
On Comparing and Complementing
Two MBT Approaches

Maximiliano Cristiá
Flowgate and CIFASIS

Rosario, Argentina

mcristia@flowgate.net

Valdivino Santiago
INPE

São José dos Campos, Brazil

valdivino@das.inpe.br

N. L. Vijaykumar
INPE

São José dos Campos, Brazil

vijay@lac.inpe.br

Abstract—At INPE1 researchers and software engineers have
been using Statechart-based testing for some time to test on-board
satellite software. On the other hand, a group of researchers at
CIFASIS2 and Flowgate Consulting have been applying Z-based
testing for unit testing. Both groups started to compare their
approaches and tools a year ago. What started as a comparison
to share ideas and results, is now turning into the realization
that actually both techniques complement and benefit from each
other, yielding a more effective and wider Model-Based Testing
(MBT) approach. In this paper we present the results obtained so
far in comparing and complementing these two MBT techniques.

I. INTRODUCTION

Satellite software is a mission critical, reactive and data han-

dler program that must be validated and verified thoroughly.

In these cases, verification and validation always comprises

testing although other techniques can be applied too. Testing a

program which presents a reactive behavior and data handling

functions as well, is a complex task that does not seem to be

extensively addressed in an industrial setting. Furthermore, if

we also want Model-Based Testing (MBT) to test both units

and the complete system with tool support, then the informed

results rapidly approaches to zero. In [1] and [2] we could

not find such issues being addressed, although [3] deals with

them. Hence, in this paper we address the problem outlined

above, in the context of space application software.

As we indicate in the paper’s title, this work is the outcome

of what started as a comparison between two MBT approaches

and later became a combination of both techniques. We started

our joint project with the intention to see how we could help

INPE’s test designers to better and efficiently test satellites’

on-board software. At the beginning only one thing was

clear: both groups were working on MBT but with different

notations and tools. Then, we decided to demonstrate our

methods to each other using the same real-world case study

proposed by INPE. The first conclusion was that both methods

were functionally testing the same system but in different

ways. Latter we extended Paradkar’s work [21] in order to

accomplish the comparison between our approaches. Finally,

we realized that our techniques could be combined into a

1INPE – National Institute for Space Research.
2CIFASIS – French Argentine International Center for Information Systems

and Sciences.

single approach addessing model-based test case generation

with the main benefits of both techniques: Statecharts to model

behavior and Z to model the data space.

In Sections II and III we briefly introduce the method used

by each group. Section IV shows the results of comparing

our methods. Perhaps the main contribution of this paper lays

in Section V where we suggest a proposal for combining

Statechart-based and Z-based testing. Sections VI and VII

compare our work with similar approaches and present our

conclusions, respectively.

II. STATECHARTS AND FINITE STATE

MACHINES FOR TESTING AT INPE

INPE has been using MBT within research projects for

system and acceptance testing. Statecharts [4], [5] and Finite

State Machines (FSMs) [6] are the main techniques used

for modeling the behavior of the Implementation Under Test

(IUT) for testing purposes. The application domain is software

embedded into on-board computers of scientific satellites and

balloons under development at INPE. These MBT approaches

have shown efficiency in detecting defects in the source code.

One of the main advantages of FSMs is simplicity. Reactive

systems, protocol implementations, classes of Object-Oriented

applications are some examples commonly address-ed by FSM

modeling. Several test criteria (methods) may be used for

model-based test case generation regarding the FSM tech-

nique. A few of such methods are the Transition Tour (TT),

Distinguishing Sequence (DS), Unique Input/Output (UIO), W

[7], switch cover (1-switch) [8] and state counting [9]. Despite

their adoption by many researchers, FSMs are not too adequate

for representing features such as parallelism and hierarchy. On

the other hand, Statecharts provide a simple way to represent

these characteristics. There are several approaches proposed

to generate test cases from Statecharts models [10] [4].

System and acceptance testing are applied considering the

entire software product. If a professional wants to develop

model-based test case generation relying on, for example,

FSMs or Statecharts, he/she must develop the state-transition

diagrams. Due to the state explosion problem, a test designer

at INPE usually breaks down the entire system based on usage

scenarios. Models are then derived to address each scenario

and, provided they are small enough, test cases are generated

from them.

978-1-4244-7785-2/10/$26.00 ©2010 IEEE

INPE has been developing an environment named Geração
Automática de Casos de Teste Baseada em Statecharts (GTSC)

that allows test designers to model software behavior using

Statecharts and/or FSMs in order to automatically generate

test cases based on some test criteria for FSM and some for

Statecharts [5]. At present, GTSC implements a version of

switch cover, UIO and DS test criteria for FSM models and

two test criteria from the Statechart Coverage Criteria Family
(SCCF) [11] for Statecharts models: all-transitions and all-

simple-paths.

GTSC transforms a Statecharts model into a flat FSM, i.e.

a model where all hierarchical and orthogonal features of the

Statecharts were removed. Each state of the resulting flat FSM

is actually a configuration of active BASIC states of the input

model at a certain instant of time. This flat FSM is indeed

the basis for test case generation. Hence, a test designer may

follow two approaches:

1) If a SCCF test criterion will derive test cases, GTSC

must adapt the flat FSM to resemble a reachability tree

[12]. Thus, based on the selected test criterion of SCCF

and on this tree, test cases are created.

2) If an FSM test criterion is the option, it is only necessary

for the user to choose among the available criteria for

FSM and instruct the environment to generate test cases,

based on the flat FSM.

GTSC was able to generate flat FSMs with as many as

40 states (configurations) and more than 300 transitions, and

test suites with up to 265 optimized test cases, showing its

potential scalability for handling complex systems [5]. INPE

has also been developing a Web tool that allows model-based

test case generation named WEB-Perform Charts [30]. WEB-

PerformCharts works similar to GTSC, by transforming a

Statecharts model into a flat FSM, and it has implemented

the TT, switch cover and UIO test criteria for FSM models.

Such a tool addresses collaborative work where different teams

cooperate with an objective of reaching a specific goal, and

it has generated flat FSMs as complex as the ones created by

GTSC.

III. Z-BASED TESTING WITH FASTEST

Phil Stocks and David Carrington introduced in [13], [14],

[15] the Test Template Framework (TTF) to conduct MBT of

Z specifications [16]. TTF includes a rigorous and disciplined

technique for defining and structuring abstract test templates

and cases3. They also proposed new testing tactics particularly

well suited to the Z notation. Testing tactics are the mecha-

nisms used to partition the input space into test templates and,

in turn, test templates into more test templates, thus building

a so called testing tree. Test cases are elements selected from

the leaves of the testing tree.

Fastest [17] is a flexible, efficient and automatic imple-

mentation of the TTF developed conjointly by CIFASIS and

Flowgate Consulting. Currently, Fastest automates test suite

definition and test case derivation for unit testing. Fastest

3Test templates can also be called test suites, test classes or test objectives.

receives a Z specification in LATEX format using the CZT

package [18], [19]. Then, the user has to enter a list of the

operations to test, as well as the tactics to apply to each of

them. In a third step Fastest automatically generates the testing

tree of each operation. After the trees are generated, the user

can browse them and their test classes, and he/she can prune

any node, both manually or automatically. Once the user is

done with pruning, he/she can instruct Fastest to find one

abstract test case for each leaf in all the test trees. Although

the method to find abstract test cases has proved to be quite

automatic, it is worth to say that it does not guarantee to find

abstract test cases for all test objectives. In those cases, the

engineer can help Fastest to find a test case by issuing a rather

straightforward command. The user can export all the results

–testing trees, test classes and abstract test cases– in LATEX

format.

Fastest was envisioned as a client-server application. The

main reason for thinking in a distributed system came from

the realization that calculating abstract test cases from test

objectives in large projects could be a hard computing prob-

lem, but highly parallelizable as well. Then, a scalable appli-

cation using the idle computer power present in a corporate

network, became an appealing option. However, in such a

large project there is shared information –such as the definition

or parametrization of some testing tactics, test cases already

calculated, theorems that help to prune testing trees, etc.– that

all the clients and servers should be able to access. Hence,

a typical Fastest installation has a data server that is known

to all other processes, some client processes and a number of

testing servers.

IV. COMPARISON: CASE STUDIES

As we pointed out earlier, this paper is the result of a

joint effort between two R+D institutions from Argentina and

Brazil, who belong to the REVVIS project funded by CYTED.

The cooperation started by comparing the MBT techniques

used at each institution. The second step was to define a

common problem to work with so both groups had a common

workbench. The first problem was proposed by INPE’s group.

CIFASIS researchers then developed a Z model and applied

Fastest in order to generate test cases. INPE researchers had

already a Statecharts model and the test cases generated by

the GTSC environment. The comparison was then extended

to two more examples: one proposed by INPE and the other

proposed by CIFASIS.

We followed the same methodology for all the problems.

First, the party proposing the problem delivers an informal,

natural language requirements specification. Second, the other

party starts to write a formal model. Third, if the party writing

the model finds some problem (incompleteness, inconsistency)

or misunderstands the requirements, the other party will send

corrections/explanations. Fourth, when the model has been fin-

ished the party who wrote it will apply its MBT methodology

and tool.

In the next subsections we briefly describe the three prob-

lems.

A. EXP – OBDH Communication Protocol

The first problem proposed by INPE was the software that

will be embedded into an astrophysical experiment computer,

hereafter called EXP, of a Brazilian scientific satellite. A pro-

prietary protocol was specified for the communication between

EXP and the On-Board Data Handling (OBDH) computer.

OBDH is the satellite platform computer to process platform

and payload information and to generate and format data that

has to be transmitted to Ground Stations.

OBDH sends one out of nine commands at a time to EXP,

which returns an answer to OBDH. Each command must

arrive within certain time constraints. Commands ask EXP

to perform some operations or to return some data about its

state. There are simple commands and there are more complex

commands to transmit scientific data acquired by the payload,

to dump EXP’s memory, to load data sent by OBDH, etc.

B. A Simple Scheduler

This problem was proposed by CIFASIS borrowing it from

[20]. The problem is about the basic operations of a simple

scheduler. The environment can buffer processes for latter

execution and can withdraw a process from the waiting list.

On the other hand, the scheduler can swap between the active

process and one other process ready for execution. The idea

behind this problem was twofold: (a) to propose a simpler

problem, and (b) to apply our techniques to a somewhat less

reactive system.

C. SWPDC

The third problem was a software product specified and

developed in the scope of the Qualidade do Software Em-
barcado em Aplicações Espaciais (QSEE) research project at

INPE [31]. SWPDC is the software embedded into the Payload

Data Handling Computer (PDC) and it is the hardest problem

of all we have analyzed. Although similar in conception to the

case study described in Section IV-A, SWPDC is much more

complex because it handles not only scientific and dump data

(e.g. housekeeping data), but also accomplishes data memory

management, implements flow control mechanisms, etc. Data

transmission is more complex since SWPDC has to keep

record of the last transmitted frame because OBDH can ask it

again if some problem during transmission was detected.

D. Summary

After applying each technique to the preceding problems,

the first and quite obvious conclusion was that all looked

very different: models, test cases and methods or tactics were,

initially, hard to compare. Hence, we needed some framework

inside which we can compare our techniques and tools.

We, then, searched for articles comparing MBT techniques

and tools [21], [1], [22]. Eventually, we followed [21] and

extended the set of dimensions defined by the author to

base the comparison. We divided these dimensions into two

groups summarized in Tables I and II. Table I includes those

dimensions that are, at least to some extent, independent of the

cases studies, while Table II reunites those dimensions whose

values depend on each case study.

The dimensions named Notation concepts and MBT con-
cepts include the new concepts a software engineer with a

basic knowledge on formal modelling has to learn in order

to apply each technique. The dimensions whose values are

marked with X indicate which technique is more suitable for

each dimension –this does not necessarily mean that the other

technique cannot be applied at all. In column Number of
test cases of Table II, we show for GTSC the number of

test cases and (/) the number of test steps since “test step” is

a meaningful concept regarding FSM-based MBT techniques.

On the other hand, for Fastest we just give the number of test

cases since each test case has always only one test step. The

dimension called Ratio is the ratio between the two left rows.

By indicating the Model size we tried to give a broad idea of

the model complexity. For the Z models we give the number

of Z-LATEX lines of code, while for the Statecharts models we

give the number of states and (/) the number of transitions of

the flat FSM. Although these measures are incomparable to

each other, they give an idea of the relative complexity: (a)

between the case studies, and (b) with respect to other models

that can be found in the literature.

Table I shows that both techniques are rather similar,

although GTSC can be applied to more phases of the testing

process. As the reader can easily note, Table II shows that

GTSC outperforms Fastest when reactive systems are consid-

ered (EXP and SWPDC), but Fastest wins when our tools are

applied to a (more) information oriented system (Scheduler).

Although this comparison was useful for us, we moved one

step forward because we saw a possibility for complementing

our techniques, as is shown in the next section.

V. A COMPLEMENTARY APPROACH

As we said in Table I test cases generated by GTSC are

sequences of state transitions, while test cases generated by

Fastest are bindings or assignments between state variables and

constant values. The following sequences are two test cases

generated by GTSC for the EXP case study.

0xEB → 0x92 → T1B → Size38 E → Data0x100 E
→ TimerTimeout

0xEB → 0x92 → T1B → Size38 E → Data0x100 E
→ TypeOkSizeOkDataOk E → Cks Ok

They correspond to OBDH sending a memory load com-

mand to EXP –i.e. OBDH sends a program to EXP that it

must load into its own memory. 0xEB and 0x92 identify the

beginning of a new order coming from OBDH. T1B means

that the sequences correspond to a memory load command.

Size38 E and Data0x100 E are the size in Bytes of a piece

of program, and the address in memory where this piece

of code will be loaded followed by the code, respectively.

The event TypeOkSizeOkDataOK E means the data (code)

sent by OBDH was received correctly by EXP. Note that

the first test sequence ends in a timeout event. This means

Dimension GTSC – INPE Fastest – CIFASIS & Flowgate
Notation concepts Statecharts: XOR and AND states, external events, ac-

tions (internal events or outputs), conditions, hierarchy,
parallelism and machine synchronization, broadcasting,
shallow and deep history, PcML language

Z (subset): first order logic, state and operation schema,
schema language, typed logic, typed set theory, before
and after state convention, input and output variables
convention, logic and mathematics for modelling

MBT concepts reachability tree, state configuration, Statecharts flatten-
ing, determinism, test criteria for FSM (switch cover,
UIO and DS) and for Statecharts (all-transitions and
all-simple-paths)

testing tactics (standard partitions, disjunctive normal
form, free types), testing tree, domain partition, valid
input space

Computability issues state explosion huge finite models
Computability solutions duplicate nodes (Statecharts test case generation) parallelization, user assistance
Test objectives usage scenarios and models to represent them written as Z schema boxes
Test cases sequences of events producing state transitions bindings between state or input variables, and constant

values
Unit testing X
Integration testing X
System testing X
Acceptance testing X
Reactive systems X
Information systems X

TABLE I
COMPARISON CRITERIA. CASE-STUDY-INDEPENDENT DIMENSIONS.

Dimensions
Case study Computing time Number of test cases Ratio Model size

GTSC Fastest GTSC Fastest GTSC Fastest GTSC Fastest
EXP 0:51 124:00 78/436 112 0:0.6 1:06 17/63 608
Scheduler 3:20 3:00 5/43 29 0:40 0:06 7/16 240
SWPDC 11:42 158:00 30/663 117 0:23 1:21 512/522 1,238

TABLE II
COMPARISON CRITERIA. CASE-STUDY-DEPENDENT DIMENSIONS. TIMES ARE IN MINUTES.

that OBDH has taken too long in sending all the data, and

so actually no memory load is performed. The second test

sequence describes a successful command, i.e. EXP loads the

code into its memory.

The following Z schema boxes are two test cases generated

by Fastest for the same memory load command.

MemoryLoad SP 15 TCASE
MemoryLoad SP 15

dumping = no ∧ mep = 0 ∧ ccmd = ML
low? = no ∧ ped = 45 ∧ ctime = 45
mdp = 45 ∧ data? = 〈mdata0, mdata1〉
memp = ∅ ∧ acquiring = no ∧ waiting = no
memd = 〈mdata0〉 ∧ waitsignal = no
addr? = 1 ∧ sending = no ∧ mode = COF

MemoryLoad SP 43 TCASE
MemoryLoad SP 43

dumping = no ∧ mep = 2 ∧ ccmd = RM
low? = no ∧ ped = 2 ∧ ctime = 2 ∧ mdp = 2
data? = ∅ ∧ memp = ∅ ∧ acquiring = no
waiting = no ∧ memd = 〈mdata0〉
waitsignal = no ∧ addr? = 2
sending = no ∧ mode = COF

Observe that each test case is a set of assignments4. Each

assignment sets a constant value for one of the state and

input variables. Regarding this command, the most important

variables are data?, which is the input variable representing the

new program; addr?, representing the initial address where the

program must be loaded; and memd, which is the state variable

representing EXP’s memory. Then, roughly speaking, the first

test case says that OBDH has sent a two byte long program

to be loaded starting at the first memory location while EXP’s

memory holds a one byte long program; and, on the other

hand, the second test case says that OBDH has sent an empty

program –that should be loaded after the program currently

being held by EXP– while EXP’s memory is occupied by a

single byte program.

After arriving at this point, an approach that combines

both techniques emerged quite easily. We consider all the test

sequences generated by GTSC that include in the execution

of a data intensive, underspecified5 operation –with respect to

the Statecharts model– and at that point we execute all the test

4Actually they are not assignments but propositional equalities.
5Underspecification in Statecharts models comes into picture due to two

main reasons. First, Statecharts are based on FSM, and Z on first order logic.
First order logic is more expressive than FSM, regarding data transformation
operations. Second, the ability (or lack of ability) of the test designer in
adequately modeling the IUT for testing. And this lack of ability occurs
probably because a test designer relies the development of the models based
on documents (requirements specifications, ...) which present serious issues.
In some cases, there is no documentation at all available which is a worse
situation.

cases generated by Fastest for that operation. For example,

since the first GTSC test sequence written above does not

include in the execution of a data intensive operation, then we

do not execute any Z test case for it; however, we do execute

28 Z test cases for the second test sequence since it represents

EXP loading its memory with a new program. In this way, the

software is tested as a whole and every time it gets to a point

where a complex data-intensive operation has to be executed,

then this operation is fully tested too.
Now we present the approach in a more formal and sys-

tematic way. Let E be the set of events in the Statecharts

model and D the subset of E that represents the execution of

some data-intensive operation, which have also been specified

as Z operations. Let S be the set of test sequences derived

from the Statecharts model. Now, consider the subset of S,

SD, including all the test sequences that contain some element

of D. For each d in D, define Td as the set of tests derived from

the Z model for unit d; each t in Td is a call to d with some

specific input parameters. If P is the program that has been

modeled in Statecharts and Z, then test P with the set of test

sequences defined as follows (� is sequence concatenation):

ST = {si
� 〈t〉 � sf |
(∃ d ∈ D : si

� 〈d〉 � sf ∈ SD ∧ t ∈ Td})
∪ (S \ SD)

In other words, we must break any test sequence in the

points where there is a call to a data-intensive operation and

replace these points with each test case generated from the Z

model for the corresponding operation.
As this formalization shows, the method can be made

automatic by simply using a convenient naming convention.
Coming back to the EXP-OBDH case study, there are two

data intensive operations: memory load and transmit data.

Fastest yielded 28 and 20 test cases, respectively, for these

operations. On the other hand, GTSC generates two test

sequences including the execution of these operations. Then,

the original 78 test cases generated by GTSC become 126,

improving the original testing in about 60%. Furthermore,

there is not only an improvement in the number of test cases

but also (a) in the chances to uncover defects (faults) in

complex operations that would not be thoroughly tested by any

method alone; and (b) in the fact that the test cases provided

by Fastest give the exact input constants that must be provided

to the IUT, thus augmenting the proportion of automatic steps

of the testing process.
The research methodology that we set before getting these

results made the Z models unnecessarily complex because

they describe not only those operations underspecified in the

Statecharts model but also all the simpler and reactive ones.

Now, we know that the Z model must describe only data

intensive operations. In this way we can reduce both the effort

and the size (complexity) of the Z model. For instance, the

EXP-OBDH Z model is 608 ZLOC (Table II) but only less

than 241 are involved in the data intensive operations.
It is worth to be mentioned that Statecharts can be used to

model data-intensive systems, and, on the other hand, Z can be

used to model reactive systems. Hence it would be possible

to use only one approach, but we think it would be easier

and more intuitive to combine both approaches as we have

described in this section.

VI. RELATED WORK

Our method has an advantage over [23] because it is based

on two industrial-strength formal notations, one of them being

part of the UML specification [24], and for which exist

commercial and open source tools.

An interesting discussion in [1] shows that the authors

were not successful in comparing MBT with conventional

testing techniques as they expected some strong studies while

investigating MBT. However, the authors discuss some in-

teresting aspects. For instance, reviews in the area of MBT

showed that UML models stand out for object-oriented para-

digm while for paradigm based on formal specification non-

UML models stand out. Their study also hints that non-

UML approaches were applied on safety-critical or embedded

systems. They point out that in spite of MBT appeal, training

and corresponding costs are to be taken into consideration.

Grieskamp et al. demonstrated the use of the agenda ap-

proach to support the systematic development of require-

ment specifications for a particular class of embedded safety-

critical systems [25]. An agenda is a list of steps to be

accomplished when carrying out some task in the context of

software engineering. To this end, they used the μSZ notation

which provides a combination of the Statemate languages

[26] (Activity Charts and Statecharts), Z, and an extension

of Z by temporal interval logic [27]. Basically, they used

Statemate’s Activity Charts to represent process structure, Z

to specify the data space of the process, and Statecharts to

specify the dynamic behavior of the process. However, it is

not clear whether agendas with their derived Z schemata and

Statecharts models were developed to support Model-Based

Testing. Hierons and others in [3] define a MBT technique for

the μSZ notation although they do not show a tool set. The

main difference with our work is that we needed to develop a

combined MBT methodology suitable for the tools each team

already had. For instance, we had to combine a unit-testing

oriented tool such as Fastest, with a system-testing oriented

tool such as GTSC to get the best of them both.

In his MSc. thesis [28] Mäkinen studied on how an organi-

zation can make use of model based approach for software

testing by showing the financial benefits in adopting such

approach. It compares the traditional testing with the MBT

approach and concludes that there are, in fact, financial ben-

efits to organizations by adopting MBT. Moreover, the MBT

approach saves time in test execution. The case study was a

user interface. However, the author suggests investigating other

complex model representation if this approach is to be used

to other software engineering levels.

In [29], the authors briefly present the following models

used in software testing: FSMs, Statecharts, UML and Markov

chains. They provide a detailed definition of FSM and discuss

some aspects of MBT such as the importance of understanding

the system to be tested and how to build a model besides

generating tests and analyzing the results. They also point out

some concerns to be considered on state explosion, coverage,

oracle and automation.

VII. CONCLUSIONS AND FUTURE WORK

First, we have compared two MBT techniques and tools,

and then we have shown how to combine those techniques

to improve the testing of systems including both reactive and

data intensive functions. The main conclusions of this article

are: (a) it is rather easy to combine the approaches, and (b)

that the combined approach could potentially uncover many

defects that each technique alone cannot.

There is a lot of work to do in the future. First, we need

to assess the amount of faults uncovered by the combined

approach by applying, for instance, mutation analysis. In doing

so, we can compare the combined methodology with respect

to applying the individual methodologies developed so far.

Second, we want to work on new case studies so we can apply

what we have learned so far –for example, writing shorter

Z models that efficiently complement the Statecharts model.

Third, we want to integrate our tools so the whole process will

be more automatic.

ACKNOWLEDGMENTS

We would like to thank CYTED for funding part of this

work through action REVVIS (number 507AC0326).

REFERENCES

[1] A. D. Neto, R. Subramanyan, M. Vieira, G. H. Travassos, and F. Shull,
“Improving evidence about software technologies: A look at model-
based testing,” IEEE Softw., vol. 25, no. 3, pp. 10–13, 2008.

[2] R. M. Hierons and et.al., “Using formal specifications to support testing,”
ACM Comput. Surv., vol. 41, no. 2, pp. 1–76, 2009.

[3] R. M. Hierons, S. Sadeghipour, and H. Singh, “Testing a system
specified using statecharts and z,” Information and Software Technology,
vol. 43, no. 2, pp. 137–149, February 2001.

[4] V. Santiago, A. S. M. do Amaral, N. L. Vijaykumar, M. d. F.
Mattiello-Francisco, E. Martins, and O. C. Lopes, “A practical approach
for automated test case generation using statecharts,” in COMPSAC ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 183–188.

[5] V. Santiago, N. L. Vijaykumar, D. Guimarães, A. S. Amaral, and
E. Ferreira, “An environment for automated test case generation from
statechart-based and finite state machine-based behavioral models,” in
ICSTW ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 63–72.

[6] A. M. Ambrosio, M. de Fátima Mattiello-Francisco, V. A. Santiago,
W. P. da Silva, and E. Martins, “Designing fault injection experiments
using state-based model to test a space software,” in LADC, 2007, pp.
170–178.

[7] D. P. Sidhu and T.-k. Leung, “Formal methods for protocol testing: A
detailed study,” IEEE Trans. Softw. Eng., vol. 15, no. 4, pp. 413–426,
1989.

[8] S. Pimont and J.-C. Rault, “A software reliability assessment based
on a structural and behavioral analysis of programs,” in ICSE ’76.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1976, pp.
486–491.

[9] A. Petrenko and N. Yevtushenko, “Testing from partial deterministic
FSM specifications,” IEEE Trans. Comput., vol. 54, no. 9, pp.
1154–1165, 2005.

[10] R. V. Binder, Testing object-oriented systems: models, patterns, and
tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[11] S. R. S. Souza, “Validao de especificaes de sistemas reativos: Definio
e anlise de critrios de teste,” Ph.D. dissertation, Instituto de Fı́sica de
São Carlos, Universidade de São Paulo, 2000.

[12] P. C. Masiero, J. C. Maldonado, and I. G. Boaventura, “A reachability
tree for statecharts and analysis of some properties,” Information and
Software Technology, vol. 36, no. 10, pp. 615–624, October 1994.

[13] P. Stocks and D. Carrington, “A Framework for Specification-Based
Testing,” IEEE Trans. on Soft. Eng., vol. 22, no. 11, pp. 777–793, Nov.
1996.

[14] P. Stocks, “Applying formal methods to software testing,” Ph.D.
dissertation, Department of Computer Science, University of
Queensland, 1993.

[15] I. Maccoll and D. Carrington, “Extending the Test Template
Framework,” in Proceedings of the Third Northern Formal Methods
Workshop, 1998.

[16] J. M. Spivey, The Z Notation: A Reference Manual. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1989.

[17] M. Cristiá and P. Rodrı́guez Monetti, “Implementing and applying the
Stocks-Carrington framework for model-based testing,” in ICFEM, ser.
LNCS vol. 5885. Springer, 2009, pp. 167–185.

[18] Community Z Tools, http://czt.sourceforge.net.
[19] P. Malik and M. Utting, “CZT: A Framework for Z Tools,” in ZB.

Lecture. Springer, 2005, pp. 65–84.
[20] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[21] A. Paradkar, “Case studies on fault detection effectiveness of model
based test generation techniques,” in A-MOST ’05. New York, NY,
USA: ACM, 2005, pp. 1–7.

[22] A. Sinha, C. E. Williams, and P. Santhanam, “A measurement
framework for evaluating model-based test generation tools,” IBM
Systems Journal, vol. 45, no. 3, pp. 501–514, 2006.

[23] A. J. Offut and S. Liu, “Generating test data from SOFL specifications,”
J. Syst. Softw., vol. 49, no. 1, pp. 49–62, 1999.

[24] Object Mangement Group, “Unified modeling language – resource
page,” http://www.uml.org.

[25] W. Grieskamp, M. Heisel, and H. Drr, “Specifying embedded systems
with Statecharts and Z: an agenda for cyclic software components,”
Science of Computer Programming, vol. 40, no. 1, pp. 31 – 57, 2001.

[26] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot, “Statemate: A working
environment for the development of complex reactive systems,” IEEE
Trans. Soft. Eng., vol. 16, no. 4, pp. 403–414, 1990.

[27] R. Büssow and W. Grieskamp, “Combining Z and temporal interval
logics for the formalization of properties and behaviors of embedded
systems,” in LNCS, ASIAN’97, vol. 1345, 1997, pp. 46–56.

[28] M. A. Mäkinen, “Model based approach to software testing,” Master’s
thesis, Department of Electrical and Communications Engineering
Networking Laboratory, Helsinki University of Technology, 2007.

[29] I. El-Far and J. Whittaker, Encyclopedia of Software Engineering.
John Wiley & Sons, 2001, ch. Model-Based Software Testing, pp.
825–837.

[30] A. O. Arantes, N. L. Vijaykumar, V. Santiago and D. Guimarães.
WEB-PerformCharts: A Collaborative Web-based tool for Test Case
Generation from Statecharts. In Proc. of iiWAS, 2008, Linz, Austria,
pages 374–381.

[31] V. Santiago, M. F. Mattiello-Francisco, R. Costa, W. P. Silva, and A. M.
Ambrosio. QSEE Project: An Experience in Outsourcing Software
Development for Space Applications. In SEKE ’07, pages 51–56,
Skokie, IL, USA, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

