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ABSTRACT

A rule-based satellite simulator was conceived for the verification of flight operations plans in artificial satellite control activities.

Flight operations plans contain the scheduling of real-time procedures to be executed by the ground control segment, including

telecommands that must be sent for the execution of mission operations by artificial satellites. Such plans, when generated by new

planner software, cannot be considered entirely reliable. The safety of the missions can be ensured by evaluating the effects of

scheduled telecommands on each satellite, before their actual execution. If a simulation result indicates that an unsafe internal state

is reached, planning errors can be detected and corrected until an acceptable plan is obtained. The simulator consists basically on a

rule-based inference engine and its associated database files. The dynamic behavior of the internal state of a satellite is defined by a

set of rules. These rules are processed by the inference engine at each simulation step, in order to update the internal state parameters.

The database files contain the rules that describe the system dynamics, the parameters that represent the internal state, and a queue of

events, which includes the telecommands obtained from the operations plan under test and orbital events forecast by flight dynamics

experts. This work describes the simulation architecture, the activities performed by the inference engine, and the data structures

conceived to represent the knowledge inside the database.

Keywords: scientific computing in multidisciplinary topic, scientific computing for general applications, simulation, artificial

satellites, expert systems.

1 INTRODUCTION

INPE (National Institute for Space Research) has been control-
ling satellites since 1993. Control operations related to satel-
lite TT&C (Telemetry, Tracking and Commanding) are performed
by the Satellite Tracking and Control Center, which comprises a
control center and two TT&C ground stations. A map (Fig. 1)
shows the locations of INPE Satellite Tracking and Control Center
facilities. The control center is located at INPE headquarters in
São José dos Campos (SJC), the main TT&C ground station in
Cuiabá (CBA), and the backup station in Alcântara (ALC).

The same map (Fig. 1) also shows the orbit tracks of the
satellites currently controlled by INPE. SCD1 (Data Collecting

Satellite One), launched in 1993, is the first satellite designed,
built, and operated by Brazil. SCD2, its successor, has been in
orbit since 1998. Both satellites remain operational, after 17 and
12 years of service, respectively. These satellites relay environ-
mental information data, acquired by a ground network of data
collecting platforms from all over the Brazilian territory, to the
TT&C ground stations at Cuiabá and Alcântara, from where the
data is forwarded to a data center, also maintained by INPE, for
data processing and distribution of products to end users.

Space-ground data exchange is performed when satellite
and ground antennas are within visibility range of each other. In
the map (Fig. 1), the visibility ranges of the tracking antennas
in CBA and ALC are shown as circles centered at each ground
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Fig1. INPE TT&C facilities and SCD satellites orbitFigure 1 – INPE TT&C facilities and SCD satellites orbit tracks.

station. Real-time TT&C procedures, such as satellite teleme-
try data monitoring, orbital tracking measurements, and onboard
status changing by telecommand, can be executed while the
satellite passes over a ground station. Because such passes are
defined by combining satellites orbital paths with ground sta-
tions coordinates, the execution of real-time procedures can be
planned ahead in time based on satellite contact predictions.
A list containing procedures scheduled to be executed from
ground stations according to pass information is known as a
flight operations plan.

2 SATELLITE CONTROL OPERATIONS

The control operations performed at INPE by its satellite control
system are shown in Figure 2. The whole process can be con-
sidered as a sequential loop involving three control operations.
Orbit measurements acquired during real-time procedures exe-
cution are used by the flight dynamics to generate satellite con-
tact predictions. These predictions are processed by the oper-
ations planning into flight operations plans, which contain the
real-time procedures scheduled to be executed during satellite
passes.

Fig2. The satellite control system. 
Figure 2 – The satellite control system.

Conflict management becomes necessary when a satellite

passes over more than one ground station simultaneously, or

when several satellites pass over a single ground station. For

example, in Figure 1 the SCD1 satellite is shown inside the

visibility range of both CBA and ALC, indicating that either sta-

tion can track the satellite. In this case, the SCD1 pass should

be assigned to one of the ground stations, since a TT&C com-

munication link must be established between one satellite and

a single ground station at any given time. In Figure 1, SCD2 is

seen out of the visibility range of both. The orbits of the SCD

are such that both satellites move eastward at the same rate.

Therefore, by the time SCD2 moves into visibility range of ALC,

SCD1 will be flying almost over SJC, inside the visibility of both

stations. An easy solution to this conflict scenario is obtained

by assigning the pass of SCD1 to CBA and that of SCD2 to

ALC. However, such problems become more complex as the

number of satellites increases. In addition to the SCD, INPE has

in the past controlled satellites of the CBERS (China Brazil Earth

Resources Satellites) family, provided support to India in con-

trolling the lunar mission Chandrayaan, and currently tracks

the French satellite Corot to collect and distribute its scientific

payload data. Within 10 years, it is expected that INPE will be

controlling more satellites of the CBERS, Amazonia, and Lat-

tes families, as well as providing support to Chinese Shenzhou

missions.

In order to address the increasing complexity of its mission

operations, a new automated satellite control system is being

developed at INPE. Its architecture is displayed in Figure 3.
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Fig3. The new satellite control architecture. Figure 3 – The new satellite control architecture.

As shown in Figure 3, the new operations planning control
operation is constituted by three parts. Firstly, an operations
planner generates a preliminary flight operations plan. This plan
is executed by a satellite simulator on a rule-based model, in
order to test whether the plan is safe or not. This decision is
made by a diagnosis generator that analyzes the simulated states
supplied by the simulator, indentifies potential hazards, and then
approves or rejects the plan under test. The purpose of this loop
is to imbue the system with increased safety. Due to the complex-
ity of the planning process for an increased number of missions,
the operations planner may become more prone to errors. The
flight operations plan must be thus validated prior to execution
of its procedures in real-time.

The data flow of the newly proposed operations planning
subsystem is summarized in Figure 4.

The satellite simulator is responsible for the execution of
procedures scheduled in the flight operations plans under test.
The operations planning data flow represented by Figure 4 evi-
dence the interfaces required in order to run a simulation ses-

sion. Input data include the flight operations plan, an orbital
events forecast, and the satellite system model. These data are
used to generate a simulation states history file. This states his-
tory file is then submitted for analysis, to diagnose whether the
flight operations plan is safe or not.

3 THE SIMULATION ARCHITECTURE

The satellite simulation architecture is shown in Figure 5. The
internal state of the simulated system is described by a set of
numerical parameters. The values of these parameters at any
given time determine the current state, and their behavior defines
the system dynamics. The satellite simulator engine is a rule-
based inference machine associated with a system rule base.
This database contains the rules that describe the dynamic be-
havior of the satellite, as a set of causal relationships that define
future values of system parameters based on their past and cur-
rent values. In addition to this, a queue of time-tagged events
indicates the occurrence of external triggers that affect the sys-
tem. A set of values assigned to each parameter define the initial
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Figure 4 – The operations planning subsystem data flow.

state of the simulated system. A simulation session consists of
applying the whole set of rules at regular time steps, in order to
reevaluate the values of state parameters. The evolution of state
parameters values, through the time interval defined by a sim-
ulation session, is recorded and exported as a simulated states
history file. States history can be then analyzed to foretell how
the real system should behave under the same conditions.

Fig5. Architecture adopted for the rule-based satel
Figure 5 – Architecture adopted for the rule-based satellite simulator.

The left side of Figure 6 clarifies the relationship between
the rule-based satellite simulator architecture described before
and the operations planning architecture shown previously. The
flight operations plan and the orbital events forecast are prepro-
cessed into the events queue. System model rules and the ini-
tial state are created using a model configuration tool. Once this
model is properly configured, the initial state can be retrieved
from the simulated states history generated during a previous
simulation, and system model rules can be reused in future runs.
However, the events preprocessing must be executed each time
a new flight operations plan is to be tested.

The simulator is ready to run after the model configuration
phase is finished and the events are preprocessed. The activity

diagram of the simulator is shown at the right side of Figure 6.
The simulation initialization comprises five activities, during
which the initial state, events queue and system rules database
files are identified, imported, and converted to their respective
data structures in memory. Just prior to the start of the simulation
session, the simulation states history is also initialized.

Finally, the simulation session consists of three activities
executed in a loop. First, the triggering of time-tagged events
is checked. If the queue contains an event which execution time
matches that of the simulation step, that event is triggered at
that step. Such triggering is indicated by a change in value of as-
sociated event parameters. After that, all the rules are evaluated
sequentially for the purpose of updating state parameters. The
updated state is then written to the states history. This process
is repeated cyclically, until the evaluation result of the simulation
stop condition returns true.

4 SIMULATOR DATA STRUCTURES

As shown in Figure 6, during the simulation initialization, events
queue, system model rules and initial state data are retrieved from
database files in storage devices, and then converted to corre-
sponding memory loaded data structures, for faster access by the
simulator kernel. The database files were specifically designed to
store the information necessary to build these data structures.

The system model used by the simulator is based on causal
rules. They define the behavior of a satellite as understood by its
design experts. Simply speaking, a rule is an IF-THEN clause,
consisting of a single condition expression that must be eval-
uated to tell whether one or more associated effects should be
applied or not. Examples of such rules are shown in Figure 7.
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Fig6. The satellite simulator working phases and activities diagram. Figure 6 – The satellite simulator working phases and activities diagram.

Fig7. Examples of satellite system model rules. 
Figure 7 – Examples of satellite system model rules.

Figure 7 evidences the structures that constitute a causal
rule. Basically, a rule contains a condition clause associated
with one or more effect clauses. A condition clause begins with

an IF statement followed by a logical expression, or an ELSE
statement. Effect clauses may contain an assignment expression
or a nested rule. A logical expression usually follows an IF state-
ment in a typical condition clause, consisting of a sequence of
expression elements. The evaluation of such an expression re-
sults in a logical value. This logical value indicates whether as-
sociated effect clauses should be processed or not. A condition
clause started by an ELSE statement simply uses the negation of
the result of the previous rule logical expression.

The evaluation process of a logical expression is exemplified
by Figure 8. The upper row contains the expression, whereas the
rows below contain the evaluation result at each step. The final
result is shown in the bottom row.

Figure 8 – Evaluation steps of a logical expression.
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The logical expression shown in Figure 8 consists on an or-
dered set of expression elements defined by the sequence “A”
→ “OR” → “(” → “B” → “>” → “C” → “)”. Of these el-
ements, “A”, “B” and “C” are operands, “OR” and “>” opera-
tions, and expression nesting are indicated by “(” and “)”. In
this example, the nested expression is evaluated first, resulting
in a logical value that is used as an operand by the outer expres-
sion. Nested expressions must be evaluated in descending order
of depth. In other words, results must be obtained sequentially
from innermost expression towards the outermost one. This pro-
cedure also applies to the evaluation of numeric expressions
associated with assignment expressions in effect clauses, as
exemplified in Figure 9.

Figure 9 – Evaluation steps of an assignment expression.

Thus, an assignment expression consists of a target operand,
an assignment operation, and a numeric operand. This operand
is the result of the evaluation of a numeric expression that, in its
simplest form, is a single numeric value. Numeric expressions
are also represented as a sequence of expression elements. In
the example (Fig. 9), this sequence is “(” → “A” → “/ ” → “(”
→ “B” → “+” → “C” → “)” → “)” → “∧” → “2”, of which
“A”, “B”, “C”, and “2” are operands, “/ ”, “+”, and “∧” are opera-
tions. There are also two instances of expression nesting, shown
by “(” and “)”, one inside another. Since nested expressions must
be evaluated in descending order of depth, the innermost expres-
sion “B” → “+” → “C” is evaluated first, followed by “A” → “/ ”
→ “(B + C)” and, at last, “(A / (B + C))” → “∧” → “2”. This
final result is assigned to the target parameter “X”.

The data structure used by the simulator to store the system
rules can be thus represented as a set of expressions. Its archi-
tecture is shown in Figure 10.

Each rule comprises three structures, including an identifier,
a condition, and a list of effects. A condition consists of a single
logical expression. Assignment expressions that are part of

effect structures are represented by a target parameter followed
by a numerical expression. The assignment operation can be
omitted because of the left side of an assignment expression al-
ways has the same structure. Moreover, logical and numerical
expressions can be expressed using the same structure, a se-
quence of expression elements, as it has been previously shown.
Each expression element consists of a string value that can repre-
sent an operation, an operand, or an expression nesting indicator.

Immediately prior to the evaluation of expressions, the sim-
ulator inference engine preprocesses expression elements by
separating operands from operations. This expression reformat-
ting process, in which operands and operations are assigned to
different data structures, is represented in Figure 11. In the refor-
matted expression, the amount of operands is always made equal
to the amount of operations plus one, as it will be shown.

During the expression reformatting, information about ex-
pression nesting is assigned to operations. This is done by attach-
ing an operation depth field to each operation. This field stores
a numerical value corresponding to the evaluation order of each
operation. The value assigned to the depth field can be obtained
by counting the number of open and closed parentheses present
to the left of the operation in the expression, and subtracting one
from another. This process is exemplified in Figure 12.

In Figure 12, each row corresponds to an expression, with
evaluation steps indicated from left to right. The first column,
the leftmost one, shows the expressions as stored inside the
rules, that is, as a sequence of expression elements. Each expres-
sion element is represented by a colored block. Those with back-
grounds colored in the lightest shade represent operands, darkest
ones operations, and the remaining ones are opening and closing
parentheses that indicate expression nesting. The numbers inside
operands and operations blocks represent the index of each ex-
pression element in their respective reformatted expression data
structures. The second column contains the reformatted expres-
sion, now displayed as an interleaved sequence of operands and
operations. The numbers in the blocks positioned above oper-
ations are the values assigned to their respective depth fields.
Operations without visible blocks are assumed to have depth
value equal to zero. Expressions are evaluated sequentially from
left to right, in descending order of operation depth. At each step,
the leftmost operation with the highest depth value is applied to
adjacent operands. This result is assigned to both operands, as
indicated by the equal sign in the third column and onwards.
This procedure is well suited for binary infixed operations, as
shown in the second to fourth rows. For unary operations, such
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Figure 10 – Simulator rule data structure architecture.

Figure 11 – Data structures of expression elements.

Figure 12 – Evaluation processes of some expressions.
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as those found in the last two rows, dummy operands are initial-
ized with values copied from the first valid operand, as indicated
by arched arrows in the second column. At the end of the expres-
sion evaluation process, the value of the final result is assigned
to all operands.

In rule expressions, an operand may represent an identifier
of a variable associated with a numeric value, or a constant nu-
meric value. In the expression “(A / (B + C)) “∧” 2” (exemplified
in Fig. 9), “A”, “B” and “C” are identifiers, whereas “2” is a con-
stant value. Thus, expression operands must be able to represent
these two types of information. Figure 13 shows the architecture
of the simulation parameter data structure, which was developed
for this purpose.

Fig13. Generic data structure of a simulation paramFigure 13 – Generic data structure of a simulation parameter.

A simulation parameter is constituted by an identifier field
(indicated above as “id”), a type field (“typ”), and a value field
(“val”). The identifier field is a label from which the content of
the value field can be accessed. These two fields allow the rep-
resentation of an expression operand. The type field was con-
ceived to allow this same data structure to represent event para-
meters in the events queue, and state parameters inside initial
state database files, as indicated in Figure 14.

As mentioned earlier, the internal state of the simulated sys-
tem can be described by a set of numeric parameters, whose
values define the current status. The internal state (indicated
above as “stat”) is, thus, represented by a set of simulation
parameters of the state type. The events queue (“queue”) con-
tains a list of time-tagged triggers that, once executed, change
the system behavior. The verification of events triggering is per-
formed by comparing the simulation time, a state parameter that
increments at each session step, with the execution time param-
eter (“exec time”) associated with each event. If these two time
values match during a simulation session step, then a parame-
ter of the event type that is associated with the triggered event
is set to true for the duration of that time step. The states of
parameters of the event type assume the value false while they
are not triggered.

Figure 15 shows the last date structure that was conceived
for this satellite simulator. It allows the representation of user

functions, which can be employed to implement equipment
calibration curves. Each function has an identifier used for ref-
erence inside expressions, an optional associated parameter,
and a set of points. Each point is an (input, output) pair. Func-
tion output values are obtained by linear interpolation or extrapo-
lation based on the nearest two points.

5 IMPLEMENTATION AND RESULTS

Based on the information presented so far, a simulator prototype
was implemented. It was programmed in FORTRAN 77, the same
language in which most of the flight dynamics software main-
tained at the control center was written. The modules that com-
prise this simulator are presented in Figure 16.

As evidenced by Figure 16, the database files were imple-
mented using XML. System rules and their expressions are di-
rectly parsed from XML structures to arrays of strings by the
program, while system parameters and function curves require
additional processing for conversion to appropriate data struc-
tures. The reason behind choosing XML to design the simulator
database format was based on compatibility with other pieces of
software that comprise the new satellite control architecture cur-
rently under development. However, it was later found that be-
cause XML is text-based, it was well suited for manual editing of
data, especially in the absence of a finished database configura-
tion tool. A simple satellite model for testing purposes could be
easily created using just a text editor.

After XML database files are converted to memory data
structures, initial state parameter values are written to the output
state history file for initialization. Then, at the end of each session
step, the values of the internal state parameters are updated. These
values are continuously appended to the output state history file,
until the simulation stop condition is reached. The format adopted
for this output file was another text-based one, known as CSV
(Comma-Separated Values). An important factor that determined
this choice was the ease of data manipulation and visualization
using external datasheet tools. Figure 18 shows an example in
which telemetry data obtained from a real satellite were plotted,
using a datasheet tool, along with the simulated results based
on a simple model of the same spacecraft. Comparisons such as
this one are often performed for the purpose of mission analysis.

6 FINAL REMARKS

The rule-based satellite simulator described in this paper reflects
the current state of an ongoing project. This simulator is a single
component, although an important one, out of many blocks that
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Fig14. Events queue and internal states data structures. Figure 14 – Events queue and internal states data structures.

Figure 15 – User functions data structure.

form a comprehensive system aimed at satellite operations plan-
ning. The implemented prototype was proven to be fully capable
of successfully simulating simple models, such as the SCD power
supply model that was used to generate Figure 18. This model,
which is a slightly improved version based on another one de-

scribed in reference [1], was instrumental in detecting a real on-
board failure, as presented in reference [2].

However, more complex models comprising hundreds to
thousands of rules, required to represent high fidelity models de-
scribing a whole satellite, cannot be implemented yet. Although
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Fig16. Hierarchy diagram of the satellite simulator engine. 
Figure 16 – Hierarchy diagram of the satellite simulator engine.

Fig17. Simulator database files samples. Figure 17 – Simulator database files samples.

Figure 18 – Example of satellite simulation result (SCD1 battery voltage).
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theoretically not impossible, implementing such intricate models
correctly without the right tools for validation and testing is prac-
tically unfeasible. The correctness of the rules and the complete-
ness of the parameters that comprise the simulated system model
could and should be enforced by a rule model editor. This tool,
which is not yet finished, is currently being modified to be inte-
grated with the planning domain editor. The diagnosis generator,
which shall make use of the simulator output data, is also under
active development. This means that modifications to the simula-
tor in order to implement fine adjustments to the state history file
format are not yet completely ruled out.

A possible direct spinoff of this satellite simulator, developed
specifically for the validation the flight operations planning, is
another simulator for the monitoring of satellites at real-time pro-
cedures execution. The idea of this new simulator is to use the
state history generated at the operations planning to compare
predicted parameter values with satellite telemetry, in real-time.

Significant discrepancies between observed and predicted val-
ues could indicate degradation of onboard equipment, thus allow-
ing for early detection and correction of failures. The information
thus gathered could be further used to refine the system model,
improving its accuracy. Details about the architecture and imple-
mentation of this new simulator are currently under study. But,
if approved and implemented, this new simulator could further
enhance the quality of satellite control operations performed by
INPE.
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