

TERMO DE CONTRA-GRADIENTE BASEADO NA TEORIA DE TAYLOR E SIMULAÇÃO DE PRECIPITAÇÃO NA REGIÃO AMAZÔNICA

Eduardo Rohde Eras¹, Haroldo Fraga de Campos Velho¹ e Paulo Yoshio Kubota¹

¹Instituto Nacional de Pesquisas Espaciais, INPE

Resumo

A turbulência da Camada Limite Plantária (CLP) é parametrizada no Modelo Atmosférico Global Brasileiro (BAM: Brazilian Global Atmospheric Model) utilizando a teoria estatística de G. I. Taylor. Para melhorar a simulação dos efeitos não locais no transporte turbulento, foi implementado o termo de Contra-Gradiente (γ_{χ}), que gerou bons resultados para simulação de precipitação na região amazônica.

Palavras-chave: Contra-gradiente; Camada Limite Planetária; Teoria estatística de Taylor.

Abstract

The Planetary Boundary Layer (PBL) turbulence is parameterized in the Brazilian Global Atmospheric Model (BAM) using G. I. Taylor's statistical theory. To improve the simulation of non-local effects on turbulent transport, the Counter-Gradient term γ_{χ} was implemented, which generated good results simulating precipitation in the Amazon region.

Keywords: Counter-gradient; Planetary Boundary Layer; Taylor's statistical theory.

1. Introdução

Regida por ciclos diurnos e pelas diferenças geográficas regionais, a Camada Limite Planetária (CLP) é de grande importância para previsão meteorológica de tempo e clima e sua natureza turbulenta representa um desafio para modelagem numérica da atmosfera. No Modelo Atmosférico Global Brasileiro (BAM) utilizado pelo Instituto Nacional de Pesquisas Espaciais (INPE), essa modelagem é feita por parametrizações relacionadas à turbulência, que consideram diferentes teorias físicas e formulações matemáticas.

Uma nova parametrização para CLP sugerida para o modelo global baseada na teoria de G. I. Taylor (ERAS; CAMPOS VELHO; KUBOTA, 2023), mostrou bons resultados especialmente para precipitação. Para melhoria desta essa parametrização, Welter (2006) sugeriu o uso do termo de contra-gradiente (CG) também com base na teoria de Taylor, onde obteve-se bons resultados em um modelo regional de alta resolução (20*Km* na horizontal e 40 níveis verticais).

O presente trabalho mostra os primeiros resultados com o modelo global BAM-INPE usando a parametrização da CLP junto ao termo de CG baseados na teoria de Taylor, com foco na região Amazônica.

2. O modelo BAM

O BAM é o modelo espectral desenvolvido para previsão numérica do tempo e simulação climática, possui um código hidrostático tridimensional, o núcleo dinâmico é baseado no método espectral para representação das variáveis espaciais e utiliza métodos semi-lagrangiano e semiimplícito para integração temporal, utilizado em escalas de tempo que vão de dias até escalas climáticas e em resoluções horizontais da ordem de 10 km a 200 km (FIGUEROA et al., 2016). O BAM é usado para a previsão operacional diária pelo INPE.

XIII Workshop Brasileiro de Micrometeorologia, Alegrete-RS, 25-27 de outubro de 2023.

Originalmente, o modelo BAM conta com três parametrizações para a CLP: A parametrização de primeira ordem de *Holtslag & Boville* (HOLTSLAG; BOVILLE, 1993) (HB), a parametrização de primeira ordem de *Bretherton & Park* (BRETHERTON; PARK, 2009) (BP) e a parametrização de segunda ordem de *Mellor & Yamada* (MELLOR; YAMADA, 1982) (MY). No presente trabalho, é utilizado a nova parametrização de primeira ordem de *Taylor & Campos-Velho* (TCV) para CLP, baseada na teoria estatística de G. I. Taylor (ERAS; CAMPOS VELHO; KUBOTA, 2023).

3. A parametrização de Taylor e o termo de contra-gradiente

A teoria de transporte gradiente, ou "teoria K", propõe a substituição de primeira ordem de um termo turbulento da Reynolds pelo gradiente local de uma propriedade χ multiplicado por um termo de difusividade *K*, como visto na Equação 1:

$$\overline{w'\chi'} = -K_{\chi} \left(\frac{\partial \chi'}{\partial z}\right) . \tag{1}$$

A representação da turbulência pelo termo de difusividade K é chamada de "parametrização da turbulência". Uma das formas de se aproximar o termo K é utilizando uma parametrização baseada na teoria de G. I. Taylor

De acordo com Degrazia et al. (2000), a difusividade turbulenta baseada na teoria de Taylor é descrita como:

$$K_{\alpha\alpha} = \frac{\sigma_i^2 \beta_i}{2\pi} \int_0^\infty F_i(n) \left[\frac{\sin\left(2\pi nt/\beta_i\right)}{n} \right] dn$$
⁽²⁾

sendo $\alpha = (x, y, z)$ as direções cartesianas, i = (u, v, w) a direção do vento, σ^2 a variância da velocidade do vento, β_i a relação entre as escalas lagrangiana e euleriana, F_i o espectro adimensional da energia cinética, *n* uma frequência adimensional e *t* o tempo. Quando $t \to \infty$ (longos tempos de difusão), a expressão assintótica da difusividade é expressa como:

$$K_{\alpha\alpha} = \frac{1}{4} [\sigma_i^2 \beta_i F_i(0)] . \tag{3}$$

Fazendo as substituições apropriadas para σ_i^2 , $\beta_i \in F_i(0)$ e usando de argumentos de similaridade local e dados experimentais são obtidas as expressões de difusividade vertical K_{zz} para as Camada Limite Neutra (CLN) e Camada Limite Estável (CLE), vista na Equação 4, e também para a Camada Limite Convectiva (CLC), vista na equação 5:

$$\frac{K_{zz}}{u_*h} = \frac{0.33(1-z/h)^{\alpha_1/2}(z/h)}{1+3.7(z/h)(h/\Lambda)}$$
(4)

sendo u_* uma escala de velocidade, h a altura da CLP e Λ o comprimento de Monin-Obukhov local;

$$\frac{K_{zz}}{w_*h} = 1.6\psi^{1/3} \left[1 - \exp\left(-4\frac{z}{h}\right) - 0.0003 \exp\left(8\frac{z}{h}\right) \right]^{4/3}$$
(5)

onde w_* é uma escala de velocidade convectiva e *psi* é uma função de dissipação adimensional.

Uma vez definido o termo de difusividade vertical K_{zz} , a difusão turbulenta de uma quantidade χ é comumente tratada de forma local, como visto na Equação 1, onde transporte vertical é proporcional ao gradiente local, sendo válido nas CLE e CLN onde os vórtices turbulentos são menores que a altura *h* da CLA (HOLTSLAG; BOVILLE, 1993). No entanto, o transporte turbulento na CLC é muitas vezes feito por vórtices convectivos não-locais que se estendem por até toda extensão *h* da CLA, permitindo que o fluxo de uma quantidade χ ocorra até mesmo em direção contrária ao gradiente local (HOLTSLAG; BRUIJN; PAN, 1990).

$$\overline{w'\chi'} = -K_{\chi} \left(\frac{\partial \chi'}{\partial z} - \gamma_{\chi} \right)$$
(6)

A Equação 6 originalmente proposta por Deardorff (1966), mostra o termo γ_{χ} que representa o transporte não-local da quantidade χ , normalmente calor e umidade. De acordo com Troen e Mahrt (1986), o termo γ_{χ} não é utilizado para o transporte de momento, dado que as as térmicas não transportam eficientemente o momento em grandes distâncias devido aos efeitos da pressão.

No transporte de umidade, os efeitos não-locais costumam atuar na mesma direção do gradiente local, porém no transporte de temperatura a influência do termo γ_{χ} costuma atuar no sentido oposto ao gradiente local, de onde a expressão "contra-gradiente" (CG) é tradicionalmente associada a esse termo (HOLTSLAG; BOVILLE, 1993).

O termo de CG é descrito pela equação abaixo utilizando a notação adotada por Welter (2006):

$$\gamma_{\chi} = \beta_{g} \ell \frac{w_{*}^{2}}{\sigma_{w}} \frac{\chi_{*}}{h}$$
(7)

onde β é uma constante experimental, w_*^2 é a escala de velocidade convectiva, σ_w é a raiz quadrada da variância da velocidade vertical, *h* é a altura da camada limite e χ_* é quantidade média da propriedade χ dada pela Equação 8 (CUIJPERS; HOLTSLAG, 1998):

$$\chi_* = \frac{1}{hw_*} \int_0^h \overline{w'\chi'} \, dz \,. \tag{8}$$

O mesmo valor utilizado por Welter (2006) na calibração do termo CG, com $\beta = 0.02$, é mantido durante todas as simulações.

4. Experimento e configurações do modelo

Para avaliar o uso do termo de CG, foram realizadas 6 simulações com o BAM em modo euleriano, resolução horizontal TQ126 (aproximadamente 106km), resolução vertical de 28 camadas sigma e parametrização da CLP de TCV. Os resultados foram comparados com os *dados horários de reanálise do ERA5* (HERSBACH et al., 2018) utilizando três métodos, onde *a* é o dado simulado e *b* é dado de reanálise:

- Diferença Média (percentual): $DM(a,b) = \frac{1}{N} \sum_{i=0}^{N} (a_i b_i);$
- Erro Relativo Médio (superestimação ou subestimação): $ERM(a,b) = \frac{1}{N} \sum_{i=0}^{N} \frac{|a_i b_i|}{|a_i|};$
- Erro Médio Quadrático (diferença absoluta): $EMQ(a,b) = \left[\frac{1}{N}\sum_{i=0}^{N}(a_i-b_i)^2\right]^{\frac{1}{2}}$.

As simulações foram feitas em dois períodos de 360 horas (duas semanas): o período "úmido", entre 15 de Janeiro de 2014 às 12h00 e 30 de Janeiro de 2014 às 12h00 e o período "seco", entre 15 de Setembro de 2014 às 12h00 e 30 de Setembro de 2014 às 12h00 ¹. Para cada período foram feitas três simulações: uma usando a implementação do termo de CG de HB, uma usando a implementação de TCV e uma última não utilizando nenhum termo de CG.

Seguindo a sugestão de Eras, CAMPOS VELHO e Kubota (2023), os resultados foram avaliados para a região definida entre latitude -12.5 até 0 e longitude -70 até -50, aqui denominado *região amazônica*. As variáveis avaliadas foram a temperatura média à 2 metros (*K*), altura da CLP (*m*), radiação de topo (Wm^{-2}), cobertura de nuvens (%) e precipitação média total ($kg(m^2 \times dia)^{-1}$).

5. Resultados

O perfil do CG visto na Figura 1 foi obtido fazendo a média de todos os valores de γ_z gerados pela implementação do CG de TCV durante o período de 2 horas de simulação, separados pela altura adimensional z/h. O perfil obtido é condizente com a descrição de CAMPOS VELHO et al. (1998), onde os autores informam que a formulação do CG baseada na teoria de Taylor atua mais intensamente próxima ao topo da camada limite.

¹As nomenclaturas "seco" e "úmido" referenciam às chamadas estações seca e úmida da bacia amazônica que ocorrem nos períodos avaliados.

Figura 1 – Perfil to termo de CG adimensional da implementação de TCV

5.1 Estação seca

Verifica-se na Tabela 1 que a implementação do CG de TCV obteve o menor erro para Precipitação em relação aos dados de reanálise do ERA5 nos três cálculos de diferença. Também verifica-se um menor erro para Radiação de Topo, indicando um melhor balanço de energia para simulação usando o CG de TCV. A implementação de HB obteve o melhor resultado de temperatura e altura da CLP nos três cenários. Em praticamente todas as circunstâncias, a simulação sem nenhum CG obteve os piores resultados apontando uma clara vantagem no uso do termo γ_{χ} .

O bom resultado numérico para precipitação pode ser observado visualmente fazendo o acumulado de precipitação sobre a região Amazônica nas duas semanas de simulação em relação as duas diferentes implementações do CG. Na Figura 2 verifica-se uma menor diferença do EMQ em relação aos dados do ERA5 para simulação utilizando o CG de TCV, especialmente no acumulado das partes norte e oeste da Amazônia.

Tabela 1 – DM, ERM e EMQ em relação aos dados do ERA5 na região Amazônica na estação seca com a resolução TQ126. Os valores em negrito ressaltam o menor erro de cada variável.

Erro	Método	Temp.	Alt. CLP	Rad. Topo	Nuvens	Precipitação
	Taylor	1.9172 ^o K	486.5812 <i>m</i>	21.2835 Wm ⁻²	0.1412%	$-0.0200 kg(m^2 day)^{-1}$
DM	Holtslag	0.0737°K	131.6978m	$22.2554Wm^{-2}$	0.1019%	$1.7273kg(m^2 day)^{-1}$
	Nenhum	1.9808°K	434.0991 <i>m</i>	$25.6630Wm^{-2}$	0.0982%	$0.3559kg(m^2day)^{-1}$
	Taylor	0.6636°K	129.9477 <i>m</i>	8.8049Wm ⁻²	0.3157%	$3.6657 kg(m^2 day)^{-1}$
ERM	Holtslag	0.5204°K	69.1960m	8.9917Wm ⁻²	0.3001%	$4.9422kg(m^2day)^{-1}$
	Nenhum	0.7069 ^o K	123.9015 <i>m</i>	9.7478 <i>Wm</i> ⁻²	0.3141%	$4.1067 kg(m^2 day)^{-1}$
	Taylor	3.2269°K	652.5201 <i>m</i>	38.4345 <i>Wm</i> ⁻²	0.3922%	$10.8219 kg(m^2 day)^{-1}$
EMQ	Holtslag	2.6349°K	408.0517m	$38.0463 Wm^{-2}$	0.3819%	$12.3050kg(m^2day)^{-1}$
	Nenhum	3.4375° <i>K</i>	607.9832 <i>m</i>	$41.6002Wm^{-2}$	0.3931%	$11.8335kg(m^2day)^{-1}$

5.2 Estação úmida

Na Tabela 2 verifica-se que o CG de TCV teve a menor DM para Precipitação, mas perdeu para HB no ERM e no EMQ. Na radiação de Topo os resultados foram muito próximo para as duas implementações sendo melhores para TCV nos ERM e EMQ. Novamente a implementação de HB manteve os melhores resultados para altura da CLP e a simulação sem nenhum termo de CG ficou majoritariamente com os piores resultados.

Mesmo que o CG de TCV não tenha tido o melhor resultado numérico de Precipitação na estação úmida da região Amazônica, ainda é possível observar na Figura 3 um menor erro no acumulado nas partes central e leste da Amazônia em relação a simulação feita utilizando HB.

(a) CG de HB.

(b) CG de TCV.

Figura 2 – Raiz do erro quadrático médio do acumulado de precipitação de duas semanas na estação seca sobre a Amazônia, usando as implementações do CG de HB na Figura 2a e de TCV na Figura 2b, em relação aos dados de reanálise do ERA5.

Tabela 2 – DM, ERM e EMQ em relação aos dados do ERA5 na região Amazônica na estação úmida com a resolução TQ126. Os valores em negrito ressaltam o menor erro de cada variável.

Erro	Método	Temp.	Alt. CLP	Rad. Topo	Nuvens	Precipitação
	Taylor	0.3905°K	194.3592 <i>m</i>	43.2331 <i>Wm</i> ⁻²	0.0161%	$-0.6839 kg(m^2 day)^{-1}$
DM	Holtslag	-0.7043°K	19.7096 m	$41.8347 Wm^{-2}$	0.0132%	$-1.6260 kg(m^2 day)^{-1}$
	Nenhum	0.4774 ^{<i>o</i>} K	181.7449 <i>m</i>	43.1196 <i>Wm</i> ⁻²	0.0128%	$-0.8714kg(m^2day)^{-1}$
	Taylor	0.3996°K	66.0388 <i>m</i>	17.9143Wm ⁻²	0.1278%	$10.3379kg(m^2day)^{-1}$
ERM	Holtslag	0.4429 ^{<i>o</i>} K	47.0669 m	17.9468 <i>Wm</i> ⁻²	0.1258%	$9.8378 kg(m^2 day)^{-1}$
	Nenhum	0.4310°K	65.6748 <i>m</i>	18.3532 <i>Wm</i> ⁻²	0.1281%	$10.5672kg(m^2day)^{-1}$
	Taylor	2.0190°K	400.5924 <i>m</i>	60.6039Wm ⁻²	0.1970%	$21.9740kg(m^2day)^{-1}$
EMQ	Holtslag	2.1686°K	292.7037 m	$60.9253Wm^{-2}$	0.1913%	$21.5308 kg(m^2 day)^{-1}$
	Nenhum	2.1729 ^{<i>o</i>} K	385.5080 <i>m</i>	62.1015 <i>Wm</i> ⁻²	0.1953%	22.4186 $kg(m^2 day)^{-1}$

(a) CG de HB.

(b) CG de TCV.

Figura 3 – Raiz do erro quadrático médio do acumulado de precipitação de duas semanas na estação úmida sobre a Amazônia, usando as implementações do CG de HB na Figura 3a e de TCV na Figura 3b, em relação aos dados de reanálise do ERA5.

6. Conclusão

O termo γ_{χ} apresentou o perfil esperado e se mostrou benéfico em praticamente todos os cenários, mostrando a influência positiva do CG da CLP na simulação global. Comparando as duas implementações do CG, a implementação de TCV foi promissora na previsão de precipitação na Amazônia, uma variável importante para essa região dominada por florestas e grandes rios. A implementação de TCV, originalmente concebida para um modelo regional de alta resolução (WELTER, 2006), com esses resultados mostrou-se uma boa consistência física quando aplicada a um modelo global de baixa resolução. Os resultados aqui apresentados fizeram uso da calibração original do

termo de CG onde $\beta = 0.02$, sendo o objeto de pesquisas futuras uma nova calibração desse termo visando melhores resultados globais.

Referências Bibliográficas

BRETHERTON, C. S.; PARK, S. A new moist turbulence parameterization in the community atmosphere model. **Journal of Climate**, v. 22, n. 12, p. 3422–3448, 2009.

CAMPOS VELHO, H. F.; HOLTSLAG, A. M.; DEGRAZIA, G.; SR, R. P. New parameterizations in **RAMS for vertical turbulent fluxes**. Fort Colins (CO), USA, 1998.

CUIJPERS, J. W. M.; HOLTSLAG, A. A. M. Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers. **Journal of the Atmospheric Sciences**, American Meteorological Society, v. 55, n. 2, p. 151–162, 1998.

DEARDORFF, J. W. The counter-gradient heat flux in the lower atmosphere and in the laboratory. **Journal of the Atmospheric Sciences**, American Meteorological Society, v. 23, n. 5, p. 503–506, 1966.

DEGRAZIA, G.; ANFOSSI, D.; CARVALHO, J.; MANGIA, C.; TIRABASSI, T.; CAMPOS VELHO, H. Turbulence parameterisation for pbl dispersion models in all stability conditions. **Atmospheric environment**, Elsevier, v. 34, n. 21, p. 3575–3583, 2000.

ERAS, E. R.; CAMPOS VELHO, H. F.; KUBOTA, P. Y. Taylor's statistical theory applied to the turbulence parameterization in the bam-inpe global atmospheric model. **Geoscientific Model Development Discussions**, Göttingen, Germany, v. 2023, p. 1–23, 2023.

FIGUEROA, S. N.; BONATTI, J. P.; KUBOTA, P. Y.; GRELL, G. A.; MORRISON, H.; BARROS, S. R.; FERNANDEZ, J. P.; RAMIREZ, E.; SIQUEIRA, L.; LUZIA, G. et al. The brazilian global atmospheric model (bam): performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. **Weather and Forecasting**, v. 31, n. 5, p. 1547–1572, 2016.

HERSBACH, H.; BELL, B.; BERRISFORD, P.; BIAVATI, G.; HORÁNYI, A.; SABATER, J. M.; NICO-LAS, J.; PEUBEY, C.; RADU, R.; ROZUM, I. et al. Era5 hourly data on single levels from 1959 to present. **Copernicus Climate Change Service (C3S) Climate Data Store (CDS)**, ECMWF Reading, UK, v. 10, n. 10.24381, 2018.

HOLTSLAG, A. A. M.; BOVILLE, B. A. Local versus nonlocal boundary-layer diffusion in a global climate model. **Journal of climate**, v. 6, n. 10, p. 1825–1842, 1993.

HOLTSLAG, A. A. M.; BRUIJN, E. I. F. D.; PAN, H. L. A high resolution air mass transformation model for short-range weather forecasting. **Monthly Weather Review**, v. 118, n. 8, p. 1561–1575, 1990.

MELLOR, G. L.; YAMADA, T. Development of a turbulence closure model for geophysical fluid problems. **Reviews of Geophysics**, Wiley Online Library, v. 20, n. 4, p. 851–875, 1982.

TROEN, I. B.; MAHRT, L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. **Boundary-Layer Meteorology**, Springer, v. 37, n. 1-2, p. 129–148, 1986.

WELTER, M. E. S. **Modelagem do Termo de Contra Gradiente na parametrização de turbulência no modelo atmosférico BRAMS**. 2006. 71 f. Dissertação (Mestrado em Ciência da Computação) — Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2006.