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Abstract: A stochastic cellular automata model for wildland 
fire spread under flat terrain and no-wind conditions is 
proposed and its dynamics is characterized and analyzed. 
Each cell is characterized by one of the three states that are: 
vegetation cell, burning cell and burnt cell. The dynamics of 
fire spread is modeled as a stochastic event with an effective 
fire spread probability S which is a function of three 
probabilities: the proportion of vegetation cells across the 
lattice, the probability of a burning cell become burnt, and 
the probability of the fire spread from a burning cell to a 
neighbor vegetation cell. A set of simulation experiments 
are performed to analyze the effects of different values of 
the three probabilities in the fire pattern. The effective fire 
spread probability is obtained from Monte-Carlo simulations 
and a critical line that separate the set of parameter or which 
a fire can propagate from those for which it cannot is 
obtained. Finally, the relevance of the model is discussed in 
light of results of simulation experiments carried out that 
illustrate the capability of the model catches both the 
dynamical and static qualitative properties of fire 
propagation.   
Keywords: wildland fire spread, percolation theory, cellular 
automata. 

1.  INTRODUCTION 

The wildland fire spread is a combustion reaction where 
the ingredients necessary for its occurrence are: the 
vegetation, which provides the combustible source for the 
reaction; the oxygen in the air, which actuate as an oxidizing 
agent; and a heat source responsible by the initiation and the 
self-sustainability of the reaction [1]. The fire spreads across 
the landscape consuming the vegetation and this process can 
be decomposed into four combustion phases, the so called: 
pre-heating, ignition, combustion and extinction [1]. The 
fire front is the region of intense flaming combustion where 
a large quantity of heat released. Part of this heat released is 
transmitted to the vegetation that yet is not burning, heating 
it until reaches the ignition temperature. When the 
vegetation reaches the ignition temperature, the flames rise 
and the fire front occupies a new position ahead. The flames 
remain as the vegetation is burnt out. 

In this work is proposed a simple model for wildland fire 
dynamics under flat terrain and no-wind conditions. The 
model formulation is based on stochastic cellular automata 

and its dynamics is analyzed qualitatively and 
quantitatively. Cellular automata are models which assume 
space, state and time discrete [2]. The space is represented 
by a square lattice and each element that constitutes the 
lattice is called cell. Each cell has a neighborhood, set of 
internal states variables, and a set of rules, called state 
transition functions, that describes the evolution of their 
states and define the future state as a function of the cell 
present state and the neighborhood present states. In 
stochastic cellular automata the state transition function is 
performed by means of probabilities. The transition 
functions of the proposed model are defined stochastic with 
the intention to represent the vegetation heterogeneity and to 
include random component in the dynamics of the 
vegetation combustion and ignition process during the fire 
spread.  

The paper is structured as follow. In the Section 2 de 
modeling approach and the model parameters are described. 
In the section 3 the model dynamics is characterized and 
analyzed. Finally, in the last section, the model relevance is 
discussed.   

2.   MODEL DESCRPITION 

The model is based on the spatially explicit 
representation and the landscape is depicted as a square and 
two-dimensional lattice   of dimensions      . Each cell 
is defined by:  

(i). its discrete position       in the lattice, where 
i=1,…,L is the column and         is the 
row; 

(ii). the finite set of internal states variables that 
describes the possible behavior of the cells in a 
given time step   which are          [       ] 
where:   is an empty cell, which denotes 
unburnable cells or without vegetation;   is a 
vegetation cell, with denote cells with potential 
to burn;   is burning cell, which denotes a cell 
whose the vegetation in its inside is burning; and 
  is burnt cell, which denote vegetation cell that 
is burned by the fire; 

(iii). the set of finite neighborhood cells       , 
where the Moore neighborhood, as illustrated in 
the Figure 1(a), represents the neighborhood 
relations in the model and comprises the eight 
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cells surrounding         of a central cell       
according with the definition        
                           ; 

(iv). the transition function that calculate the future 
cell state as a function of the present cell state 
and present neighborhood cell states           
                 , where the time t is also 
represented by discrete values or time steps. 
Thus, the time evolution of the model is driven 
by the interaction between the cell states and the 
cell neighborhood states. Starting from a given 
configuration of cells initial states, the cellular 
automaton self-replicates the sequent cell states. 
The cellular automata model is stochastic 
because the state transition function is performed 
according to probabilities values. 

The fire spread is governed by the heat transfer from 
burning regions to non-burning regions. Thus the fire spread 
is modeled as a set of ignitions of non-burning regions as the 
burning regions persist. Stochasticity is used to include the 
heterogeneity of spatial conditions present in real vegetation 
patterns and to include random component in the dynamics 
of combustion and ignition process [4,5,6]. Thus, the 
dynamics of fire spread is modeled as a stochastic event 
with an effective fire spread probability   which is as a 
function three probabilities, which are:  

(i). the probability  , that determine the proportion 
of cells with vegetation across the lattice in the 
model initialization. Thus, for each cell, there is 
a probability   to its state is vegetation cell and 
the probability     to it is empty cell. 

(ii). the probability  , that models the combustion, 
where, in each time step, a burning cell has a 
probability   to change its state to burnt cell. 

(iii). the probability  , that models the ignition, where, 
there is a probability   for the fire spreads from a 
burning cell to a neighbor vegetation cell. 

The transition functions between the states are 
performed according to these probabilities values. The cell 
state transition diagram is showed in the Figure 1(b). An 
empty cell is unchangeable and always remains in this state. 
The fire spread is considered a diffusion contagious process 
and the fire can spreads only from a burning cell to a 
neighbor vegetation cell. Thus, the transition      is 
conditioned for a vegetation cell that has at least one 
burning cell neighbor. Given two neighbors cells, one 
burning cell and the other a vegetation cell, in each time 
step, there is a probability   for the burning cell ignites the 
neighbor vegetation cell. Once ignited, in each time step, 
there is a probability   for the burning cell remain burning, 
otherwise its state changes to burnt cell, which is the 
transition     . 

The model input parameters are the probabilities  ,   
and  , the lattice size, and the maximum time step       . 
A complete visit to all cells of the lattice is called a sweep. 
A simple simulation is performed in the two stages: 
initialization and fire spreading algorithm. The initialization 
stage includes: (1) define the model input parameters; (2) 
execute a sweep and for each cell and sets this state to 
vegetation cell with probability   or empty cell with 

probability    ; and (3) select one or more vegetation 
cells and change its state to burning cell. In the fire 
spreading algorithm, for each time step              
execute a sweep and: (1) for each burning cell, evaluate the 
transition    ; (2) for each neighbor of a burning cell 
evaluate the transition    . In the end of each time step 
count the number of burning cells. Time simulation stop if 
         or if there are none burning cell in a given 
time step. 

 
 

(a) Moore 
neighborhood (b) Cell state transition diagram 

Fig. 1. (a) The Moore neighborhood comprises eight cells 
(yellow cells) which surround the central cell (black 
cells). (b) In the cell state transition diagram, arrows 
indicate the state transitions paths. The double arrow 
indicates that the transition depends on the neighbor cell 
state. The round dashed arrows indicate that the state 
transitions are conditioned by the values of other 
probabilities. 

3.   SIMULATIONS AND RESULTS 

 3.1 Qualitative analysis of the fire patterns 

The effective fire spread probability S describes the fire 
behavior across the lattice as an function of the probabilities 
 ,   and  . Different fire patterns, with different size and 
shape, can be obtained varying the values of these 
probabilities. The Figure 2 characterizes some fire patterns 
using different values of  ,   and  , for a lattice of size 
        and the fire starting from a cell at the middle of 
the lattice              . Each cell state along the lattice is 
represented by colors that which are, empty cell (black), 
vegetation cell (green), burning cell (red) and burnt cell 
(gray). 

The proportion of cells with vegetation across the lattice 
determines the spatial distribution of available fuel along the 
lattice. Higher values of   implies in more quantity of 
available fuel along the landscape and therefore the fire 
propagates with more facility. This effect can be observed 
comparing the Figures 2(f) and 2(d), when in the Figure 2(f) 
the burned area is larger than in the Figure 2(d).  

The probability   asserts the combustion latency for a 
             (    is a conception for the mean reaction 
time). A burning cell with a high value of   burns most 
quickly (i.e., in less time steps) than those that have a low 
value. This behavior can be observed comparing the Figures 
2(e) and 2(f). Furthermore, how smaller is the values of  , 
more high is the probability of the fire spread from the 
burning cell to neighbors vegetation cells, because the cells 
remain burning in more time steps. This effect can be 
observed comparing the Figure 2(c) and 2(d).  

The ignition probability   determines how lightly the fire 
spreads along the lattice. The effects of different fire rates of 
spread can be observed by the different burned areas 
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comparing the Figures 2(a), 2(b) and 2(c). Higher values of I 
are related with fire fronts which spread most quickly.  

  
(a)      ,      ,       (b)      ,      ,       

  
(c)      ,      ,       (d)      ,      ,       

  
(e)      ,      ,       (f)      ,      ,       

Fig. 2. Different fire patterns for       using a lattice 
with size         and the fire starting from the middle 
cell positioned at                . The parameters values 
are showed immediately bellow the figures. 

 3.2 Monte-Carlo simulations 

Because the natural model stochasticity, a same set of 
parameters values can generate fire patterns slightly 
different, according showed in the Figure 3(a), 3(b) and 
3(c). Thus, is necessary to obtain the mean behavior 
computed during a large quantity of simulations based on 
different sequence of generated random number. This is the 
objective of the Monte-Carlo simulations (MCS). For a 
given set of model input parameters, a large quantity of 
simulations are carried out and for each cell is computed the 
number of times that it burns. The number of time that a cell 
burn divided by the total number of MCS is the estimative 
of the cell burning risk. The Figure 3(d) shows the cell 

burning risk computed by a MCS for      ,      , 
      and N=100. 

  
(a) (b) 

  
(c) (d) 

Fig. 3. (a)-(c) Fire patterns slightly different for a lattice 
with size 201×201,      ,      ,      ,       
and the fire starting from the middle cell positioned in 
(i,j)=(100,100). (d) Burning risk for         Monte-
Carlo simulation. The color map in the figure varies 
from 0 (black) to 1 (white), and the cells that not burn 
(green cells).   

3.3 Calculating the value of    and its critical line 

The fire spreads along the lattice following a pathway of 
interconnected cells which varies as a function of the 
effective probability  . Studies in percolation theory 
corroborate that there is a critical value   , called 
percolation threshold, so that when        always there is 
this pathway for the fire spreads from a starting cell to some 
other point inside the lattice [3]. The main question here is 
how to characterize the probability   in the model.  

The existence of the percolation threshold and the 
consequent description of the critical line as a function of 
the probabilities  ,   and   are investigated using MCS. A 
set of   MCS are performed using identical lattices and 
different values of  ,   and  . The fire starts at the left 
border of the lattices and during the   simulations is 
computed the number of times that the fire reaches the right 
border of the lattice. If the fire propagates from one side to 
the other then the fire percolate the lattice. Thus, the 
approximation of  , denoted by    , is calculated as: 

     
 ∑  
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where      if the fire percolate the lattice and      
otherwise. 

The Figure 3 characterizes the values of     for different 
values of   varying the values of   and  . For each set of 
parameters values a set of        MCS are carried out 
using one lattice of size      . The color map displays 
values varying from       (black) to       (white). If 
      the fire not percolates the lattice, in other words, the 
fore extinction regime predominates. Otherwise, if      , 
the fire propagation regime predominates and the fire 
spreads incessantly across the lattice. The Figs. 4(a)-(f) 
indicate the existence of a critical line that define a partition 
on the model parameter space and separates the set of 
parameters for which a fire can propagate from those for 
which it cannot. The curve position changes as a function of 
 . The Figs. 4(a)-4(f) characterizes this critical line in 
different values of  . 

  
(a)         (b)         

  
(c)         (d)         

  
(e)         (f)         

Fig. 4. Values of     for different values of   varying the 
values of   and  . A total of        Monte-Carlo 
simulations are carried out for each set of values  ,   
and   using a lattice of size      .  

3.3 The fire rate of spread 

The fire rate of spread   is a common measure of its 
behavior. To compute its value and the relation between the 
rate and the model parameters, a MCS is used to compute 
the mean fire front edge position, computed in the central 
cells in the direction of spread, for fires initiated at the left 
edge of the lattice. The time evolution of the fire front edge 
position is compatible with a linear fit, and thus a rate of 

spread can be defined as the angular coefficient of the linear 
fit. The rate of spread unit is calculated in cell dimensions 
per time steps, assuming that the cells have the same 
dimensions. 

The fire pattern generated by the model is resultant of 
two coupled processes: fire diffusion and fire persistence. 
The fire diffusion process is the dynamics of fire 
transmission between the cells, and it is governed by the 
ignition probability  . The fire persistence process supports 
the fire remaining in a burning cell and is responsible by the 
dynamics of fire pattern formation during the time and 
drives the fire diffusion process.  

The combination of these two processes can generate a 
large quantity of different fire patterns formations and the 
values of   and   are the weights of each one. One higher 
fire persistence and one lower fire diffusion provides fire 
fronts that propagate slowly during the time. Keeping 
constant the persistence and increasing the diffusion, the fire 
spread increases. This effect can be observed comparing the 
dependence of rate of spread on   in the Figs. 5(a), 5(b), 5(c) 
and 5(d).  

Although the probabilities   and   are important to the 
fire pattern formation in the model, the fire pattern existence 
is conditioned to the value of probability  . De facto, the 
diffusive fire spread require a continuous pathway or 
clusters of vegetation cells and the distribution of vegetation 
cells across the lattice depends on  . Lower values of   
generate a fuel distribution sparse enough to the fire not 
propagate across it, and that can be observed in the Fig. 4(a). 
As   is increased, the vegetation cells cluster take place and 
there is fuel enough to occur the fire spread. Thus, there is a 
critical value   , such that for      there is the 
consequent formation of a percolation cluster and the fire 
can propagate across it. In the Figs. 4(a)-4(f) can be 
observed that when   increases, also increases the 
proportion of the set of parameters for which the fire can 
propagate. 

3.  FINAL CONSIDERATIONS 

Although the model formulation include only fire spread 
dynamics under flat terrain and no-wind conditions, the 
qualitative and quantitative analysis performed in this paper 
indicate that this model constitutes a qualitative framework 
for wildland fire spread dynamics simulation. However, for 
further ecological applications of this model, the relation of 
the model parameters with meteorological, vegetation and 
topographical factors remain to be quantitatively 
established.  

The effects of wind and slope on ignition process can be 
represented according to the incorporation of a directional 
bias that proportions an anisotropic diffusive process across 
the lattice [6]. Different values of vegetation density   can 
be used to represent several phyto-physiognomy vegetation 
clusters. The probability   can be adjusted to include 
different values of fuel load over the surface and different 
fuel moisture conditions. This model parameterization 
consists in finding an explicit expression between the model 
parameters and the environmental conditions of historical 
and documented forest fires. 
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(a)         and        

 
(b)         and       

 
(c)         and        

 
(d)         and       

Fig. 5. Dependence of the rate of spread on   for 
different values of   and  . 
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