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Abstract: This work introduces a new, rapidly convergent, 
numerical method for internal loading distribution 
calculation in statically loaded single-row angular-contact 
ball bearings subjected to a known eccentric thrust load, 
which is applied to a variable distance (lever arm or 
eccentricity) from the geometric bearing centerline. 
Numerical results for a 218 angular-contact ball bearing 
have been compared with those from the literature and show 
significant differences in the magnitudes of the maximum 
ball load and extend of the loading zone. 
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1.   INTRODUCTION 

Ball and roller bearings, generically called rolling 
bearings, are commonly used machine elements. They are 
employed to permit rotary motions of, or about, shafts in 
simple commercial devices such as bicycles, roller skates, 
and electric motors. They are also used in complex 
engineering mechanisms such as aircraft gas turbines, 
rolling mils, dental drills, gyroscopes, and power 
transmissions. 

The standardized forms of ball or roller bearings permit 
rotary motion between two machine elements and always 
include a complement of ball or rollers that maintain the 
shaft and a usually stationary supporting structure, 
frequently called a housing, in a radially or axially spaced-
apart relationship. Usually, a bearing may be obtained as a 
unit, which includes two steel rings each of which has a 
hardened raceway on which hardened balls or rollers roll. 
The balls or rollers, also called rolling elements, are usually 
held in an angularly spaced relationship by a cage, also 
called a separator or retainer. 

There are many different kinds of rolling bearings. This 
work is concerned with single-row angular-contact ball 
bearings (Fig. 1) that are designed to support combined 
radial and thrust loads or heavy thrust loads depending on 
the contact angle magnitude. The bearings having large 
contact angle can support heavier thrust loads. Fig. 1 shows 
bearings having small and large contact angles. The bearings 
generally have groove curvature radii in the range of 52-
53% of the ball diameter. The contact angle does not usually 
exceed 40 degrees. 

This work is devoted to study of the internal loading 
distribution in statically loaded ball bearings. Several 
researchers have studied the subject as, for example, 
Stribeck [1], Sjoväll [2], Jones [3] and Rumbarger [4]. The 
methods developed by them to calculate distribution of load 
among the balls and rollers of rolling bearings can be used 
in most bearing applications because rotational speeds are 
usually slow to moderate. Under these speed conditions, the 

effects of rolling element centrifugal forces and gyroscopic 
moments are negligible. At high speeds of rotation these 
body forces become significant, tending to alter contact 
angles and clearance. Thus, they can affect the static load 
distribution to a great extension.  

 

 

 

 

 

 

 
 

Fig. 1.  Angular-contact ball bearing. 
 

The interest here is to describe a method for a specific 
load distribution consisting of a known eccentric thrust load, 
which is applied to a variable distance (lever arm or 
eccentricity) from the geometric bearing centerline. Harris 
[5] described a simplified method for eccentric thrust load 
calculation based in thrust and moment integrals whose 
values are obtained from tables or graphics given by 
Rumbarger, as a function of eccentricity and pitch diameter. 
The method presented here is more precise theoretically 
than the method described by Harris, and must be solved 
iteratively using a digital computer. The difference in 
accuracy mainly comes from the fact that the first use the 
pitch radius as lever arm, instead of the inner contact 
diameter, to have access the Rumbarger's tables and 
graphics. This obviously introduces an error. At first glance 
appears that the first method is more attractive than the 
second because it supplies results more directly whereas no 
computer is necessary. However, in despite of the simplicity 
of the former, comparative analyses between results show 
significant differences in the magnitudes of the maximum 
ball load and extend of the loading zone. 

 

2.   SYMBOLS 

a Semimajor axis of the projected contact, m 
A Distance between raceway groove curvature centers, m 
b Semiminor axis of the projected contact, m 
B fo + fi – 1, total curvature 
d Raceway diameter, m 
da Bearing outer diameter, m 
db Bearing inner diameter, m 
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dc Contact diameter, m 
de Bearing pitch diameter, m 
D Ball diameter, m 
e Eccentricity of loading, m 
E Modulus of elasticity, N/m2 

E´ Effective elastic modulus, N/m2 
E Elliptic integral of second kind 
f Raceway groove radius ÷ D 
F Applied load, N 
k a/b 
K Load-deflection factor, N/m3/2 
K Elliptic integral of first kind 
M eFa 
Pd Diametral clearance, m 
Pe Free endplay, m 
Q Ball-raceway normal load, N 
r Raceway groove curvature radius; solids curvature 

radius, m 
s Distance between loci of inner and outer raceway groove 

curvature centers, m 
R Curvature radius; radius of locus of raceway groove 

curvature centers, m 
Z Number of rolling elements 
β Contact angle, rad, o 
βf Free contact angle, rad, o 
γ D cos β / de 
Γ Curvature difference 
δ Deflection or contact deformation, m 
∆ψ Angular spacing between rolling elements, rad, o 
ε Load distribution factor 
θ Bearing misalignment angle, rad, o  
υ Poisson’s ratio 
φ Auxiliary angle 
ψ Azimuth angle, rad, o 
 
Subscripts: 
 
a Refers to solid a or axial direction  
b Refers to solid b 
x,y Refers to coordinate system 
i Refers to inner raceway 
j Refers to rolling element position 
n Refers to direction collinear with normal load; integer 

number 
o Refers to outer raceway 
t Refers to total axial deformation 
 

2.   GEOMETRY OF BALL BEARINGS 

In this section, the principal geometrical relationships for 
an unloaded ball bearing are summarized. The radial cross 
section of a single-row ball bearing shown in Fig. 2 depicts 
the diametral clearance and various diameters. The pitch 
diameter, de, is the mean of the inner- and outer-race 
diameters, di and do, respectively, and is given by 
 

( )oie ddd +=
2
1

.     (1) 

 

The diametral clearance, Pd, can be written as 
 

DddP iod 2−−= .     (2) 

 
Fig. 2. – Radial cross section of a single-row ball bearing. 

 
Race conformity is a measure of the geometrical 

conformity of the race and the ball in a plane passing 
through the bearing axis (also named center line or rotation 
axis), which is a line passing through the center of the 
bearing perpendicular to its plane and transverse to the race. 
Fig. 3 depicts a cross section of a ball bearing showing race 
conformity, expressed as 
 

Drf /= .       (3) 

 
Fig. 3. – Cross section of a ball and an outer race showing race 

conformity. 

 
Radial bearings have some axial play since they are 

generally designed to have a diametral clearance, as shown 
in Fig. 4(a). Fig. 4(b) shows a radial bearing with contact 
due to the axial shift of the inner and outer rings when no 
measurable force is applied. The radial distance between the 
curvature centers of the two races are the same in the Figs. 
4(a) and (b). Denoting quantities referred to the inner and 
outer races by subscripts i and o, respectively, this radial 
distance value can be expressed as A–Pd/2, where A = ro + ri 
– D is the curvature centers distance in the shifted position 
given by Fig. 4(b). Using (3) we can write A as 
 

A = BD,        (4) 
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where B = fo + fi – 1 is known as the total conformity ratio 
and is a measure of the combined conformity of both the 
outer and inner races to the ball. 

 
(a)                   (b) 

 
Fig. 4. – Cross section of a radial ball bearing showing ball-race contact 

due to axial shift of inner and outer rings. (a) Initial position. (b) 
Shifted position. 

 
The contact angle, β, is defined as the angle made by a 

line, that pass through the curvature centers of both the outer 
and inner raceways and that lies in a plane passing through 
the bearing rotation axis, with a plane perpendicular to the 
bearing axis of rotation. The free-contact angle, βf, (Fig. 
4(b)) is the contact angle when the line also passes through 
the points of contact of the ball and both raceways and no 
measurable force is applied. From Fig. 4(b), the expression 
for the free-contact angle can be written as 
 

A
PA d

f
2/cos −

=β .     (5) 

 
From (5), the diametral clearance, Pd, can be written as 

 
( )fd AP βcos12 −= .     (6) 

 
Free endplay, Pe, is the maximum axial movement of the 

inner race with respect to the outer when both races are 
coaxially centered and no measurable force is applied. Free 
endplay depends on total curvature and contact angle, as 
shown in Fig. 4(b), and can be written as 
 

fe AP βsin2= .     (7) 
 

Considering the geometry of two contacting solids 
(ellipsoids) in a ball bearing we can arrive at the two 
quantities of some importance in the analysis of contact 
stresses and deformations: The curvature sum, 1/R, and 
curvature difference, Γ, which are defined as 
 

yx RRR
111

+= , 











−=Γ

yx RR
R 11

, 

where 

bxaxx rrR
111

+= , 

byayy rrR
111

+= , 

 
with rax, rbx, ray and rby, being the radii of curvature for the 
ball-race contact. 

A cross section of a ball bearing operating at a contact 
angle β is shown in Fig. 5. Equivalent radii of curvature for 
both inner- and outer-race contacts in, and normal to, the 
direction of rolling can be calculated from this figure. 
Considering x the direction of the motion and y the 
transverse direction, the radii of curvature for the ball-inner-
race contact are 

2/Drr ayax == , 

β
β

cos2
cosDdr e

bx
−

= , 

iiby rDfr −=−= . 
 

The radii of curvature for the ball-outer-race contact are 
 

2/Drr ayax == , 

β
β

cos2
cosDdr e

bx
+

= , 

ooby rDfr −=−= . 
Let 

ed
D βγ cos

= . 

Then 

γ
γ−

=
1

2
Drbx , 









−

+−=+++=
γ
γ

1
214111111

ibyaybxaxi fDrrrrR
,  (8) 

γ
γ
γ
γ

−
+−

−
+

=









−−+=Γ

1
214

1
21

1111

i

i

byaybxax
i

f

f
rrrr

R , (9) 

for the ball-inner-race contact, and 
 

γ
γ+

−=
1

2
Drbx , 









+

−−=+++=
γ
γ

1
214111111

obyaybxaxo fDrrrrR
, (10) 
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Fig. 5. – Cross section of a ball bearing. 
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for the ball-outer-race contact. 

3.   CONTACT STRESS AND DEFORMATIONS 

When two elastic solids are brought together under a 
load, a contact area develops, the shape and size of which 
depend on the applied load, the elastic properties of the 
materials, and the curvatures of the surfaces. For two 
ellipsoids in contact the shape of the contact area is 
elliptical, with a being the semi-major axis in the y direction 
(transverse direction) and b being the semi-minor axis in the 
x direction (direction of motion). 

The elliptical eccentricity parameter, k, is defined as 
 

k = a/b. 
 

From [5], k can be written in terms of the curvature 
difference, Γ, and the elliptical integrals of the first and 
second kind, K and Ε, as 
 

( ) ( )
( )Γ−

Γ+−
=

1
12

E
EKkJ , 

where 

∫
−















 −−=

2/

0

2/1
2

2 sin111
π

ϕϕ d
k

K , 

∫ 













 −−=

2/

0

2/1
2

2 sin111
π

ϕϕ d
k

E . 

 
A one-point iteration method, which has been used 

successfully in the past, is used [6], where 
 

kn+1 = J(kn). 

 
When the ellipticity parameter, k, the elliptic integrals of 

the first and second kinds, K and Ε, respectively, the normal 
applied load, Q, Poisson’s ratio, ν, and the modulus of 
elasticity, E, of the contacting solids are known, we can 
write the semi-major and -minor axes of the contact ellipse 
and the maximum deformation at the center of the contact, 
from the analysis of Hertz [7], as 
 

3/126








′

=
E

QRka
π
E

,      (12) 

3/16








′
=

Ek
QRb

π
E

,      (13) 

3/12

2
9






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



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





′
=

Ek
Q

R π
δ

E
K ,     (14) 

where 

b

b

a

a

EE

E 22 11
2

υυ −
+

−
=′ . 

4. STATIC LOAD DISTRIBUTION UNDER 
ECCENTRIC LOAD 

Methods to calculate distribution of load among the balls 
and rollers of rolling bearings statically loaded can be found 
in various papers [5], [8]. The methods have been limited to, 
at most, three degrees of freedom in loading and demand the 
solution of a simultaneous nonlinear system of algebraic 
equations for higher degrees of freedom. Solution of such 
equations generally necessitates the use of a digital 
computer. In certain cases, however – for example, 
applications with pure radial, pure thrust or radial and thrust 
loading with nominal clearance – the simplified methods 
will probably provide sufficiently accurate results. 

Having defined a simple analytical expression for the 
deformation in terms of load in the previous section, it is 
possible to consider how the bearing load is distributed 
among the rolling elements. Most rolling-element bearing 
applications involve steady-state rotation of either the inner 
or outer race or both; however, the speeds of rotation are 
usually not so great as to cause ball or roller centrifugal 
forces or gyroscopic moments of significant magnitudes. In 
analyzing the loading distribution on the rolling elements, it 
is usually satisfactory to ignore these effects in most 
applications. In this section the load deflection relationships 
for ball bearings are given, along with a specific load 
distribution consisting of an eccentric thrust load of 
statically loaded rolling elements.  

4.1.  Load-Deflection Relationships for Ball Bearings 

From (14) it can be seen that for a given ball-raceway 
contact (point loading) 
 

2/3δKQ = ,      (15) 
where 
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39
2
K
EREkK ′= π . 

 
The total normal approach between two raceways under 

load separated by a rolling element is the sum of the 
approaches between the rolling element and each raceway. 
Hence 

oin δδδ += . 
Therefore, 

2/3

3/23/2 /1/1
1













+
=

oi
n KK

K  

and 
2/3

nnKQ δ= .     (16) 

4.2.  Ball Bearings under Eccentric Thrust Load 

Let a ball bearing with a number of balls, Z, 
symmetrically distributed about a pitch circle according to 
Fig. 6, to be subjected to an eccentric thrust load. Then, a 
relative axial displacement, δa, and a relative angular 
displacement, θ, between the inner and outer ring raceways 
may be expected. Let ψ = 0 to be the angular position of the 
maximum loaded ball. 

Fig. 7 shows the initial and final curvature centers 
positions at angular position ψ, before and after loading, 
whereas the centers of curvature of the raceway grooves are 
fixed with respect to the corresponding raceway. If δa and θ 
are known, the total axial displacement, δt, at angular 
position ψ, is given by 
 

( ) ψθδψδ cosiat R+= ,    (17) 
where 

( ) fiei DfdR βcos5.02/ −+=  
 

expresses the locus of the centers of the inner ring raceway 
groove curvature radii. 

Also, 
( ) θδδδ iat R+=≡ 0max .    (18) 

 
From (17) and (18), one may develop the following 

relationship 
 

( )



 −−= ψ

ε
δδ cos1

2
11maxt     (19) 

in which 









+=

θ
δ

ε
i

a

R
1

2
1

.     (20) 

 
The extend of the loading zone is defined by 

 

 
Fig. 6. – Ball angular positions in the radial plane that is perpendicular 

to the bearing’s axis of rotation, ∆ψ = 2π/Z, ψj = 2π/Z(j−1). 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. – Initial and final curvature centers positions at angular position 
ψ, with and without applied load. 

 








 −
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θ
δ
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a
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From Fig. 7, 

( ) 







+
−

= −

n

d

A
PA
δ

ψβ 2/cos 1      (22) 

and 
    ( ) ( ) fnt AA ββδψδ sinsin −+= .     (23) 

βf

Outer raceway groove
curvature center fixed 

Initial 
position, 
inner 
raceway 
groove 
curvature 
center 

A

Final 
position, 
inner 
raceway 
groove 
curvature 
center 

δa + Riθcosψ

s = A + δn 

β

A − Pd/2
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From (5) and (22), the total normal approach between 
two raceways at angular position ψ, after the thrust load has 
been applied, can be written as 
 

( ) 







−= 1

cos
cos

β
β

ψδ f
n A .     (24) 

 
From Fig. 7 and (24) it can be determined that s, the 

distance between the centers of the curvature of the inner 
and outer ring raceway grooves at any rolling element 
position ψ, is given by 

( )
β
β

δψ
cos

cos f
n AAs =+= .     (25) 

 
From (17), (23) and (24) yields, for ψ = ψj, 

 

    
( )

0
cos

sin
cos =

−
−+

j

fj
jia AR

β
ββ

ψθδ , j = 1,…, Z (26) 

 
From (16) and (24) yields, for ψ = ψj, 

 

    

2/3

2/3 1
cos
cos











−=

j

f
njj AKQ

β
β

, j = 1,…, Z. (27) 

 
If the external thrust load, Fa, is applied at a point distant 

e from the bearing’s axis of rotation then, for static 
equilibrium to exist 

    ∑
=

=
Z

j
jja QF

1

sin β ,          (28) 

    ∑
=

==
Z

j
jjjcja QdeFM

1

cossin
2
1 ψβ ,   (29) 

where jecj Ddd βcos−≡ . 
Substitution of (27) into (28) yields 

    01
cos
cos

sin
1

2/3

2/3 =









−− ∑

=

Z

j j

f
jnja KAF

β
β

β .  (30) 

Similarly, 

    01
cos
cos

sincos
2 1

2/3
2/3

=









−− ∑

=

Z

j j

f
jjcjnja dKAeF

β
β

βψ .  (31) 

 
Equations (26), (30) and (31) are Z+2 simultaneous 

nonlinear equations with unknowns δa, θ and βj, j = 1,…, Z. 
Since Knj and dcj are functions of final contact angle, βj, the 
equations must be solved iteratively to yield an exact 
solution for δa, θ and βj. 

4. NUMERICAL RESULTS 
A numerical method (the Newton-Rhapson method) was 

chosen to solve the simultaneous nonlinear equations (26), 
(30) and (31). To show an application of the theory 
developed in this work a numerical example is presented. I 

have chosen the 218 angular-contact ball bearing that was 
also used by [5]. Thus, the results generated here can be 
compared to a certain degree with the Harris results.  

The Figs. 8 to 10 show some parameters, as functions of 
the moment, M, under a 17,800 N applied thrust load.  
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Fig. 8. – Normal ball load, Q, for 17,800 N thrust load, as a function of 

the Moment, M. 
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Fig. 9. – Contact Angle, β, for 17,800 N thrust load, as a function of the 

Moment, M. 
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Fig. 10. – Loading zone, ψl, for 17,800 N thrust load, as a function of 
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Figs. 8 to 10 show a substantial difference between 
results found in this work and those found by Harris for an 
applied load eccentricity of 50.8 mm. While Harris found a 
5,878 N magnitude for the maximum normal ball load (p. 
252), this work found a 9,445 N maximum normal ball load. 
This represents an error of –62.2% in the normal load, 
meaning that Harris calculation has been underestimated the 
normal load for the maximum loaded ball. 

While Harris has been assumed a contact angle 
magnitude of 41.6o for all balls (p. 252), contact angles 
ranging from 44.317278511598211o to 16.16919216282055 
4o were found in this work, while ψ were varied from ψ = 0º 
to ±180o, respectively. This represents errors between –6.1% 
and +157.3% in the contact angles determination, meaning 
that Harris calculation has been underestimated (strongly 
overestimated) the contact angles for balls located at angular 
positions satisfying |ψ| < 45º (|ψ| > 45º). 

While Harris found a loading zone of 92.86º (p. 252), 
this work found a loading zone of 53.66º. This represents an 
error of +73% in the loading angle, meaning that the Harris 
calculation has been underestimated the effect of the 
moment M. 

5.  CONCLUSION 

A new, rapidly convergent, numerical method for 
internal loading distribution calculation in statically loaded 
single-row angular-contact ball bearings subjected to a 
known eccentric thrust load, which is applied to a variable 
distance (lever arm or eccentricity) from the geometric 
bearing centerline, has been introduced. The method 
requires the iterative simultaneous solution of Z+2 
simultaneous nonlinear equations with unknowns δa, θ and 
βj, j = 1,…, Z. Numerical results for a 218 angular-contact 
ball bearing have been compared with those from the 
literature and show significant differences in the magnitudes 
of the maximum ball load and extend of the loading zone. 
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