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Abstract. This work presents a contribution towards generali the
representation of geospatial entities and theatiais for simulating complex
spatial systems using the agent-based approachanalgse the works in the
literature, and argue that each of the four tygeelation is necessary. These
relations can be grouped in two classes, placenamtseighbourhoods, with
likenesses and differences between them. Given wWatdefine requirements
for representing geospatial entities and theirti@ia, and study six toolkits for
ABM (Netlogo, OBEUS, Repast, Swarm, GRSP, and TerraMig|ysing their
capabilities to address the proposed requiremdtitally, we present our
current work and future directions on developing TrerraME toolkit.
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1 Introduction

The human being has always changed its environn@minges can occur at the
physical, social, and economic levels, ranging frabeforestation to global warming,
from individual mobility to seggregation patterrs, from an ordinary bargaining
between buyer and seller to an economic chain digsato name a few. They result
from complex interactions among the entities diyeand indirectly involved in the
system. The inherent complexity of the processesived in the system shows non-
linearity, displayed by a complex behaviour thaggents thresholds, positive and
negative feedback loops, lags in time and spasdiemce, heterogeneity, and, above
all, surprises [1].

The living earth is the natural support where carpklations evolve over time. It
has great influence in our decision-making process] in how we set up and
maintain relations, because we are grounded toepland regions with unique
characteristics and dynamics. Although some praductactors such as capital,
labour, or even information are less spatially ges(at least in developed places),
natural resources and consumers are where theyMameeover, even though the
newest communication technologies promise to igrtbee impact of distance on
human relations [2], proximity remains crucial iffeetive collaboration, and the
technological development mitigates only part & tiegative impacts of distance on
productivity [3].



With the development of technologies for acquisitend manipulation of data,
especially geospatial data, it is now possible tokvwith models at individual level.
It allows building up models with a higher disaggagon, which allows considering
the modifiable areal unit problem. Different methofbr data acquisition are
available, such as GPS and remotely sensed daisgysu participant observation,
and field and laboratory experiments. These metleadsbe combined to increase the
model effectiveness [4], but the main difficultyastls in how to manipulate the
diversity of data provided by these methods.

In the past, researchers have used Geographigriafmm Systems (GIS) to study
these interactions. But, although GIS have stramgtfonalities to manipulate and to
analyse geographical data, it is hard to model tzaipdynamics at individual level
within GIS environments because they are basedateamodels, instead oprocess
models [5]. Usually, GIS with embedded dynamicadictive models are built as
customized tools and work only with a specific @£ [6]. In fact, most of them are
created with physical rather than human processesind. The only way to model
social or economic problems is thinking in humahawour as if it was physical. For
example, applications that use Cellular Automat&)(for studying human behaviour
anthropomorphize the state variables of a cell.

Agent-Based Modelling (ABM) comes as an approachaftdressing these issues
broadly. ABM provides a bottom-up method for studyicomplex systems through
the dynamical interaction of agents. It allows esgnting individual behaviour and
cognitive process, which cannot be fully attaingdapproaches such as mathematical
or statistical modelling. Although some disbeliefttaken place on this approach [7-
9], it has been shown that ABM can unquestionabbtrdase our understanding of
human behaviour [10-13].

Newest software toolkits have made ABM easy endaghe attractive to areas
such as economics, sociology, anthropology, physital biology. The use of
simulation toolkits relieves the modeller of prograing the parts of the simulation
that are not content-specific, such as simulatmmtrol and data structures [14-16]. It
also increases the reliability and efficiency oé timodel, as the most complex parts
have been created and optimised by professionalalgsrs.

Recently, agent-based models have begun to usewoell spatial data for
studying complex spatial systems [17]. However, tnashe toolkits were initially
created to work with landscapes that do not condidle environment in which we
move and interact. They rely gron-groundedagents, in the sense that they do not
represent entities which can sense and act in r@septation of the real world. To
follow the current development, the toolkits hawecarry out the support for working
with spatial data.

This work presents a contribution towards gendradizthe representation of
geospatial entities and their relations for simntatomplex spatial systems using the
agent-based approach. We revise and analyse tHes\vothe literature, and define
requirements for representing geospatial entitrebs their relations. We focus on the
geographic needs — for general requisites theadrémdy a couple of works [14, 16,
18, 19]. We analyse some toolkits for ABM and ttadilities to address the proposed
requirements. Finally, we present our current wotwards fulfilling these
requirements in the TerraME toolkit.



2 Reviewingtheentitiesand their relations

In this section we present the works in the litematabout the relations between the
entities of agent-based models for complex spayatems. Before defining their
relations, we need to introduce the entities ofstesn, which belong to scale

2.1 Scaleand itscomponents

Gibson and others review the idea of scale in iterature of social science,
especially related to the human dimensions of dglebhgironmental change [20]. The
causes and outcomes of the human actions can bsuradaat different levels along
multiple scales. Scale is a well-defined idea i@ tlatural sciences, but it has fuzzy
borders in the social sciences. Nevertheless,uti®es show that each scale has three
dimensions: spatial, temporal, and behavioural Iyical). In this work, we are
interested in computer simulations; therefore ediaension has to be discretized in
some way.

211 Thespatial component of a scale

The spatial data has to be divided into singleifiams, calledcells whose internal

content is homogeneous, in such a way that anygeham a cell affects all its
extension. With it, it is possible to change eaeh imdependently from the others,
which allows working with heterogeneous data.

GIS work with a partitioned space, be it a vectoraoraster data. Dividing the
space in rectangular entities has advantages beerectorial representation because
it simplifies the representation and helps creatiegghbourhood relations [21]. But
vector data can bring more reality, mainly when #patial data represents some
economic, political, or social convention.

2.1.2 Thebehavioural component of a scale

Instead of using a set of equations for descritilrg behaviour of a model in an
aggregated way, the behavioural entities are destras agents. Each agent can
affect itself, the space, and the other agents,tl@dnteractions between the agents
can produce an emergent pattern. Modelling withnegallows a more aggressive
exploration of characteristics such as imperfetionality, social and institutional
structures, and distinct behaviours in differeiclions.

Agents can represent geospatial entities such awmefa or householders.
Therefore, just like for representing the spacey ttan be associated to objects stored
in a geographic database, whose information lagatains the spatial representation
of the agents as well as their properties. Althotlgdre are some advances in visual
languages, the behaviour of agents and a complanyepéart of their properties still
have to be described in a programming languagedautise GIS environment.

213 Thetemporal component of a scale
Each entity of a model can have a frequency in itidecides its actions. There are
two choices for describing temporal events. Thetfis synchronous (parallel)



execution, where each agent is an independent ssocEhe advantage of this

approach is that the time one agent takes foritsstbn-making is always considered.
Thus, agents that need more time to compute tleeisihns are in disadvantage. The
main problem of this approach is that the moddibes to give some attention to avoid
temporal conflicts, which can significantly increabe complexity of the model.

The second alternative is asynchronous (sequergdedcution, with the time
discretized as a scheduler of actions. As an agswmally takes much more time to
perform changes in the geographic space than tgpetamits decisions, we can
usually ignore the processing time. Discrete tilhews a straightforward solution to
any temporal conflict between agents, defining edptermined history of events to
take place along the execution. It simplifies reqing models because the agents do
not work in parallel. Also, once there is not amnftict between the actions of the
agents, it is possible to simulate every paratih sising two sequential steps.

As each agent has its own frequency of executids,possible to have events with
different temporal frequencies, or even events woay only once. The capacity to
schedule events at different times allows the meddb simulate the temporal
aspects of the specific urban problem under st@gdy [

2.2 Relationsfollowing Torrensand Benenson

In each step of its execution, a model is at argtilme, which always increases. Once
the scheduler finishes all the events of a giveretiit increments the time and then
start processing the events of the next time. the entity is conceptually different
from the other two because their extents are caeiglavailable at each time step.
Therefore, we have agents and cells as the two emdities of a spatial phenomenon
at a given scale, while the time is in charge efdkecution flow.

A relation is a mapping that describes the conoactetween two entities.
Combining the two classes of entities, we have fgpes of relations: celbcell,
agent>cell, agert>agent and celbagent. Torrens and Benenson useaaer and
follower approach to define the spatial relations [23]. Téeder is responsible for
managing the relation, while the follower is a pes®bject. The aim of the authors is
to keep consistency in the relations, avoiding kctsfbetween the entities:

“[...] an application of the [...] rules that deiber these changes [on the
relations] might cause conflicts, when, in housiagplications, for
example, a landlord wants to sell his property,levtiie tenant does not
want to leave the apartment. Who has the righesirdy the relationship
between the tenant and the property, then? Thimpbearepresents the
general problem of consistency in managing relatips.”

Following the leader and follower idea, we haverageas leaders and cells as
followers. The relation celbcell has two followers; therefore it is a static
representation, storing spatial neighbourhoods.négeell specifies which cells one
agent has or controls. The agents are free to neathégyrelation.

The two other relations do not fit in the leaded dollower definition. One cell
cannot be a leader in a celhgent. The authors solve this relation by using a
backward query in agentcell. Agent->agent is not feasible because it is not possible
to define the leader of the relation. The authegua that the only way two agents
can communicate is by using the other availablatigels in a transitive way



(agent-cell, then celbcell, then cell>agent). Moreover, in their toolkit User's
Guide, Benenson and Harbash argue that “this ltiaitanight be inconvenient if you

develop psychological model, but, luckily, we modedt love affairs, but the

collective urban spatial phenomena” [24]. Tableutnsarises the four relations and
how the authors solve each one. The authors calielations between two entities of
the same type (agentagent and celbcell) asneighbourhoodand the other two as

geo-referencingThey consider the relations as belngary, that is, at each time, two
entities are either connected or not.

Table 1: Cell and agent relations, according t0.[23]

o omTO Cell Agent
cell Neighbourood relation Agents who are in a certain
(static) cell (backward query)
Agent Cells an agent _ Prohipi_ted relation
controls (dynamic) (transition)

3 A critical analysis of the leader and follower approach and a
new proposal

Torrens and Benenson cite an example of urbanicgnfb which the leader and
follower approach can solve the consistency protdbawn in the last section:

“Accounting for limitations of OBEUS (direct relatiships between
agents are not allowed) the way to force the tetmalgtave the property is
to raise their payment. The tenant (the leader e@nant-property
relationship) will likely end the relationship beiself in that case.”

Even accounting the limits of this approach, théhars argue that

“[tlhere is no proof that the majority of real-wdrkituations can be
imitated by the leader-follower pattern, although are not aware of
any natural instance where this pattern is insigffic”

The point on their example is that, in a real waitliation, the landowner cannot
one-sidedly increase the payment to force the teioaleave, because this relation is
often formally settled by a location contract. Towy legal way to the landowner
force the tenant to leave the property is by bmghkihe contract, accepting the
outcomes imposed by its clauses. For that, we woelld another agent with the
power to break the relation, even without the téreneement. Therefore, the leader
and follower approach cannot be used in this exampl

Even if we consider true the statement that raighey payment will force the
tenant to leave the property, we would need torassthat the seller owns all the
rights on the contract, except the right to caitc&ut any toolkit that intends to have
a generalized representation of the spatial estiti@ their relations cannot be limited
to anya priori statement. Therefore, guarantee consistency imefitions has to be
part of the model, instead of a restriction of thelkit, because there can be another
model that needs a different consistency in theticeis.

The proposal of having agertigent relations only in a strictly transitive way i
another limitation of using the leader and follovegproach. Patterns of change may



arise locally, but social structures do not haveatwd the technological development
makes it even more fragmented. In fact, there atations which do not rely on
geographical closeness.

Instead of trying to prove that this or that radatis not necessary in a modelling
toolkit, we propose that every relation type isessary. Whenever there is a conflict
over changing or not some relation, it has to bglémented in the model. The ways
to solve conflicts can be based on the idea of rutty proposed by Barber and
Martin [25]. They argue that:

“[a]n agent’s degree of autonomy [...] is the degie which the decision-
making process, used to determine how that goahffigent] should be
pursued, is free from intervention by any othemage

Conflicts can be solved by an agreement, when dkata follow arue consensysor
by a superior instance with more autonomy, caflegdervisor One agent isocally
autonomousonly when no other agent can affect its decisi@kimg. Barber and
Martin use the termocally autonomousnstead of just autonomous because they
consider one agent may have different levels afraarny for different goals.

We divide the relations in two groupstacementand neighbourhood Following
we describe each one, expose the reasons of #ssifitation, and argue that each
relation is necessary, presenting examples of wibiddsidentify or use them.

3.1 Placement relations

Each relation involving two entities of distinctps is aplacement Agent—cell
and cell»agent represent the relations of this group.-Galjent stores the agents
that belong to a cell. Each cell may have one orenagents within it, and one agent
can be at most in one place at any given time. €meeasily implement movement
on the space by changing this relation. This is fiest common representation
available in toolkits because there are many moakish use it, for example [13].

In the other side, agentcell represents the cells one agent controls, tsrge
watches, or any other objective depending on thest. This representation has a
growing use in studies on land-use, where one aggnésents a householder which
has to choose what to do with its own territory.ekample we can cite [26].

Two points are similar in placement relations. Thesbinary relations because, at
any given time, two entities are either connectedai. One agent controls or not a
cell; one agent is within or without a cell. Plagehrelations are alssymmetric if
an agent is within a given cell then the cell corgghe agent, and conversely. The
same rationale is valid for the agertell relation. Therefore we agree with Torrens
and Benenson in these relations. But we changedtdima geo-referencingto
placementbecause we are working with topological relaticars) geo-referencing is
closer to geometry than to topology.

3.2 Neighbourhood relations

Each relation involving two entities of the sameeyis aneighbourhoodWe have
two cases: celbcell and agentagent. A neighbourhood between cells represents
their spatial proximity. Common representationdude the well-known Euclidean



neighbourhoods, Moore and von Neumann, which reptea basic definition of
proximity: adjacency. But the geographic spacetbsifiis not restricted to Euclidean
spaces. Natural features such as mountains and ninay affect distances, and the
human action has significantly contributed for afiag proximity relations.
Neighbourhoods can be created from metrics suchdiagnce, visibility, or
accessibility. The result of these metrics canrbéhe form of weights, suggesting
strengths to the connections between cells.

The connection between two agents is often calféd or tie. A link can be based
on the time, the emotional intensity, the intimagputual confiding), and the
reciprocal services two agents spend with eachr 8. A recent work shows that
spatial proximity remains crucial in effective @dbration, and the technological
development mitigates only part of the negativedntp of distance on productivity
[3]. Moreover, geography remains crucial even inlina friendships. A study in a
blog network shows that geographic processes deanyn70% of on-line friendships
[28], but it does not mean the other 30% resulty &fiom non-spatial processes (the
Internet, in this case).

A set of interconnected entities, be they agentsetls, form anetwork From a
network we can extract metrics that describe thelevsomposition of the network,
providing signatures to compare it with other netso or even for creating synthetic
networks. Geospatial networks can be grouped issek with strong signatures,
distinct from one another and from non-geograplatmorks [29]. Social networks
differ from spatial networks (such as road netwpitkscause they are divided into
communities, presenting higher levels of clusterifg0]. Most agent-based
simulations use only basic network arrangementsathitrary ways or as a
computational criteria, but “it seems likely thatwork topology should have some
(and as yet unknown) effect on resulting proceasesemergent behaviour” [31].

A clear example of using agentigent relation for building networks for complex
spatial systems is inhain modelsin these models, we have groups of agents with
connections within and between groups. For instaagents may connect to others
according to economic interests to minimize proiuncéind transport costs. Recently,
we have seen the food crisis that has feared thiel Wwecause of its potential to cause
social and economic problems. One of the ways fzaby this problem is exploring
the whole economic chain, trying to identify theakpesses of its nodes and add
more value to them.

Differently from placements, neighbourhoods are bmtlean, butveighted The
weight of each neighbourhood points out the stiemgtthe connection between the
entities. Also, neighbourhoods are not symmetrisaddirected It is possible to have
A connected to B with a weight different from BAo Note that symmetric networks
are a subset of directed networks, therefore weheare symmetric neighbourhoods,
but not directed placements. Therefore, our appraodiffers to the proposal of
Torrens and Benenson in this case for both charsc$e directed and weighted.
Tablel summarizes the two typesrefationof our approach.



Table 1: Relations and their differences

Neighbour hood Placement
Agents Cells Agents Cells

Flow Information Agents, supplies No flow No flow
Type Weighted Weighted Binary Binary
Graph Directed Directed Symmetricgl Symmetrical

Amount of time, intimacy| Adjacency, contiguity,
Weight emotional intensity, continuity, distance, ~ ~

reciprocal services, accessibility, visibility

4 Requirementsfor smulating complex spatial systems

Simulating complex spatial systems using ABM ne&dS representations for both
entities and their relations. The requirementsteelao the relations are twofold:
create and manipulate them. The initial arrangerémtach relation can be created
within a GIS and loaded from the database to thelahoWVhen the relations are
previously stored in a database, it is possibleetiuce the simulation time whenever
we need to replicate the model to verify its cogesice, because create some of these
relations can be time demanding.

The requirements related to the entities are:

Space. The integration between a toolkit and a GIS shosigport reading
geographic data and their properties, in such athal/the objects of a layer
of information have a one-to-one mapping to thdiapabjects of the model.

Behaviour. As well as for representing the space, agentsbeaassociated to
objects stored in geographic databases, with aaspatation and properties.
As GIS work with spatial data in an object-orientealy, agents within a given
layer have the same properties and the same geonypt.

Time. Besides the scheduler, temporal data that is ex#gnt of the behavioural
description of the model, usually exogenous eventh as building a new
road, has to be manipulated by the temporal entitgn the data belongs to a
geospatial database. The temporal data availabkhendatabase has to be
automatically loaded before any behaviour take elat any given time.
Temporal changes can be data from the space, émsa@r the relations. The
modeller only has to keep in mind which propertlesagents can change, and
those which are going to be automatically read ftbendatabase, if any.

5 Toolkitsfor agent-based modelling

In this section, we present the most popular té®liir ABM and their extensions for
working with complex spatial systems. We analysthéy support the requirements
described in last section. The toolkits are Swad@ B3], Repast [34, 35], OBEUS
[23], and Netlogo [36]. We also study two toolkitsveloped by Brazilian institutes:
GRSP [37] and TerraME [38]. Due to space constaine do not present the toolkits
individually, but a general description of each barfound in their references.

Every toolkit can import some geographic data épresenting the space, but only
some of them support agents as geospatial entliesrm and Netlogo can load
raster data for representing space, in ASCIl ani PPortable Pix Map) formats,



respectively. Repast, OBEUS, and GRSP can reprds®ht space and agents as
geospatial entities. Repast uses shapefiles faoveata and ASCII for raster data,
OBEUS is a GIS whose objects can change their piepeand locations in time, and
GRSP accesses PostgreSQL databases. TerraME wibkselNular spaces, which
are rectangular grids with properties created fr@ster or vector data stored in
TerraLib databases [39], but it cannot represeahtsgwith geospatial data. None of
the analysed toolkits have any control over temipdatabases.

In the side of the relations, the most common regmtions available are
placement of agents into cells and neighbourhooceth$, but the toolkits usually do
not go further than Euclidean proximities. Excepsioare OBEUS, Repast and
TerraME. OBEUS and Repast can use complex vecteratqrs such as point-in-
polygon, buffering and intersection to calculate groximity between cells. OBEUS
uses the leader and follower approach to get agageéent transitively from the other
relations. TerraME uses a more general idea ofpmorimal spaces. It can access
complex neighbourhoods created not only by theiogla between two objects, but it
can also use a third component, for instance asp@h network, to calculate
proximity. It is called Generalized Proximity Ma¢rior GPM [40]. But, as TerraME
does not represent agents as geospatial entittese tis no way to create
neighbourhoods for agents.

The lack of complex neighbourhoods in toolkits isedo the difficulty to create
complex relations from scratch, which can be edsiljt within a GIS environment.
Moreover, it seems that agemagent relation is commonly left aside becauseithis
the only of the four relations that does not hang direct relation to the geographic
space. Probably that is why Torrens and Benensmive this relation using the other
relations to make the use of the geographic spapkcie. Table 2 summarizes the
capacities of the analysed toolkits.

Table 2: Comparison of the toolkits for working wghospatial data

. . Neighbour hood Placement
Toolkit Space | Time | Agents Agent Call AgenioCel | Cal>Agent
GRSP Vector . Vector . Euclidean Manipulate, .
data data create
Netlogo Raster * * * Euclidean| Manipulatg *
Vector . Vector | Transi- | Complex Manipulate, | Manipulate,
OBEUS :
data data tion operators create create
R Raster . Vector . Complex | Manipulate, .
epast
or vector data operators create
Swarm Raster * * * Euclidean Manipulate *
TerraME Cellular . . " GPM " Manipulate,
data create

6 Final comments

This work shows that each of the four relationsiégessary, and defines a set of
requirements for supporting simulation of complgatgal systems. We studied the
currently available toolkits and verified that thég not support all the requirements

* up to the modeller



presented in this work. The analysed toolkits usespatial data for representing
space, but only some use it for representing ag@&hire is no complete support for
the four relations, and there is no minimal tempaoamtrol. The only way to fulfil
these requirements is through a GIS integratiohgmtise the toolkit would be
limited because there is no other way to be alwmpo-dated with the novelties in
this area.

Currently, we are developing an ABM extension tora®IE for supporting all the
requirements presented in this paper, called TeE-28M. TerraME is a toolkit for
multiscale modelling of dynamical processes [38]isl based on Lua [41], one
extensible and high-level programming language ld@esl by PUC-RIo, in Brazil.
We have as hypothesis that the GPM is a founddtorsetting up the relations
between the entities of an agent-based modelfaulating geospatial phenomena.

To show that each of the four relations is necgssard that the GPM can model
these relations, we have as second objective telaevmodels using the three
relations that involve agents. They are:

Cell—»agent: We have developed a theoretical model that simslatcompetition
for space, where agents fight for the cells thejormp through a non-
cooperative game. We propose a definition of mghiind study how it can
affect the results of a given model. This work wsabmitted to the Journal of
Artificial Societies and Social Simulation. The ebtijive here is to build a
spatial database with the initial arrangement ef tiodel. With it, the model
will only load the arrangement, define the behaviad the agents, and
perform the games.

Agent—cell: The centre-north region of the Rondénia stateBiazil, has its
occupation history associated to colonization potsje induced migratory
flows, the BR-364 railway construction, and theabshment of development
poles [42]. The objective is to study the deforiéstatrajectory in this region
from individual decisions, modelling agents accogdio their farm size: small
and large [43]. There is an early work that usdhilee automata [44]. The
objective now is to model agents which decide wbalo with their own sets
of cells.

Agent—agent: The acai occurs naturally in the Amazonian floadplforest,
providing both fruit and the so-called heart of @m, or palmito [45, 46].
The objective is to study the acai economic chairRara, Brazil, exploring
questions such as its development and sustainaliliis model will be more
complex than the other two, once it involves agémtgifferent scales, and it
will not be limited to only the agentagent relation.
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