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ABSTRACT:

The relation between the segmentation parameters values and the segmentation result is far from being obvious. Therefore, in order  
to produce the desired outcome a complex and time consuming trial and error process is usually required. Automatic methods based 
on Genetic Algorithms (GA) have been proposed that endeavor to adjust automatically the segmentation parameters to a given set of  
reference segments  manually delineated by a human analyst.  The method searches the parameter space for a set  of values that  
optimizes a given fitness function,  which  should  express numerically the similarity between the segmentation outcome and the  
reference segments. The fitness functions proposed for that purpose were designed so that they achieve their extreme value when a 
perfect match with the reference is produced.  However, there is no theoretical foundation as well  as no experimental study that  
confirms  the adequacy of  these  adaptation  methods  when  a  perfect  match  is  not  possible.  This  corresponds  to  most  practical  
applications, in which the best attainable outcome differs from the reference, and the obtained similarity value departs from the ideal  
one. This work addresses these issues and investigates the performance of the GA based adaptation methods for a number of different  
similarity metrics on different types of reference objects.  Working on a Quickbird test  image, the study compares the different 
metrics and examines their  correlation degree.  The work lastly assesses if these metrics lead the GA to the same solution  and  
ultimately verify the assumptions underlying the GA adaptation method.

1. INTRODUCTION

Segmentation  is  a  key  step  in  object-based  image  analysis, 
mainly because  attaining  meaningful  objects  is  indispensable 
for a good classification. However, finding the relation between 
the segmentation parameters values and the segmentation result 
is  by no  means an  easy task.  In  fact,  the  search  for  suitable 
parameters usually requires a hard and time consuming trial and 
error process.

Automatic  methods  based  on  Genetic  Algorithms  (GA) have 
been successfully applied to tackle this issue (Pignalberi, (2003) 
and Zhang, (1996)). These methods aim to automatically adjust 
the  segmentation  parameters  to  a  given  set  of  reference 
segments delineated by a specialist, that represents what he/she 
considers  a  “good  segmentation”.  The  idea  is  to  search  the 
parameter space for a set of values that optimizes a given fitness 
function  that  numerically  represents  the  similarity  between 
segmentation and reference.

Nevertheless,  there  is no theoretical  foundation  that  confirms 
the  adequacy  of  these  adaptation  methods  when  the 
segmentation outcome differs from reference and the obtained 
similarity value departs from the ideal one. Different similarity 
metrics, for instance, may associate the same similarity value to 
different  segmentations  which  probably  would  not  be 
considered qualitatively equal by a human analyst. In fact, the 
relation between the evaluation given by these metrics and the 
human  perception  of  a  good  segmentation  is  yet  an  open 
subject.

In Feitosa et. al (2006) a genetic method for the adaptation of 
segmentation  parameters  was  proposed.  In  that  work  the 
formulation  of  the  fitness  function  privileged  applications  in 
which the objects to be segmented were homogeneous. A later 
study (Feitosa, 2009) extended the previous work by proposing 
a new fitness function which considered the objects of interest 
to  be  non-homogeneous,  though  formed  by  an  assembly  of 
homogeneous parts. The software prototype that implemented 
the former approach was also extended.

This work evaluates these two and other six different metrics in 
two experiments: the first verifies if these metrics are correlated 
and the second validates if they lead the GA to the same set of 
parameter values.

The experiments  were conducted  on  a  Quickbird image of a 
urban  area and used three different  sets  of reference objects. 
The software prototype formerly mentioned was extended with 
the  metrics  evaluated  in  this  work  and  the  segmentation 
procedure used is the one proposed in Baatz et. al (2000).

This paper is organized in the following way. The next section 
describes  briefly  some  fundamentals  about  the  segmentation 
procedure used in this work, the genetic adaptation method and 
correlation  theory.  A  detailed  description  of  the  similarity 
metrics  is  then presented.  The succeeding section  reports  the 
experimental results and the final section shows the conclusions 
and suggests future possible works.

* Corresponding author.
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2. FUNDAMENTALS

This  section  presents  a  brief  overview  on  techniques  and 
concepts underlying this work.

2.1 Segmentation Procedure

The segmentation  method  used  in  this  work  is  based  on  the 
region growing algorithm proposed in Baatz et. al (2000). It is a 
stepwise  local  optimization  algorithm  that  minimizes  the 
average heterogeneity of the image objects.

Objects  start  as  single  pixels  and  grow during the procedure 
merging to neighboring objects. In each processing step all the 
neighbors of an object are evaluated and the object is merged to 
the one which provides the smallest growth of heterogeneity, an 
arbitrary measure of heterogeneity, weighted by the object size, 
called  fusion factor. But  the fusion occurs only if this  factor 
also satisfies another  condition:  it  has to  be smaller than the 
square of the so called  scale parameter.  The procedure stops 
when no more fusions can be done.

Equation  1 shows  how  the  fusion  factor  f  is  calculated.  It 
contains a spectral heterogeneity component  hcolor and a spatial 
heterogeneity component hshape. The relative importance of each 
component is given by the color weight wcolor.

 (1)

Equation 2 shows the formulation of the spectral component of 
the fusion factor. Obj1 is the object selected for merging, Obj2 
is a neighbor object and  Obj3 is the result  of the merging of 
Obj1 and Obj2. In the equation,  c is a spectral band index and 
wc is an arbitrary band weight; n is the number of pixels of each 
object and σc is the standard deviation of the pixels' values of an 
object for band c.

 (2)

The formulation of the spatial component of the fusion factor is 
shown  in  Equation  3.  It  contains  a  compactness  component 
hcmpct and  a  smoothness  component  hsmooth.  The  relative 
importance of each component is given by the weight wcmpct.

 (3)

Equations  4  and  5  show  how  compactness  and  smoothness 
components  are  calculated.  In  the  equations  l represents  the 
perimeter of the objects and b their bounding box.

(4)

(5)

The  parameters  used  in  merging  decision  are  of  major 
importance  to  this  work  as  they  represent  an  adjustable 

heterogeneity criteria. This criteria can be defined by setting the 
values  of  the  external  segmentation  parameters:  the  spectral 
band  weights  (wc),  the  color  weight  (wcolor),  the  compactness 
weight (wcmpct) and the scale parameter.

Considering all the possible scenarios for a segmentation to take 
place  like  different  sensors,  intrinsic  characteristics  of  the 
investigated site and variable relevance for the same classes in 
different applications it  is  possible  to  conclude that finding a 
good set of parameters is far from being an easy task.

2.2 Genetic Algorithm

To  obtain  a  good  quality  segmentation  is  necessary  to  find 
suitable parameters, however it is almost impossible to identify 
a relation between them.

The user  can try a manual  adjustment,  nevertheless  there  are 
countless  possible  combinations,  what  usually  leads  to  the 
utilization of an automatic search algorithm for that matter. The 
method used in this work was introduced in Feitosa et. al (2006) 
and is briefly described in this section.

Genetic  Algorithms  are  stochastic  algorithms  for  search  and 
optimization based on the concepts of genetic inheritance and 
evolution. They are an heuristic to find the optimal solution for 
a given problem, leaded by a parallel search.

In this study, the desired solution is a set of parameters values 
that  minimizes  the  evaluation  function  (objective  function). 
This function represents how much a given solution fits to the 
reference set delineated by a specialist. The search is composed 
by a sort  of genetic operators  that act over the chromosomes 
which contain the segmentation parameters values codified in 
their genes.

In mathematical terms, given a set of reference segments R and 
a parameter vector  P, the task of the GA consists in searching 
for  the  parameter  vector  Popt,  for  which  the  value  of  F is 
minimum:

(6)

2.3 Correlation

In  this  work  rank  correlation  was  used  to  represent  the 
relationship between variables, instead of the classical, so called 
Pearson  correlation,  which  is  only  sensitive  to  linear 
relationships. The methods used in this work simply examine 
when there is a tendency for the two variables to increase or 
decrease together (positive correlation) or, alternatively, for one 
to  decrease  as  the  other  increases  and  vice-versa  (negative 
correlation);  either  kind  of  effect  is  known  as  monotonicity 
(Neave, 1988).

The  correlation  coefficients  (r)  are  conventionally  defined 
between -1 and +1;  -1 represents strong evidence of negative 
correlation  (perfect  disagreement),  +1  represents  strong 
evidence of positive correlation (perfect agreement)  and values 
near  0  tend  to  occur  when  there  is  a little  or  no  correlation 
between the two variables.

The distribution of the correlation is approximately normal with 
mean 0 when the sample size  is  large.  The approximation  is 
satisfactory for a sample size (n) greater than 50, which is the 

f =wcolor⋅hcolor1−w color⋅h shape

hcolor=∑
c

wc nObj3⋅ c
Obj3 nObj1⋅c

Obj1−nObj2⋅c
Obj2 

h shape=wcmpct⋅hcmpct1−w cmpct ⋅h smooth

hcmpct=nObj3⋅
l Obj3

nObj3
−nObj1⋅
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nObj2⋅
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

h smooth=nObj3⋅
lObj3

bObj3
−nObj1⋅
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nObj2⋅
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bObj2


P opt=arg Pmin [F R , P ]
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case for this work.  The methods described in this section are 
Spearman's  (Spearman,  1904)  and  Kendall's  rank  correlation 
(Kendall, 1938).

2.3.1 Kendall Rank Correlation is defined by:

(7)

where τ = Kendall rank correlation coefficient
ND = number of crossings in the graphical rank 
representation
n = sample size

In  the  graphical  rank  representation,  the  values  of  a  pair  of 
metrics being compared are represented in two separated axes. 
Lines  connecting  corresponding  values  are  drawn  and  the 
number ND of crossings in this lines is counted.

Considering the sample size of the experiments described in this 
work and assuming a normal distribution the critical value is 
approximately τ ≥ 0.2852.

2.3.2 Spearman Rank Correlation is defined by:

(8)

where rS = Spearman rank correlation coefficient
D2 =  sum of  the  squares  of  the  differences  
between the two variables ranked values
n = sample size

 
Considering the sample size of the experiments described in this 
work and assuming a normal distribution the critical value is 
approximately rs ≥ 0.4231.

The calculated critical values point out above which thresholds 
a correlation value can be considered significant.  Although a 
correlation value of 0.2852 indicates nothing more than a weak 
correlation between two similarity metrics, on the other hand it 
is high enough to guarantee that both metrics are monotonic.

3. SIMILARITY METRICS

Similarity metrics are used by the GA to determine how close it  
is to the optimal solution.  In this work eight different metrics 
were selected for investigation. Figure 4.1 illustrates the entities 
used in the similarity metrics given by Equations 7-14.

Figure 1. Entities used in the similarity metrics.

Let us assume that exist  N reference segments delineated by a 
specialist. Let  Ri (i=1,2,...,N) be the  i-th reference object. And 

let  Si be the i-th segment  in the segmentation output that have 
the largest intersection with the respective reference (Ri).  Let 
also  VSi (not shown in the figure) be the  i-th segment  in the 
segmentation output that have at least 50% of intersection with 
one reference. If no segment fulfills this condition  VSi will be 
empty.

Let us also define:

• fni as the number of pixels of Ri that do not belong to 
Si so called false negatives;
• fpi as the number of pixels of Si that do not belong to 
Ri so called false positives;
• pi as  the  number  of  pixels  that  belong  to  the 
intersection of Si and Ri so called positives;
• Bi as the sum of all border pixels of Ri and Si;
• bi as the number of border pixels of VSi that intercept 

the area of Ri.;
• NS as the number of segments of Si that do not belong 

to Vsi;

• #() as an area operator. 

The similarity metrics examined in this work are described in 
the following.

3.1 Reference Bounded Segments Booster

Proposed  in  Feitosa  (2006)  this  function  corresponds  to  the 
division of the false negatives and false positives by the number 
of pixels (area) of the reference. F1=0 corresponds to a perfect 
fitting between segmentation and reference and F1>0 otherwise.

(9)

3.2 Larger Segments Booster

This function was proposed in Fredrich (2008). The fpi and fni 

terms in Equation 9 favor solutions with a tight overlap with the 
reference  segments,  which  most  likely  leads  to  solutions 
consisting  of  numerous  small  (in  the  limit  of  single-pixel) 
segments. The bi term counterbalances this effect by granting a 
lower score to solutions with few, larger segments. Yields F2=0 
for a perfect fitting.

F 2=
1
N [NS ∑

VS i≠∅

fpi fnibi

#R i ] , se NS < N

(10)
F 2=∞ , otherwise

3.3 Janssen

This function (Janssen, 1995) corresponds to the square root of 
the ratio  between  the  square  of  the  positives  and  the  areas 
product.  F3=1  corresponds  to  a  perfect  fitting  between 
segmentation and reference. F3=0 corresponds to the worst case 
when there is no match.

(11)

F 1=
1
N ∑i=1

N  fni fpi
# R i

F 3=
1
N ∑

i=1

N   pi
2

#R i∗# S i

r S=1− 6 D2

n3−n

=1−
4 N D

nn−1
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3.4 Spatial Overlap

This function (Gerig,  2001) corresponds to the division of the 
positives  by  the  sum  of  false  positives,  false  negatives  and 
positives. Its behavior is similar to the previous function with 
F4=1 for a perfect fitting and F4=0 when there is no match.

(12)

3.5 Relative Absolute Area Difference

This function (Gerig, 2001) corresponds to the division of the 
area of the segmentation by the area of the reference.  Yields 
F5=0 for a perfect fitting and F5>0 otherwise. It is important to 
point  out  that  F5=0  can  also  be  obtained  for  a  non-perfect 
fitting, as long as the segmentation and reference have the same 
area.

(13)

3.6 Average Symmetric Absolute Perimeter Distance

For this function (Gerig, 2001) it is defined an operator d (Si,Ri) 
that  computes  the sum of the distances between each  border 
pixel of the segment yielded by the segmentation procedure and 
the nearest  border  pixel  of the respective reference and vice-
versa. The average of these distances are then calculated. F6=0 
for a perfect fitting.

(14)

3.7 Symmetric RMS Perimeter Distance

This function (Gerig, 2001) is similar to the previous function, 
but  the  square  root  of  the  average  squared distances  is 
calculated. F7=0 for a perfect fitting.

(15)

3.8 Maximum Symmetric Absolute Perimeter Distance

This  function  (Gerig, 2001)  is  similar  to  the  previous  two 
functions, but only the maximum of all border pixels distances 
is taken instead of the average. F8=0 for a perfect fitting.

(16)

4. EXPERIMENTS

An area of 418x599 pixels of a  Quickbird image with spatial 
resolution of 0.67m and 4 bands was used in the experiments.  
This region was chosen because of the wide variety of patterns 
observed. Three groups of reference objects were delineated for 
this  image so called homogeneous,  heterogeneous and  mixed 
(homogeneous and heterogeneous) groups.

All  the  experiments  were conducted  on  a  software  prototype 
called  SPT  (Segmentation  Parameters  Tuner)  available  for 
download at  www.lvc.ele.puc-rio.br. This software implements 
an  automatic  method  for  segmentation  parameters  adaptation 
using GA.

Figure 2. Quickbird image.

4.1 First Experiment

In  the first  experiment  the objective  was to  determine which 
metrics are equivalent as evaluation functions for the GA in our  
application.  This  was  done  by  measuring  the  correlation 
coefficients between pairs of corresponding values delivered by 
the different metrics. The segmentation parameters values used 
in this experiment were:

color weight – 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
scale parameter – 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 
compactness weight – maintained in 0.5

From the combination of these values 121 parameter values sets 
were obtained. For each set, and for each reference group, the 
evaluations  delivered  by the  metrics  were calculated  and  the 
Kendall's  and  Spearman's  rank  correlation  coefficients  were 
obtained for each pair of values. The results are shown below.

Table 1. Correlation coefficients for the homogeneous reference 
group.

F 4=
1
N ∑

i=1

N pi

 fni fpi pi

F 5=
1
N ∑i=1

N

∣#S i
#R i

−1∣∗100

F 6=
1
N ∑i=1

N d Ri , S id S i ,Ri
Bi

F 7=
1
N ∑

i=1

N ∑ d Ri , S i
2∑ d S i , Ri

2

Bi

F 8=
1
N ∑

i=1

N

max d Ri , S i , d S i , Ri

F1 F2 F3 F4 F5 F6 F7 F8
F1 1.00 0.33 0.72 0.70 0.85 0.85 0.83 0.77
F2 0.33 1.00 0.63 0.66 0.39 0.44 0.41 0.40
F3 0.72 0.63 1.00 0.96 0.71 0.78 0.74 0.70
F4 0.70 0.66 0.96 1.00 0.69 0.75 0.73 0.69
F5 0.85 0.39 0.71 0.69 1.00 0.82 0.80 0.75
F6 0.85 0.44 0.78 0.75 0.82 1.00 0.93 0.85
F7 0.83 0.41 0.74 0.73 0.80 0.93 1.00 0.89
F8 0.77 0.40 0.70 0.69 0.75 0.85 0.89 1.00

Kendall Correlation

F1 F2 F3 F4 F5 F6 F7 F8
F1 1.00 0.42 0.87 0.85 0.96 0.96 0.95 0.91
F2 0.42 1.00 0.81 0.83 0.49 0.57 0.55 0.54
F3 0.87 0.81 1.00 0.99 0.87 0.92 0.90 0.88
F4 0.85 0.83 0.99 1.00 0.86 0.91 0.89 0.87
F5 0.96 0.49 0.87 0.86 1.00 0.95 0.93 0.90
F6 0.96 0.57 0.92 0.91 0.95 1.00 0.99 0.96
F7 0.95 0.55 0.90 0.89 0.93 0.99 1.00 0.98
F8 0.91 0.54 0.88 0.87 0.90 0.96 0.98 1.00

Spearman Correlation
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Table 2. Correlation coefficients for the mixed reference group.

Table  3.  Correlation  coefficients  for  the  heterogeneous 
reference group.

In  all  tables  the values that  lied above  the calculated critical 
value are highlighted with  green and those which  lied below 
this threshold are highlighted with red.

Most  metrics  are  highly  correlated.  However,  the  F2  metric 
(Larger Segments Booster) proved not to be as correlated as the 
others  presenting   a  correlation  coefficient  below the  critical 
value most of the time. This characteristic can be imputed to the 
discontinuity present in this metric equation as seen in Section 
3.

It  was also possible  to  verify that the correlation  coefficients 
were larger in  the homogeneous  reference group,  after in  the 
mixed  group  and  at  last  in  the  heterogeneous  group.  This 
indicates the increasing difficulty of the GA, no matter which 
metric  is  used,  to  search  for  the  optimal  solution  as  the 
reference samples were getting more heterogeneous.

4.2 Second Experiment

In  the second experiment  the interest  was on  verifying if the 
metrics lead the GA to close,  similar solutions.  The GA was 

executed with 80 individuals, 50 generations and 3 experiments. 
The compactness weight  was maintained in 0.5 and the band 
weights in 1.0. The evolution was executed for each reference 
group and evolved the scale and color weight parameters. The 
results are shown in Tables 4-6.

Table 4. Parameters values obtained with the homogeneous 
group.

Table 5. Parameters values obtained with the mixed group.

Table 6. Parameters values obtained with the heterogeneous 
group.

The experiment showed that the F1 metric (Reference Bounded 
Segments Booster) converged faster than the others when the 
sample was homogeneous or had a homogeneous part.

As expected the metrics evolved to very similar solutions. This 
is coherent with the results obtained in the first experiment.

5. CONCLUSIONS AND FUTURE WORKS

This work examined eight different similarity metrics in a GA 
based segmentation parameters adaptation method.  In all steps 
this study verified the behavior of these metrics upon a set of 
reference  segments  with  different  characteristics,  i.e., 
homogeneous, heterogeneous and mixed.

The first investigated aspect was the metrics correlation degree. 
For  this  experiment  two  correlation  methods  were  used: 
Spearman's  and  Kendall's  rank  correlation  coefficients.  The 
experiment  showed  that  for  both  methods  almost  all  metrics 
were highly correlated, what suggests that they tend to rank the 
quality of different  segmentation  outcomes quite  in  the same 
way.

However,  it  is  important  to  say  that  the  F2  metric  (Larger 
Segments  Booster)  is  much  less  correlated  than  the  others, 

Color
F1 34.01 0.11
F2 34.27 0.11
F3 34.46 0.11
F4 31.81 0.11
F5 24.61 0.07
F6 33.57 0.11
F7 34.82 0.11
F8 32.30 0.09

Scale

Color
F1 22.82 0.06
F2 30.18 0.07
F3 24.37 0.06
F4 30.36 0.08
F5 26.42 0.05
F6 24.43 0.06
F7 24.39 0.06
F8 30.93 0.08

Scale

Color
F1 24.41 0.06
F2 31.41 0.07
F3 24.36 0.06
F4 24.36 0.06
F5 24.02 0.05
F6 24.49 0.06
F7 24.52 0.06
F8 28.19 0.05

Scale

F1 F2 F3 F4 F5 F6 F7 F8
F1 1.00 0.07 0.55 0.51 0.72 0.65 0.65 0.66
F2 0.07 1.00 0.57 0.62 0.33 0.33 0.32 0.23
F3 0.55 0.57 1.00 0.94 0.71 0.69 0.68 0.60
F4 0.51 0.62 0.94 1.00 0.68 0.66 0.65 0.57
F5 0.72 0.33 0.71 0.68 1.00 0.78 0.77 0.72
F6 0.65 0.33 0.69 0.66 0.78 1.00 0.94 0.78
F7 0.65 0.32 0.68 0.65 0.77 0.94 1.00 0.82
F8 0.66 0.23 0.60 0.57 0.72 0.78 0.82 1.00

Kendall Correlation

F1 F2 F3 F4 F5 F6 F7 F8
F1 1.00 -0.00 0.68 0.63 0.88 0.83 0.83 0.83
F2 -0.00 1.00 0.70 0.75 0.31 0.38 0.36 0.24
F3 0.68 0.70 1.00 0.99 0.85 0.86 0.85 0.77
F4 0.63 0.75 0.99 1.00 0.82 0.83 0.82 0.74
F5 0.88 0.31 0.85 0.82 1.00 0.93 0.92 0.88
F6 0.83 0.38 0.86 0.83 0.93 1.00 0.99 0.92
F7 0.83 0.36 0.85 0.82 0.92 0.99 1.00 0.94
F8 0.83 0.24 0.77 0.74 0.88 0.92 0.94 1.00

Spearman Correlation

F1 F2 F3 F4 F5 F6 F7 F8
F1 1.00 -0.23 0.41 0.35 0.56 0.54 0.56 0.64
F2 -0.23 1.00 0.41 0.48 0.20 0.17 0.16 0.01
F3 0.41 0.41 1.00 0.92 0.67 0.65 0.64 0.53
F4 0.35 0.48 0.92 1.00 0.64 0.61 0.60 0.48
F5 0.56 0.20 0.67 0.64 1.00 0.76 0.76 0.66
F6 0.54 0.17 0.65 0.61 0.76 1.00 0.93 0.76
F7 0.56 0.16 0.64 0.60 0.76 0.93 1.00 0.80
F8 0.64 0.01 0.53 0.48 0.66 0.76 0.80 1.00

Kendall Correlation

F1 F2 F3 F4 F5 F6 F7 F8
F1 1.00 -0.43 0.53 0.44 0.71 0.71 0.73 0.80
F2 -0.43 1.00 0.52 0.61 0.15 0.19 0.17 -0.04
F3 0.53 0.52 1.00 0.98 0.83 0.84 0.83 0.71
F4 0.44 0.61 0.98 1.00 0.79 0.80 0.79 0.65
F5 0.71 0.15 0.83 0.79 1.00 0.92 0.92 0.83
F6 0.71 0.19 0.84 0.80 0.92 1.00 0.99 0.92
F7 0.73 0.17 0.83 0.79 0.92 0.99 1.00 0.94
F8 0.80 -0.04 0.71 0.65 0.83 0.92 0.94 1.00

Spearman Correlation
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obtaining a correlation coefficient below the calculated critical 
value, what identifies an almost non-existent correlation.

The second experiment investigated if the metrics would lead 
the  GA  to  the  same  optimal  solution.  For  this  verification, 
evolutions were carried out using each metric. The experiments 
had shown that the GA based method led to similar results for 
all  metrics,  although  the  F1  (Reference  Bounded  Segments 
Booster) metric presented better convergence behavior.

Another  future  investigation  concerns  to  the  comparison 
between  the  evaluation  given  by the  metrics  and  the  human 
perception of a good segmentation.
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