and (b)). The
1/-2 resonance was also studied in the ER3BP at Neptune to Sun
mass ratio in Kotoulas & Voyatzis (2020a). The fixed point family
which appears in the ER3BP at Jupiter to Sun mass ratio family (1st
quadrants of 2 (a) and (b)) is qualitatively in agreement with the
stable family computed by Kotoulas & Voyatzis (2020a).
The stability maps for the planetary problem when the second

planet has Neptune’s mass, are presented Figure 3. We can observe
the same resonant families present in the ER3BP, however, a new
fixed point resonance region appears in the first quadrant, near 𝑒𝑝 =

0.05. This happens for both cases 𝑀 = 0 and 𝑀 = 𝜋. In Figure 4
we show the orbital evolution corresponding to the initial conditions
marked with red circles in Figure 3. In both cases all resonant angles
and 𝜛 −𝜛𝑝 librate around 0 with small amplitude as expected for a
fixed point resonant family.
The stability maps for the planetary problem when the 2nd planet

has Saturn’s mass are presented in Figure 5. The fixed point family
of the ER3BP is still present in 𝑄1 while the additional fixed point
family within the 𝜙0 = 0 libration region which was observed when
the 2nd planet has Neptune’s mass is displaced to larger 𝑒𝑝 . There is
another fixed point family which appears in 𝑄3 at 𝑒𝑝 ≈ 0 within the
𝜙0 = 𝜋 libration region. In 𝑄1 and 𝑄2 a new family appears which
corresponds to libration of 𝜙3 only (represented by black overlaying
symbols).
The stability maps for the planetary problem when the 2nd planet

has Jupiter’s mass are presented in Figure 6 for 𝑀 = 0 and 𝑀 = 𝜋.
The resonant families in this case are qualitatively similar to the ones
present in Figure 5 but with the difference that libration of 𝜙0 only is
absent in the case of 2 jovian planets. In Figure 7 we show the orbital
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Figure 1. Configurations displayed in 4 quadrants which represent the initial orientations of the pericenters / apocenters, and initial conditions 𝑀𝑝 = 𝜛𝑝 and
𝑀 = 0 (a) or 𝑀 = 𝜋 (b). The Roman numerals indicate pairing of initial configurations which, due to the commensurability between the orbital periods, are
equivalent with a time-lag of half a period of the external object.

Table 1. Table reporting the summarized results for the 1/-2 resonance. The notation 𝜙0,1,2,3 indicates fixed point libration (𝜙0 and 𝜛 − 𝜛𝑝 are fixed), and
either 𝜙0 or 𝜙3 indicates libration of a single angle.

Mass Resonance Figure

𝑄1 𝑄2 𝑄3 𝑄4

ER3BP(𝑀 = 0) 𝜙0,1,2,3 and 𝜙0 𝜙0 𝜙0 𝜙0 2a
ER3BP(𝑀 = 𝜋) 𝜙0,1,2,3 and 𝜙0 𝜙0 𝜙0 𝜙0 2b
NEPTUNE(𝑀 = 0) 𝜙0,1,2,3 and 𝜙0 𝜙0 𝜙0 𝜙0 3a
NEPTUNE(𝑀 = 𝜋) 𝜙0,1,2,3 and 𝜙0 𝜙0 𝜙0 𝜙0 3b
SATURN(𝑀 = 0) 𝜙0,1,2,3 and 𝜙3 𝜙0 and 𝜙3 𝜙0,1,2,3 𝜙0 5a
SATURN(𝑀 = 𝜋) 𝜙0,1,2,3 and 𝜙3 𝜙0 and 𝜙3 𝜙0,1,2,3 𝜙0 5b
JUPITER(𝑀 = 0) 𝜙0,1,2,3 and 𝜙3 𝜙3 𝜙0,1,2,3 - 6a
JUPITER(𝑀 = 𝜋) 𝜙0,1,2,3 and 𝜙3 𝜙0 and 𝜙3 𝜙0,1,2,3 and 𝜙0 - 6b
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(a)

(b)

Figure 2. Resonant maps for the 1/-2 resonance in the elliptic restricted three
body problem (a)𝑀 = 0; (b)𝑀 = 𝜋. The color bar represents the amplitude
of the restricted angle (𝜙0) and the overlaying white symbols indicate the
fixed point family where all resonant angles librate around a center. The
orange and gray lines indicate collision at time zero or after half a period of
the external object, respectively.

evolution corresponding to the initial conditions marked with red
circle in Figure 6 (𝑒 = 0.49, 𝑒𝑝 = 0.48). In this case 𝜙3 is the only
angle librating while the others are circulating. The eccentricities
of both bodies exhibit simultaneous periodic variations with larger
amplitude for the prograde planet.

2.2 2/-1 Resonance

For the retrograde resonance 2/1 the resonant angles analyzed were:

𝜙0 = −𝜆 − 2𝜆𝑝 + 3𝜛 (5)

𝜙1 = −𝜆 − 2𝜆𝑝 + 3𝜛𝑝 (6)

𝜙2 = −𝜆 − 2𝜆𝑝 +𝜛𝑝 + 2𝜛 (7)

(a)

(b)

Figure 3. Resonant maps for the 1/-2 resonance in the planetary problem
when the 2nd planet has Neptune’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The orange and gray lines indicate collision at time zero or
after half a period of the external object, respectively.

𝜙3 = −𝜆 − 2𝜆𝑝 + 2𝜛𝑝 +𝜛 (8)

Table 2 presents the summarized results of the 2/-1 resonant con-
figurations, indicating the object’s masses and libration angles.
The stability maps for the ER3BP are presented in Figure 8 for

𝑀 = 0 (a) and𝑀 = 𝜋 (b). The color bar indicates the amplitude of the
resonant angle 𝜙0, where dark purple/blue indicates the resonance
center. The top panel (a) corresponds to the resonant center 𝜙0 = 0
while the bottom panel (b) corresponds to the resonant center 𝜙0 =
𝜋. From Figure 1 we expect approximate symmetry between the
quadrants 𝑄1 and 𝑄3, 𝑄2 and 𝑄4 at fixed 𝑀 = 0 or 𝑀 = 𝜋, which
we indeed observe in Figure 8 (a) and (b). There are fixed point
families in the four quadrants for 𝑀 = 0: 2 large islands in 𝑄1 and
𝑄3 and 2 smaller islands in 𝑄2 and 𝑄4. There are regions where
there is libration of the angle 𝜙0 near 𝑒𝑝 = 0 on the left and right of
panel (a), and a few points in 𝑄1 and 𝑄3 that correspond to libration

MNRAS 000, 1–18 (2022)
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Table 2. Table reporting the summarized results for the 2/-1 resonance. The notation 𝜙0,1,2,3 indicates fixed point libration (𝜙0 and 𝜛 − 𝜛𝑝 are fixed), and
either 𝜙0 or 𝜙3 indicates libration of a single angle.

Mass Resonance Figure

𝑄1 𝑄2 𝑄3 𝑄4

ER3BP(𝑀 = 0) 𝜙0,1,2,3,𝜙0 and 𝜙3 𝜙0,1,2,3,𝜙0 and 𝜙3 𝜙0,1,2,3,𝜙0 and 𝜙3 𝜙0,1,2,3,𝜙0 and 𝜙3 8a
ER3BP(𝑀 = 𝜋) 𝜙0,1,2,3 - 𝜙0,1,2,3 - 8b
NEPTUNE(𝑀 = 0) 𝜙0,1,2,3,𝜙0 and 𝜙3 𝜙0,1,2,3,𝜙0 and 𝜙3 𝜙0,1,2,3,𝜙0 and 𝜙3 𝜙0,1,2,3,𝜙0 and 𝜙3 9a
NEPTUNE(𝑀 = 𝜋) 𝜙0,1,2,3 - 𝜙0,1,2,3 - 9b
SATURN(𝑀 = 0) 𝜙0,1,2,3 and 𝜙3 𝜙0 and 𝜙3 𝜙0,1,2,3 and 𝜙3 𝜙0 and 𝜙3 11a
SATURN(𝑀 = 𝜋) 𝜙0,1,2,3 - 𝜙0,1,2,3 - 11b
JUPITER(𝑀 = 0) 𝜙0,1,2,3 and 𝜙3 𝜙3 𝜙0,1,2,3 and 𝜙3 𝜙0,1,2,3,𝜙0 and 𝜙3 12a
JUPITER(𝑀 = 𝜋) 𝜙0,1,2,3 - 𝜙0,1,2,3 - 12b

of the angle 𝜙3. For 𝑀 = 𝜋 there are fixed point families in quadrants
𝑄1 and 𝑄3.
The 2/-1 resonance at Jupiter to Sun mass ratio in the CR3BP

was studied in Morais & Namouni (2016a) and Kotoulas & Voyatzis
(2020b). According to these works, the 𝜙0 = 0 is present at nearly all
values of 𝑒 in agreement with our results (purple regions at 𝑒𝑝 = 0 on
right and left hand sides of Figure 8 (a)), while the 𝜙0 = 𝜋 exists from
𝑒 > 0.6 in the planar problem when 𝑒𝑝 = 0. This latter family does
not appear in Figure 8 (b) because it is vertically unstable (Kotoulas
& Voyatzis 2020b). As we integrate the 3D equations of motion, our
problem is not strictly 2D and therefore we do not recover vertically
unstable families. In practice, strictly planar systems do not exist
hence we do not expect to find real systems in resonant configurations
which are vertically unstable. The 2/-1 resonance at Jupiter to Sun
mass ratio was also studied in the ER3BP by Kotoulas & Voyatzis
(2020b). Our results are in agreement regarding the fixed point point
families at in Figure 8 (a). However the fixed point point families in
Figure 8 (b) have not been reported by Kotoulas & Voyatzis (2020b).
The stability maps for the planetary problem when the 2nd planet

has Neptune’s mass are presented in Figure 9. At 𝑒𝑝 ≈ 0 on the left
and right hand side of panel (a) there are now 2 fixed point families,
corresponding to configurations where the pericenters are aligned
(in 𝑄1 and 𝑄3) or anti-aligned (in 𝑄2 and 𝑄4). The latter family
was already present in the ER3BP. The family associated with the
2 large fixed point regions in 𝑄1 and 𝑄3 is nearly identical to the
family observed in the ER3BP. There are also 4 regions distributed in
the 4 quadrants where the angle 𝜙2 librates. It’s clear the symmetry
between 𝑄1 and 𝑄2, and also 𝑄3 and 𝑄4. For 𝑀 = 𝜋 we obtain
the exactly the same structures that observed in ER3BP: two fixed
resonance families at large 𝑒𝑝 in 𝑄1 and 𝑄3. In Figure 10 we show
the orbital evolution corresponding to the initial conditions marked
with red circle in Figure 9. In this case all resonant angles and𝜛−𝜛𝑝

librate around either 0 or 𝜋 with small amplitude as expected for a
fixed point resonant family.
The stability maps for the planetary problem when the 2nd planet

has Saturn’smass are presented in Figure 11. In Figure 11 (a) (𝑀 = 0)
the main difference from the case when the 2nd planet has Neptune’s
mass is the destruction of the fixed point region near 𝑒𝑝 = 0 at large
𝑒. In Figure 11 (b) (𝑀 = 𝜋) we see that the fixed point family at large
𝑒𝑝 in 𝑄1 and 𝑄3 is reduced with respect to the ER3BP and the case
of a 2nd planet with Neptune’s mass.
The stability maps for the planetary problem when the 2nd planet

has Jupiter’s mass are presented in Figure 12. In Figure 12 (a) we
observe the same structures already described in the case where the
2nd planet has Saturn’smass. However, althoughwe expectmirroring
of the resonant structures observed in𝑄1 and𝑄3, and also in𝑄2 and
𝑄4, as the initial conditions in these configurations are approximately

equivalent with a time lag equal to half a period of the external body
(Figure 1), it is now clear that there is no exact symmetry. This is
due to the non negligible interaction between the 2 jovian planets
during that time lag which implies that the configurations are not
exactly equivalent. In particular, there is a small fixed point family in
quadrant 𝑄4 near 𝑒𝑝 = 0.75 which is not present in 𝑄2. In 𝑄1 and
𝑄3 of Figure 12 (b) the fixed point family present at smaller masses
of the 2nd planet does no longer exist but there are 2 new fixed point
small islands.
In Figure 13 we show the orbital evolution corresponding to the

initial condition marked with red circle in 𝑄1 of Figure 12 (a). In
this case only the resonant angle 𝜙2 librates while all other resonant
angles circulate. Unlike the behavior observe in 1/−2 resonance, in
2/−1 resonance the amplitude of the eccentricity of the retrograde
planet is higher than the prograde body. In Figure 14, we show the
orbital evolution corresponding to the initial condition marked with
red circle in 𝑄4 of Figure 12 (a). In this case there is a fixed point
resonance where 𝜙1 and 𝜙3 librate around 0 while 𝜙0 and 𝜙2 around
𝜋. Figure 15 shows that the initial condition marked with red circle
in 𝑄1 of Figure 12 (b), corresponds to a fixed point resonance.

2.3 1/-1 resonance

For resonance 1/-1 the resonant angles analyzed were:

𝜙0 = −𝜆 − 𝜆𝑝 + 2𝜛 (9)

𝜙1 = −𝜆 − 𝜆𝑝 + 2𝜛𝑝 (10)

𝜙2 = −𝜆 − 𝜆𝑝 +𝜛𝑝 +𝜛 (11)

Table 3 presents the summarized results of the 1/-1 resonant con-
figurations, indicating the object’s masses and libration angles.
The stability maps for the ER3BP are presented in Figure 16 for

𝑀 = 0 (a) and𝑀 = 𝜋 (b). The color bar indicates the amplitude of the
resonant angle 𝜙0, where dark purple/blue indicates the resonance
center. The top panel (a) corresponds to 𝑀 = 0, which implies
𝜙0 = 0 in 𝑄1, 𝑄4, and 𝜙0 = 𝜋 in 𝑄2, 𝑄3, while the bottom panel
(b) corresponds to 𝑀 = 𝜋, which implies 𝜙0 = 𝜋 in 𝑄1, 𝑄4, and
𝜙0 = 0 in 𝑄2, 𝑄3. From Figure 1 we expect approximate symmetry
between 𝑄1 (𝑄3) at 𝑀 = 0 and 𝑄3 (𝑄1) at 𝑀 = 𝜋, and also between
𝑄2 (𝑄4) at 𝑀 = 0 and 𝑄4 (𝑄2) at 𝑀 = 𝜋. However, it is again
clear that this symmetry is not exact. In this case we did not observe
fixed point families for 𝑀 = 0. We have obtained fixed families for
𝑀 = 𝜋 in𝑄1 and𝑄4, however these families occur when the planet’s
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Table 3. Table reporting the summarized results for the 1/-1 resonance. The notation 𝜙0,1,2 indicates fixed point libration (𝜙0 and 𝜛 − 𝜛𝑝 are fixed), while
𝜙0 indicates libration of the CR3BP angle.

Mass Resonance Figure

𝑄1 𝑄2 𝑄3 𝑄4

ER3BP(𝑀 = 0) 𝜙0 𝜙0 𝜙0 𝜙0 16a
ER3BP(𝑀 = 𝜋) 𝜙0,1,2 and 𝜙0 𝜙0 𝜙0 𝜙0,1,2 and 𝜙0 16b
NEPTUNE(𝑀 = 0) 𝜙0,1,2 and 𝜙0 𝜙0 𝜙0 𝜙0 17a
NEPTUNE(𝑀 = 𝜋) 𝜙0,1,2 and 𝜙0 𝜙0 𝜙0,1,2 𝜙0,1,2 and 𝜙0 17b
SATURN(𝑀 = 0) 𝜙0 𝜙0 𝜙0 - 18a
SATURN(𝑀 = 𝜋) 𝜙0,1,2 𝜙0 𝜙0 𝜙0 18b
JUPITER(𝑀 = 0) - - 𝜙0,1,2 - 20a
JUPITER(𝑀 = 𝜋) 𝜙0,1,2 - - - 20b

eccentricity, 𝑒𝑝 , is near 1 and thus their long term stability requires
further investigation. Moreover, the region corresponding to 𝜙0 = 𝜋

libration at large eccentricity 𝑒, is wider when 𝑀 = 𝜋 (Figure 16 (b))
than when 𝑀 = 0 (Figure 16 (a)).
The 1/-1 resonance at Jupiter to Sun mass ratio in the CR3BP

was studied in Morais & Namouni (2016b, 2019). There are 2 planar
resonant modes: 𝜙0 = 0 which is stable when 𝑒 > 0.1 and whose
center occurs at the nominal resonance location, 𝑎 = 1, when 𝑒 > 0.5
in agreement with our results (purple regions at 𝑒𝑝 = 0 on right hand
side of Figure 16 (a) and left hand side of Figure 16 (b)); 𝜙0 = 𝜋

which occurs at the nominal resonant location 𝑎 = 1 when 𝑒 > 0.75
also in agreement with our results (purple regions at 𝑒𝑝 = 0 on left
hand side of Figure 16 (a) and right hand side of Figure 16 (b)).
The stability maps for the planetary problem when the 2nd planet

has Neptune’s mass are presented in Figure 17. At the center of 𝜙0
family of the ER3BP there is now a fixed point family near 𝑒𝑝 = 0
seen on right side of Figure 17 (a) and left side of Figure 17 (a).
Although this fixed point family appears to have gaps in Figure 17, a
zoom of this region with a higher resolution grid shows that it is in
fact a continuous family.
The stability maps for the planetary problem when the 2nd planet

has Saturn’s mass are presented in Figure 18. At the nominal reso-
nance location 𝑎 = 1 we only obtain stable solutions with 𝜙0 = 𝜋

at large 𝑒. When 𝑒𝑝 ≈ 0 there is a fixed point family at the center
of the 𝜙0 = 𝜋 region which appears with starting 𝑀 = 𝜋 (Figure 18
(b)) but not 𝑀 = 0 (Figure 18 (a)). Figure 19 shows the stability map
in 𝑄1 for the planetary problem when the 2nd planet has Saturn’s
mass, with initial conditions 𝑎 = 1.01, 𝑀 = 0, 𝜛 = 𝜛𝑝 = 0 (hence
𝜙0 = 0). The fixed point family in this case is displaced from the
nominal resonance location.
The stability maps for the planetary problem when the 2nd planet

has Jupiter’s mass are presented in Figure 20. In this case the stable
islands are associated with fixed point families which occur for the
initial angle 𝜙0 = 𝜋 seen in 𝑄3 in Figure 20 (a) and in 𝑄1 in Figure
20 (b), while most other initial conditions lead to collision or escape.
Figure 21 shows the orbital evolution of the initial condition marked
by red circle in Figure 20 (b) (𝑒0 = 0.94, 𝑒𝑝 = 0.47). The stability
islands above and below the collision line at fixed 𝑀 = 0 or 𝑀 = 𝜋

in 20 are not exactly symmetric (as we would expect as inverting
the direction of motion of both planets results in the same relative
motion) since they correspond to initial conditions with a time-lag
of half a period (Figure 1). This also explains the mirrored structures
in quadrants 𝑄3 (Figure 20 (a)) and 𝑄1 (Figure 20 (a)).
We present (𝑎, 𝑒) stability maps in Figure 22 using initial condi-

tions from Figure 20. In this case, the color bar indicates theMEGNO
value of the system, being stable blue/purple and unstable yellow, and
the integration time span is 2 × 105 𝑇𝑝 . In 22 (a) we fix 𝑒𝑝 = 0.9 in
order to explore the smaller fixed point island in Figure 20 (b). We
see that in this case there are 2 branches of the fixed point family,
one at 𝑎 = 1, and the other at 𝑎 ≈ 1.03. In 22 (a) we fix 𝑒𝑝 = 0.4 in
order to explore the larger fixed point island in Figure 20 (b). In this
case the fixed point family is centered at 𝑎 = 1.
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(a)

(b)

Figure 4. Orbital evolution as a function of time for the initial conditions
circled in Figure 3a (𝑄1, 𝑀 = 0). In (a) the initial conditions are 𝑒 = 0.91
and 𝑒𝑝 = 0.058. In (b) the initial conditions are 𝑒 = 0.45, 𝑒𝑝 = 0.5. In (a)
and (b ) the 1st panel shows the semi-major axis of the third body, the 2nd
panel shows its orbital eccentricity, the 3rd panel shows the difference Δ𝜛
between the longitudes of pericenter, the 4th panel shows the resonant angles
𝜙0, 𝜙1, 𝜙2, and 𝜙3.

(a)

(b)

Figure 5. Resonant maps for the 1/-2 resonance in the planetary problem
when the 2nd planet has Saturns’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The black symbols indicate libration of 𝜙3 only. The orange
and gray lines indicate collision at time zero or after half a period of the
external object, respectively.
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(a)

(b)

Figure 6. Resonant maps for the 1/-2 resonance region considering the third
body with Jupiter’s mass (a)𝑀 = 0; (b)𝑀 = 𝜋. The color bar represents the
amplitude of the restricted angle (𝜙0) and the overlaying points are the fixed
point resonant where all resonant angles defined in this region librates around
a center. The black symbol represents the libration of 𝜙3. The orange and
gray lines indicate collision at time zero or after half a period of the external
object, respectively.

Figure 7. Orbital evolution as a function of time for the initial conditions
circled in Figure 6a (𝑄1, 𝑀 = 0). The initial conditions are 𝑒 = 0.49,
𝑒𝑝 = 0.48. The 1st panel shows the semi-major axes of both planets, the
2nd panel shows their eccentricities, the 3rd panel shows the difference Δ𝜛
between the longitudes of pericenter, the 4th panel shows the resonant angles
𝜙0, 𝜙1, 𝜙2, and 𝜙3.
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(a)

(b)

Figure 8. Resonant maps for the 2/-1 resonance in the elliptic restricted three
body problem (a)𝑀 = 0; (b)𝑀 = 𝜋. The color bar represents the amplitude
of the restricted angle (𝜙0) and the overlaying white symbols indicate the
fixed point family where all resonant angles librate around a center. The black
symbol represents the libration of 𝜙3. The orange and gray lines indicate
collision at time zero or after half a period of the external object, respectively.

(a)

(b)

Figure 9. Resonant maps for the 2/-1 resonance in the planetary problem
when the 2nd planet has Neptune’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The black symbol represents the libration of 𝜙3. The orange
and gray lines indicate collision at time zero or after half a period of the
external object, respectively.
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Figure 10. Orbital evolution as a function of time for the initial conditions
circled in Figure 9a (𝑄4, 𝑀 = 0). The initial conditions are 𝑒 = 0.718,
𝑒𝑝 = 0.125. The 1st panel shows the semi-major axes of both planets, the
2nd panel shows their eccentricities, the 3rd panel shows the the difference
Δ𝜛 between the longitudes of pericenter, the 4th panel shows the resonant
angles 𝜙0, 𝜙1, 𝜙2, and 𝜙3.

(a)

(b)

Figure 11. Resonant maps for the 2/-1 resonance in the planetary problem
when the 2nd planet has Saturns’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The black symbol represents the libration of 𝜙3. The orange
and gray line are the collision lines in 𝑡 = 0 and 𝑡 = 𝑇𝑒𝑥𝑡/2 respectively.
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(a)

(b)

Figure 12. Resonant maps for the 2/-1 resonance in the planetary problem
when the 2nd planet has Jupiter’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The black symbol represents the libration of 𝜙3. The orange
and gray lines indicate collision at time zero or after half a period of the
external object, respectively.

Figure 13. Orbital evolution as a function of time for the initial conditions
circled in Figure 12a (𝑄1, 𝑀 = 0). The initial conditions are 𝑒 = 0.48,
𝑒𝑝 = 0.46. The 1st panel shows the semi-major axes of both planets, the
2nd panel shows their eccentricities, the 3rd panel shows the difference Δ𝜛
between the longitudes of pericenter, the 4th panel shows the resonant angles
𝜙0, 𝜙1, 𝜙2, and 𝜙3.

Figure 14. Orbital evolution as a function of time for the initial conditions
circled in Figure 12a (𝑄4, 𝑀 = 0). The initial conditions are 𝑒 = 0.10,
𝑒𝑝 = 0.76. The 1st panel shows the semi-major axes of both planets, the
2nd panel shows their eccentricities, the 3rd panel shows the difference Δ𝜛
between the longitudes of pericenter, the 4th panel shows the resonant angles
𝜙0, 𝜙1, 𝜙2, and 𝜙3.
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Figure 15. Orbital evolution as a function of time for the initial conditions
circled in Figure 12b (𝑄1, 𝑀 = 𝜋). The initial conditions are 𝑒 = 0.08,
𝑒𝑝 = 0.65. The 1st panel shows the semi-major axes of both planets, the
2nd panel shows their eccentricities, the 3rd panel shows the difference Δ𝜛
between the longitudes of pericenter, the 4th panel shows the resonant angles
𝜙0, 𝜙1, 𝜙2, and 𝜙3.

(a)

(b)

Figure 16.Resonant maps for the 1/-1 resonance in the elliptic restricted three
body problem (a)𝑀 = 0; (b)𝑀 = 𝜋. The color bar represents the amplitude
of the restricted angle (𝜙0) and the overlaying white symbols indicate the
fixed point family where all resonant angles librate around a center. The
orange and gray lines indicate collision at time zero or after half a period of
the external object, respectively.
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(a)

(b)

Figure 17. Resonant maps for the 1/-1 resonance in the planetary problem
when the 2nd planet has Neptune’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The orange and gray lines indicate collision at time zero or
after half a period of the external object, respectively.

(a)

(b)

Figure 18. Resonant maps for the 1/-1 resonance in the planetary problem
when the 2nd planet has Saturn’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The orange and gray lines indicate collision at time zero or
after half a period of the external object, respectively.
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Figure 19. Resonant map for the 1/-1 resonance in the planetary problem
when the 2nd planet has Saturns’s mass with initial conditions and 𝑎 = 1.01,
𝑀 = 0,𝜛 = 𝜛𝑝 = 0. The color bar represents the amplitude of the restricted
angle (𝜙0) and the overlaying white symbols indicate the fixed point family
where all resonant angles librate around a center.

(a)

(b)

Figure 20. Resonant maps for the 1/-1 resonance in the planetary problem
when the 2nd planet has Jupiter’s mass (a) 𝑀 = 0; (b) 𝑀 = 𝜋. The color
bar represents the amplitude of the restricted angle (𝜙0) and the overlaying
white symbols indicate the fixed point family where all resonant angles librate
around a center. The orange and gray lines indicate collision at time zero or
after half a period of the external object, respectively.
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Figure 21. Orbital evolution as a function of time for the initial conditions
circled in Figure 20b (𝑄1, 𝑀 = 𝜋). The initial conditions are 𝑒 = 0.94,
𝑒𝑝 = 0.47. The 1st panel shows the semi-major axes of both planets, the
2nd panel shows their eccentricities, the 3rd panel shows the difference Δ𝜛
between the longitudes of pericenter, the 4th panel shows the resonant angles
𝜙0, 𝜙1 and 𝜙2.

(a) 𝑒𝑝 = 0.9.

(b) 𝑒𝑝 = 0.4.

Figure 22. Stability map for resonance 1/-1 Jovian planetary system. The
initial orbital elements adopted were 𝑀 = 𝜋, 𝜔 = 𝜔𝑝 = 0. (a) 𝑒𝑝 = 0.9
(40x40 grid); (b) 𝑒𝑝 = 0.4 (8x80 grid). The color bar represents the MEGNO
value. The black line represents the collision line.
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3 DISCUSSION

In the planar CR3BP (Morais & Namouni 2013a, 2016a,b, 2019;
Morais et al. 2021) the periodic orbits associated with the resonant
families correspond to fixed resonant angle 𝜙0 = −𝑞𝜆 − 𝑝𝜆𝑝 + (𝑝 +
𝑞)𝜛 (Morais & Namouni 2013a), being either 0 or 𝜋, with 𝜛 circu-
lating. We have seen here that in the ER3BP (non-zero eccentricity
𝑒𝑝) and in the planetary 3 body problem (2nd planet with non-zero
mass) fixed point families of periodic orbits appear. Generally, as the
mass ratio of the 2nd planet with respect to the 1st planet increases up
to 1, the fixed point regions dominate the stable phase space. How-
ever, in the case of the 1/-2 and 2/-1 resonances, when the 2nd planet
has Saturn’s or Jupiter’s mass, we saw that there are stable regions
associated with libration of a mixed angle: 𝜙3 = −2𝜆−𝜆𝑝 +𝜛𝑝 +2𝜛
(1/-2); 𝜙3 = −𝜆 − 2𝜆𝑝 + 2𝜛𝑝 +𝜛 (2/-1). If we define the prograde
planet to always be interior to the retrograde planet, then at the 2/-
1 resonance 𝜙3 = −𝜆𝑝 − 2𝜆 + 2𝜛 + 𝜛𝑝 which coincides with the
definition of 𝜙3 at the 1/-2 resonance. This is expected since if the
exterior planet is in the 1/-2 resonance with the interior planet, then
the interior planet is in the 2/-1 resonance with the exterior planet,
and the resonant argument is the same. As expected there is also
exact symmetry between these configurations for the 1/-2 and 2/-1
resonances when the planets have identical masses.
Figure 23 shows periodic orbits of the planetary 3-body problem

seen in the frame rotating with the prograde planet’s true longitude
angle, as defined in Hadjidemetriou & Voyatzis (2011). They have
similar shapes to the periodic orbits of the CR3BP for these reso-
nances, except for the variation of the prograde’s planet orbit as it
moves between pericenter and apocenter, represented by the blue line
on the x-axis (Morais & Namouni 2013a, 2016a).

1/−1

φ = 0 φ = π

1/−2

2/−1

Figure 23. Orbits in synodic reference frame: 1/-1 (upper), 1/-2 (middle),
2/-1 (bottom) for 𝜙 = 0 and 𝜋. The synodic orbit referred to the retrograde
planet are represented in black. Except for the example of 2/−1 for 𝜙 = 𝜋

which is obtained using Jupiter’s mass, the others are obtained using the mass
of Neptune. All examples chosen are fixed points taken from the maps of the
three previous chapters. The blue line represents the prograde planet orbit in
a synodic reference frame which moves on the x-axis when 𝑒𝑝 ≠ 0.

4 CONCLUSION

In this studywe showed that there are stable configurations for the 1/2,
2/1 and 1/1 retrograde resonances in the planetary 3-body problem
composed of a solar mass star, a Jupiter mass planet and a 2nd planet
with either zero mass (ER3BP), or a non-zero mass equal to Neptune,
Saturn or Jupiter. We saw that there are significant changes in the
resonant phase space as we increase the mass ratio of the 2nd planet
with respect to the 1st planet.
In general, in the case of a 2nd planet with Neptune’s mass, there

are no significant differences in stability with respect to the ER3BP,
except for the appearance of additional fixed point families within
the stable regions. As the mass of the 2nd planet increases the fixed
point families become more predominant within the stable phase
space. This happens for the 1/-2, 2/-1 and 1/-1 resonances.
The 1/1 retrograde resonance in the E3RBP has stable regions of

quasi-periodic orbits associated with the CR3BP resonant centers
𝜙0 = 0 and 𝜙0 = 𝜋, and an additional family of fixed point periodic
orbits appears at large eccentricity of the prograde planet, 𝑒𝑝 . There
are also stable retrograde coorbital configurations in the planetary 3-
body problem. As the 2nd planet’s mass increases, the 𝜙0 = 0 center
becomes less stable than the 𝜙0 = 𝜋 center, which occurs at large 𝑒.
In the case of 2 Jovian mass planets the stable regions correspond
to fixed point periodic families with 𝜙0 = 𝜋 and 𝜛 − 𝜛𝑝 = 0, that
occur at large eccentricities.
The results presented in this article depend on the mass ratios and

relative distances only hence may be applied to other systems. It has
been proposed that counter revolving resonant planetary systemsmay
exist around other stars (Gayon & Bois 2008; Gayon-Markt & Bois

MNRAS 000, 1–18 (2022)



Resonances 1/-2, 2/-1, 1/-1 in planetary systems 17

2009). Our results show which stable configurations are possible and
therefore may guide searches for such systems.
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