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Abstract. The preprocessor PREP-CHEM-SRC presented in
the paper is a comprehensive tool aiming at preparing emis-
sion fields of trace gases and aerosols for use in atmospheric-
chemistry transport models. The considered emissions are
from the most recent databases of urban/industrial, biogenic,
biomass burning, volcanic, biofuel use and burning from
agricultural waste sources. For biomass burning, emissions
can be also estimated directly from satellite fire detections
using a fire emission model included in the tool. The prepro-
cessor provides emission fields interpolated onto the trans-
port model grid. Several map projections can be chosen. The
inclusion of these emissions in transport models is also pre-
sented. The preprocessor is coded using Fortran90 and C and
is driven by anamelistallowing the user to choose the type
of emissions and the databases.

1 Introduction

Atmospheric chemistry composition studies with numerical
simulations are widely conducted due to the increasing avail-
ability of atmospheric-chemistry transport models and com-
putational resources. Emission inventories of trace gases and
aerosols provide surface as well as upper level mass fluxes
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for the mass continuity equation (MCE), which are crucial
needed information for these numerical studies. To provide
this information, several international programs and groups
have been developing emission inventories of the most rel-
evant primary atmospheric trace gases and aerosols. For
example, we can cite the Global Fire Emissions Database
(GFED, van der Werf et al., 2006) for biomass burning and
the “REanalysis of the TROpospheric chemical composition
over the past 40 yr” (RETRO,http://retro.enes.org) for urban
emissions. The numerical simulation of atmospheric chem-
istry composition is done with advanced models where the
MCE is solved on- or off-line (Zhang, 2008) with several
spatial resolutions and geographical projections, on either re-
gional or global scales. In this paper, we introduce a software
tool, named PREP-CHEM-SRC, version 1.0, developed to
provide gridded emissions of trace gases and aerosols with
a flexible spatial resolution, several projections and suitable
for regional and global models. Emission fields generated
by this system have been used with CCATT-BRAMS (Fre-
itas et al., 2009, Longo et al., 2011), WRF-CHEM (Grell et
al., 2005), and theFlow-following finite-volumeIcosahedral
Model (FIM, Bleck et al., 2010). The emission preprocessor
was also implemented for use with the Brazilian Center for
Weather Forecasting and Climate Studies (CPTEC) global
circulation model.

This paper is organized as follows. Section 2 covers all
available inventories of emissions from anthropogenic and
biogenic sources as well as the chemical species available in
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the database of this software tool. In Sect. 3, we briefly de-
scribe a possible way to introduce the emission contribution
in the MCE. Section 4 describes the system and its function-
alities. Our conclusions are discussed in Sect. 5.

2 Emission inventories

This section is devoted to describe all types of emis-
sions currently available within the PREP-CHEM-SRC sys-
tem. This covers emissions of gases and aerosols from ur-
ban/industrial, biogenic, biomass burning, volcanic sources
and from biofuel use and burning of agricultural waste.
For urban/industrial and biogenic emissions from several
databases are available and may be chosen by the user. For
biomass burning, it is possible to use the Global Fire Emis-
sions Database with a 8 days or a one month resolution or
the Brazilian biomass burning emission model tool (Longo
et al., 2010). This model provides emissions with very high
temporal and spatial resolutions from satellite fire detection.
Volcanic emissions include ashes for erupting periods and
SO2 degassing for both eruptive and non-eruptive periods.

Depending on the modeling system the user may select all
emission options (anthropogenic, biogenic, biomass burning,
etc) or select only part of the entire available set. WRF-
CHEM, for example, has several other emission preproces-
sors, depending on the location of the domain in which the
model will be run. The user may choose to combine his or
her own anthropogenic emission preprocessor with only the
biomass burning emissions from our system.

2.1 Urban-industrial emissions

For the urban/industrial emissions, three alternative emission
datasets are available, which include different time horizons,
resolutions and set of species.

One of the anthropogenic emission inventories used within
the PREP-CHEM-SRC system is provided by the “REanaly-
sis of the TROpospheric chemical composition over the past
40 yr” (RETRO, http://retro.enes.org), a long-term global
modeling study of tropospheric chemistry funded by the 5th
European Commission Framework Programme. The emis-
sion data has a 0.5◦

× 0.5◦ spatial resolution and global cov-
erage, with monthly temporal resolution, and is based on the
year 2000. The emission units are kg [species] m−2 dy−1.
The Table 1 provides a list of chemical species available in
the anthropogenic inventory.

The second database proposed for anthropogenic emis-
sions is provided by the “Emission Database for Global
Atmospheric Research” (EDGAR,http://edgar.jrc.ec.europa.
eu, Olivier et al., 1996, 1999). This program provides past
and present global anthropogenic emissions of greenhouse
gases and air pollutants. The available species are N2O, CO2,
CO, CH4, SO2, SF6, NOx and NMVOC with a 1◦ × 1◦ spa-
tial resolution. The emissions do not vary in time and are

based on the year 2000. A recently released new version of
EDGAR, version 4, will be included in the database of the
PREP-CHEM-SRC system in an upcoming version.

Additionally, for the South American continent, a regional
urban emission inventory suitable either for local and re-
gional scale applications is also available. This database
integrates information from local vehicle emission invento-
ries using socio-economic data, extrapolation of emissions
for cities lacking local inventories, and the geographic distri-
bution of emissions at different spatial resolutions (Alonso et
al., 2010).

For aerosols, emissions of organic carbon (OC), black car-
bon (BC), SO2 and DMS at a 1◦ × 1◦ resolution on a monthly
basis from the Goddard Chemistry Aerosol Radiation and
Transport (GOCART) model database are provided.

2.2 Biogenic emissions

2.2.1 Biogenic emissions from GEIA Activity

The first database proposed for biogenic or natural
emissions is the GEIA/ACCENT Activity on Emis-
sion Databases,http://www.aero.jussieu.fr/projet/ACCENT/
description.php). Emission sources from land, vegetation
and oceans are provided with a 1◦

× 1◦ spatial resolution
and monthly temporal resolution. Emissions for Acetone,
C2H4, C2H6, C3H6, C3H8, CO, CH3OH, DMS, NO, Iso-
prene, Terpenes and NVOC are available. The emission units
are kg [species] m−2 dy−1.

2.2.2 Biogenic emissions from MEGAN

The alternative biogenic emission database is derived by
the Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN, Guenther et al., 2006). MEGAN is a mod-
eling system for estimating the net emission of gases and
aerosols from terrestrial ecosystems into the atmosphere.
Driving variables used by MEGAN to calculate the fluxes
include land cover, weather, and atmospheric chemical com-
position. The data was provided by the GEIA/ACCENT
Activity on Emission Databases,http://www.aero.jussieu.fr/
projet/ACCENT/description.php. The data covers the en-
tire world with a 0.5◦ × 0.5◦ spatial resolution. The tem-
poral coverage is from January to December 2002 with a
monthly time resolution. Emission rates are provided for
the following species: CO, CH4, C2H4, C2H6, C3H6, C3H8,
CH3OH, Formaldehyde, Acetaldehyde, Acetone, other Ke-
tones, Toluene, Isoprene, Monoterpenes and Sesquiterpenes.
The emission units are kg [species] m−2 dy−1.

2.3 Biomass burning emissions and the smoke plume
rise model

Emissions from wild- or deforestation fires are provided us-
ing two methodologies.
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Table 1. List of chemical species available in the anthropogenic inventory developed by the RETRO program.

Acids C4H10 Ethene Other Aromatics

Alcohols C5H12 Ethers Other VOC

Benzene C6H14 plus higheralkanes Ethyne Toluene

C2H2 Chlorinated Hydrocarbons Ketones Trimethylbenzene

C2H4 CO Methanal Xylene

C2H6 Esters NOx
C3H8 Ethane Other Alkanals

2.3.1 Brazilian biomass burning emission model

The first option is based on the Brazilian Biomass Burning
Emission Model (3BEM, Longo et al., 2010) which is in-
cluded in this software tool. In this methodology, for each
fire pixel detected by remote sensing, the mass of the emitted
tracer is calculated by the following expression, which takes
into consideration the estimated values for the amount of
above-ground biomass available for burning (α), the combus-
tion factor (β), the emission factor (EF) for a certain species
(η) from the appropriate vegetation type, and the burning area
(afire) for each burning event.

M [η]
= αveg·βveg·EF[η]

veg·afire (1)

In this model, a hybrid remote-sensing fire product is
used to minimize missing remote sensing observations. The
fire database actually used is a combination of the Geosta-
tionary Operational Environmental Satellite – Wildfire Au-
tomated Biomass Burning Algorithm (GOES WFABBA)
product (cimss.ssec.wisc.edu/goes/burn/wfabba.html; Prins
et al., 1998), the Brazilian National Institute for Space Re-
search (INPE) fire product, which is based on the Ad-
vanced Very High Resolution Radiometer (AVHRR) aboard
the NOAA polar orbiting satellites series (www.cptec.inpe.
br/queimadas; Setzer and Pereira, 1987), and the Moderate
Resolution Imaging Spectroradiometer (MODIS) fire prod-
uct (modis-fire.umd.edu; Giglio et al., 2003). The three fire
product databases are combined using a filter algorithm to
avoid double counting of the same fire, by eliminating addi-
tional fires within a circle with a radius of 1 km. The burnt
area of fires detected in the GOES WFABBA product is esti-
mated from the instantaneous fire size for each non-saturated
and non-cloudy fire pixel, from which it is possible to re-
trieve sub-pixel fire characteristics. For GOES WFABBA
detected fires that have no information about the instanta-
neous fire size, a mean instantaneous fire size of 0.14 km2

(calculated from the GOES ABBA database of the previ-
ous years) is used. For fires detected by the MODIS and
AVHRR systems, a mean value of 0.22 km2 of burnt area is
used (Longo et al., 2010).

The fire detection maps with latitude and longitude are
merged with 1 km resolution land cover data (Belward, 1996,

Sestini et al., 2003) to provide the associated emission
(EF) and combustion (β) factors through a look-up table.
The corresponding aboveground carbon density (α) is de-
fined from the carbon in live vegetation data, estimated us-
ing Olson et al. (2000) and updated by Gibbs (2006) and
Gibbs et al. (2007) using the Global Land Cover Database
(GLC2000). For the Amazon basin and neighboring ar-
eas, the estimation of aboveground carbon density done by
Saatchi et al. (2007) with 1 km spatial resolution is used. The
land cover map for the Amazon basin was updated with data
provided by the PROVEG project (Sestini et al., 2003) and it
is based on the year 2000.

The emission and combustion factors for each biome are
based on Andreae and Merlet (2001) and Longo et al. (2009).
In particular, Andreae and Merlet (2001) provides emission
factors for 110 chemical species emitted during burning of
tropical forest, extratropical forest, savanna, pasture, char-
coal production andagricultural waste, as well as emission
factors measured in controlled laboratory experiments. The
mean combustion factor for each biome cited above is also
provided. See Table 2 for a complete list of species available
within the PREP-CHEM-SRC system.

The total emitted mass of each chemical species per grid
box is calculated by summing the individual mass (given by
Eq. 1) over all fires in that grid box. The emission units are
kg [species] m−2 dy−1.

2.3.2 The Global Fire Emissions Database

The second methodology available for biomass burning
emissions is based on Giglio et al. (2006) and van der Werf
et al. (2006). These authors use burnt-area estimates from re-
mote sensing, a biogeochemical model, and emission factors
from the literature to estimate fire emissions during the 8-
yr period from 1997 to 2004. This dataset, called the Global
Fire Emissions Database (GFEDv2), has a 1◦

×1◦ spatial res-
olution and a 8-day or one-month temporal resolution. In this
case, the GFEDv2 emissions are interpolated to the model
grid and the same list of species described in the Table 2 is
available. The emission units are kg [species] m−2 dy−1.

Figure 1 illustrates the typical output of the PREP-CHEM-
SRC system for biomass burning. It shows the spatial
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Table 2. List of species available within the PREP-CHEM-SRC system for biomass burning emissions.

CO2 n butane n hexane Butanols

CO i-butane isohexanes cyclopentanol

CH4 1 pentene heptane phenol

NHMC 2 pentene octenes Formaldehyde

C2H2 n pentane terpenes Acetald

C2H4 2 Me Butene benzene Hydroxyacetaldehyde

C2H6 2 Me butane toluene Acrolein

C3H4 pentadienes xylenes Propanal

C3H6 Isoprene ethylbenzene Butanals

C3H8 cyclopentene styrene Hexanals

1 butene cyclopentadiene PAH (polycyclic Heptanals
aromatichydrocarbons )

i-butene 4me 1 pentene Methanol Acetone

tr 2 butene 2me 1 pentene Ethanol 2Butanone

cis 2 butene 1hexene 1Propanol 23 Butanedione

butadiene hexadienes 2propanol Pentanones

Hexanones Acrylonitrile NH3 Heptanones

Heptanones Propionitrile HCN Octanones

Octanones pyrrole cyanogen Benzaldehyde

Benzaldehyde trimethylpyrazole SO2 Furan

Furan methylamine DMS H2

2 Me Furan dimethylamine COS NOx

3 Me Furan ethylamine CH3Cl NOy

2 ethylfuran trimethylamine CH3Br N2O

2 4 dime furan npentylamine CH3I benzofuran

2 5 Dime furan 2me 1 butylamine Hg Propanoic

Tetrahydrofuran PM2.5 (particulate TC (total carbon) OC (organic carbon)
matter<2.5 mm diameter)

2 3 dihydrofuran BC (black carbon) TPM (total particulate matter)

biomass burning CO emission estimation (mg m−2 dy−1)

generated using this emission tool averaged over 3 months
(August-September-October 2002) at a 35 km horizontal spa-
tial resolution. Panel (a) shows the estimation obtained by
3BEM, and in panel (b) GFEDv2 is shown. These two
biomass burning emission inventories show general agree-
ment, with most of the emissions being located in the area
around latitude 10◦ S between longitude 67◦ W and 50◦ W,
on the border between the Amazon forest and the main area
of intense land use and land cover change for cropland and
pasture. Nevertheless, there are strong disagreements in
some places (especially in the west side of SA). The choice
of the database really depends on the application. For ex-
ample, 3BEM is more suitable for chemical weather studies,
since its spatial resolution can be as fine as the pixel size of

the satellite sensor used for the fire detection, has a temporal
resolution of one day or less, and also due to the fact that the
emissions are placed only in regions where fires were in fact
observed (Longo et al., 2010).

PREP-CHEM-SRC also provides the data needed to drive
the smoke plume rise model described in Freitas et al. (2006,
2007, 2010). This plume rise parameterization has been in-
corporated in the CCATT-BRAMS, WRF-CHEM and FIM
models, and is used to interactively determine the effective
injection height of vegetation fires emissions during the flam-
ing phase. The information comprises the mean fire size per
biome type and per grid box as well as the partition of trace
gases and aerosol mass emitted during the flaming and smol-
dering phases.
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Fig. 1. Spatial distribution of the CO emission estimations in mg m−2 dy−1 averaged over 3 months (August-September-October 2002) from
the two biomass burning inventories available within the PREP-CHEM-SRC system:(A) 3BEM, (B) GFEDv2. (Figure adapted from Longo
et al., 2009).

2.4 Volcanic emissions

2.4.1 Volcanic eruption

During volcanic eruption, volcanic ash transport and disper-
sion models are used to forecast the location and movement
of ash clouds over hours to days. To determine ash emis-
sion fields during these events, the PREP-CHEM-SRC sys-
tem uses the database developed by Mastin et al. (2009). This
database provides a set of parameters to model volcanic ash
cloud transport and dispersion during eruptions. There is in-
formation on 1535 volcanoes around the world comprising
location (latitude, longitude and height) and the correspond-
ing parameters plume height, mass eruption rate, volume
rate, duration of eruption and the mass fraction of erupted
debris finer than about 63 µm are provided. The emission
tool provides the place of the volcano in the nearest model
grid box and the corresponding emission parameters (mass
eruption rate, plume height and time duration). To the user
is left the work to implement the vertical distribution of the
erupted mass within the atmospheric transport model. Within
our modeling transport system, 75 % of the erupted mass is
detrained in the umbrella cloud and 25 % beneath. The base
of the umbrella cloud is roughly located at 73 % of the plume
height (P. Webley, personal communication, 2009).

2.4.2 Volcanic SO2 degassing emissions

The data provided by the AEROCOM program (http:
//www-lscedods.cea.fr/aerocom/AEROCOMHC/volc/,
Diehl, 2009; Diehl et al., 2011) contains volcanic SO2 emis-
sions and other variables for all days from 1 January 1979 to
31 December 2007 for all volcanoes with historic eruptions

listed in the Global Volcanism Program database provided
by the Smithsonian Institution. There is one file for each
year which contains the number of events for each day of
that year over the entire world. For each event the volcano
name, date, height above the mean sea level, cloud column
height, longitude, latitude and daily emission rate of SO2 are
provided. There is also a separation between eruptive and
non-eruptive volcanic emissions.

PREP-CHEM-SRC places the emission from each volcano
in the grid box which surrounds its geographical location.
The total emission is calculated by summing the emissions
of all volcanoes within the grid cell. Next, the total emission
and the minimum and maximum column heights of the set
of volcanoes within the grid cell are provided. The units are
kg [SO2] m−2 dy−1.

2.5 Emissions from biofuel use and burning of
agricultural waste

In addition to biomass burning emissions, biofuel use and
agricultural waste burning inventories developed by Yevich
and Logan (2003) are also available. This inventory covers
the developing world with a 1◦ ×1◦ spatial resolution, and
provides the amount of biomass burned annually per grid box
in units of Tg dry matter. This information is uniformly con-
verted to daily biomass burned and then used to calculate
emissions of chemical species using the Andreae and Mer-
let (2001) emission factors.
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3 Including emissions in a transport model

In this section we discuss how to include emissions in atmo-
spheric chemistry transport models.

The advective form of the mass continuity equation, after
Reynolds decomposition and neglecting molecular diffusion,
reads (e.g., Seinfeld and Pandis, 1998)

∂s̄η

∂t
+ ūi

∂s̄η

∂xi︸ ︷︷ ︸
I

+
1

ρ̄

∂(ρ̄s′′
ηu′′

i )

∂xi︸ ︷︷ ︸
II

= Qη︸︷︷︸
III

, (2)

where s̄η is the grid box mean tracer mass mixing ratio of
speciesη, term (I) represents the 3-D resolved transport term
(advection by the mean wind, given byūi), term (II) is the
subgrid scale transport by the unresolved flows (s′′

ηu′′

i are the
turbulent fluxes) and (III) is the forcing, respectively. The
quantity ρ̄ is the grid box mean of the dry air density. The
forcing is normally split in sink (R), emission (E) and the
net production or loss by additional physical and/or chemical
processes (PL):

Qη = R+E+PL, (3)

Here our focus is how to determine the emission (E) in
terms of the mass fluxes described in Sect. 2.

3.1 Cold/low buoyancy emissions

Most of the emissions from urban processes, transporta-
tion (over the land and ocean), charcoal production, waste
agricultural burning, biogenic, and others, typically have
low buoyancy compared with the environment, since they
are released into the atmosphere near the surface. For
this kind of emission, with a prescribed flux (Fη, with
units kg [η] m−2 dy−1) given by the corresponding in-
ventories, the contribution to the mixing ratio tendency
(kg [η] kg [air]−1 dy−1) for a tracerη can be expressed as

Ēη(k) =

{
Fη

ρ̄(k1) 1z1
, k = 1 (surface)

0, k > 1 (above)
, (4)

where1z1 is the vertical thickness of the first physical model
layer where the tracerη will be released andk denotes the
vertical layer. If the emission source is located above the
first model vertical layer, as would be the case for tall chim-
neys with a height greater than the thickness of this layer,
Eq. (4) must be changed accordingly. The unit of the emis-
sion rateĒη in Eq. (4) is kg [η] (kg [air] dy)−1. To express
the emission rate per second instead of per day, the user
has two choices. If the diurnal cycle of the process that
is emitting the tracer is constant, Eq. (4) must be divided
by 86 400 s dy−1. However, several processes release trac-
ers at non-homogenous rates during the day. Consequently,
the user should develop a diurnal cycle functionr(t) which
obeys the following constraint∫ 86400

0
r(t)dt = 1, (5)

Fig. 2. A double Gaussian function used to determine the diurnal
cycle of urban emission.

In this case, the instantaneous emission rate will be given by

Ēη(k,t) =

{
Fη

ρ̄(k1) 1z1
r(t), k = 1 (surface)

0, k > 1 (above)
, (6)

with units of kg [η] (kg [air] s)−1. For emissions from mo-
biles sources in urban areas,r(t) could, for example, be rep-
resented by a double Gaussian function with one peak in the
morning and another one in the late afternoon, representing
the typical rush hours in the cities, as illustrated in Fig. 2.
In case of a constant daily emission,r(t) is simply given by
1/86400.

3.2 Hot/high buoyancy emissions

One important example of hot and high buoyancy emissions
are those from vegetation fires. This process emits hot gases
and particles which are quickly transported upward due the
positive buoyancy produced by the combustion. The entire
fire process can be split in two main phases:

– smoldering with most of the emission released just
above the surface,

– flaming with most of the emission directed injected in
the PBL, free troposphere or even stratosphere.

In the methodology proposed by Freitas et al. (2006, 2007,
2010), a 1-D plume rise model is embedded in each column
of the 3-D low resolution atmospheric chemistry-transport
models (the hosts) to interactively provide the smoke in-
jection height, the actual region where the trace gases and
aerosols emitted during the flaming phase of vegetation fires
are released in the atmosphere.

Following this approach, the total emission flux (Fη, in
units of kg [η] m−2 dy−1) is first determined, followed by
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Figure 3. (A) An example of a simulated vertical cross section of biomass burning CO source 

emission on 1800 UTC 02 September 2002 at latitude 5.4 S (adapted from Freitas et al., 

2007). It shows the surface emission associated to the smoldering phase as well as elevated 

emission layers associated to the flaming phase. The panel (B) depicts a Gaussian function 

centered at 15 LT used to determine the diurnal cycle of biomass burning emissions on South 

America. 

 
 

 

 
Figure 4. Carbon monoxide anthropogenic emission field generated by the PREP-CHEM-SRC 

program: Panel (A) for a regional grid with 15 km horizontal resolution, Panel (B) for a 

nested grid with 3 km. The black box on Panel (A) represents the location of the nested grid 

in the coarse domain. 

Fig. 3. (A) An example of a simulated vertical cross section of biomass burning CO source emission on 18:00 UTC 02 September 2002
at latitude 5.4◦ S (adapted from Freitas et al., 2007). It shows the surface emission associated to the smoldering phase as well as elevated
emission layers associated to the flaming phase. The panel(B) depicts a Gaussian function centered at 15:00 LT used to determine the diurnal
cycle of biomass burning emissions on South America.

the partitioning of mass emitted during the smoldering and
flaming phases. Finally, the plume rise model determines the
smoke injection layer of the flaming phase. From the above,
the emission term of Eq. (2) can be expressed as

Ēη(k) =

{
λ

Fη

ρ̄(k1) 1z1
,k = 1

(1−λ)
Fη

ρ̄(k) 1zk
,h−

1zh

2 < z(k)< h+
1zh

2

(7)

where 1zh is the vertical thickness of the smoke layer,[
h−

1zh

2 , h+
1zh

2

]
is the vertical domain of the injection

layer prescribed by the smoke plume rise model andλ is the
fraction (between 0 and 1) of the total mass released to the
atmosphere during the smoldering phase. An example of the
spatial distribution of biomass burning CO source emissions
is given by Fig. 3a. It shows a vertical cross section of CO
emissions at 18:00 UTC on 2 September 2002 along latitude
5.4◦ S (see Freitas et al., 2007 for more details), with sur-
face emission associated with smoldering phase as well as
elevated emission layers associated with flaming phase.

To convert the time unit of emission to seconds, it is con-
venient to introduce a diurnal cycle for the biomass burn-
ing emissions. The burning diurnal cycle typically shows
a peak between approximately 13:00 and 18:30 local time,
with the fire activity peaking earlier for heavily forested re-
gions. The diurnal fire cycle is dictated primarily by the di-
urnal cycle of human activity; however, for high fractional
tree cover, the diurnal meteorological conditions limit igni-
tion to a relatively brief period of the day (Giglio, 2007). For
South American fires, a single Gaussian function centered at
∼18:00 UTC is normally used. This curve is based on the
typical diurnal cycle of fire occurrence over South America

as reported by Prins et al. (1998). Figure 3b shows the diurnal
cycle functionr(t) as used by the CCATT-BRAMS model.
For other tropical areas of the world, Giglio (2007) reports
the diurnal fire cycles for 15 regions which can be used to
describe the corresponding diurnal cycle functionsr(t).

4 System description and functionalities

4.1 Chemical mechanisms available, grid projection
and interpolation methods

PREP-CHEM-SRC is ready to provide emissions for the
chemical mechanisms RADM2 (Chang et al., 1989), RACM
(Stockwell et al., 1997), CB07 (Yarwood et al., 2005) and
RELACS (Crassier et al., 2000). The chemical mechanism
is determined during the code compilation by providing the
corresponding chem1list.f90 file (see the README file for
further instructions).

Several options of map projection types (Polar-
Stereographic, Gaussian, Lambert Conformal, Rectangular,
FIM model Icosahedral horizontal grid ) for regional and
global grids are available with flexible spatial resolution.

The interpolation routines to create the emission fields on
the model grid box can use either nearest-neighbor interpola-
tion (when the model grid spacing is finer than the database
grid spacing) or box averaging (when the model resolution
is coarser). Both methods are approximately mass conserva-
tive.

The code is modular, user friendly, and self-explanatory
on how each kind of emission source is treated. A regular
user should be able to easily include new emission databases,
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Fig. 4. Carbon monoxide anthropogenic emission field generated by the PREP-CHEM-SRC program: Panel(A) for a regional grid with
15 km horizontal resolution, Panel(B) for a nested grid with 3 km. The black box on Panel(A) represents the location of the nested grid in
the coarse domain.

such as aircraft emissions, for example. Feedback to the de-
velopers is welcome.

4.2 The software

The PREP-CHEM-SRC emissions tool is coded using For-
tran90 and C and requires HDF and NetCDF libraries. The
code package is comprised of Fortran90 and C routines and
a README file for further instructions. We make intensive
use of derived type data and modules, functionalities of For-
tran90, to provide clear, safe and easy understanding of the
data structure. The desired grid configuration and emission
inventories to provide trace gases and aerosol fluxes are de-
fined in a Fortrannamelistfile called “prep-chem-src.inp”.
The Appendix A provides a description of the parameters in
the namelist. The software has been tested with Intel and
Portland Fortran compilers under the UNIX/LINUX operat-
ing system.

4.3 Some examples of regional and global emissions

For regional models with nested grid capability, emissions
for both coarse and fine grids are provided. Local updates for
megacities or inclusion of point and line sources can easily
be implemented. The product of this tool is a set of files with
gridded daily emission fluxes (kg m−2 dy−1) and emission
related information fields.

Figure 4 introduces the first example of the model out-
put. In this case it is related to the anthropogenic emis-
sion of CO (described at Sect. 2.1) in the southeast region of
Brazil. The system was configured with 2 grids, the coarse
one (showed in panel a) with a 15 km horizontal resolution

covering mostly of S̃ao Paulo State with Paraná State in the
south and Rio de Janeiro and Minas Gerais states in the north.
The second and nested grid (panel b) has a 3 km horizontal
resolution and covers the more densely urbanized areas of
the Brazil, S̃ao Paulo and Rio de Janeiro Metropolitan Ar-
eas (MA), indicated by the letters SP and RJ on the panel.
At this resolution, the shape of the emission field resem-
bles much better the real urban islands of these Metropoli-
tan Areas. Another remarkable feature at this resolution is
the emission related to the main highways and roads of this
area depicted by the red lines connecting SP and RJ and oth-
ers urbanized locations. See Alonso et al. (2010) for more
details.

As an example of model output for a regional grid cov-
ering South America, Figs. 5 and 6 show SO2 and NO
emission estimates for a specific day, respectively. Fig-
ure 5 shows sources of SO2 estimated for 27 August 2002
on a rectangular projection grid with a spatial resolution of
0.2◦

× 0.2◦. Panel a shows volcanic SO2 emissions (in units
10−9 kg m−2 dy−1, see Sect. 2.4) along the Andes Mountains
on the east side of South America. Panel b shows the emis-
sion associated with biomass burning as estimated using the
3BEM methodology; in this case fire counts from MODIS
and the WFABBA fire product were used (Sect. 2.3). Fi-
nally, Panel (c) illustrates the SO2 emissions from urban and
industrial processes as prescribed by the EDGAR inventory
(Sect. 2.1). For NO, Fig. 6 shows the biogenic emission
(A) from GEIA (Sect. 2.2), from biomass burning (B) from
3BEM (Sect. 2.3) and anthropogenic (C) from RETRO re-
vised with local sources of information according to Alonso
et al. (2010, Sect. 2.1).
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Fig. 5. Different sources of SO2 estimated for 27 August 2002 on a rectangular projection grid with spatial resolution of 0.2◦ × 0.2◦.
Panel(A) represents volcanic emission following Diehl, 2009 inventory,(B) biomass burning from 3BEM and(C) anthropogenic SO2 using
EDGAR.

Fig. 6. Different sources of NO estimated for 27 August 2002 on a rectangular projection grid with spatial resolution of 0.2◦
×0.2◦. Panel

(A) represents biogenic emission following GEIA inventory,(B) biomass burning NO emission from 3BEM and(C) anthropogenic NO using
RETRO data but updated with local sources of information for the South American main cities.
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Fig. 7. Carbon monoxide emission field generated by the PREP-CHEM-SRC program for the icosahedral grid (level G5, resolution around
250 km) of FIM Model.

Emissions processed on the global scale for the FIM global
model icosahedral grid is shown in Fig. 7. In this case,
anthropogenic (Sect. 2.1) and biomass burning emissions
(Sect. 2.3, using the MODIS fire product) of carbon monox-
ide are processed on a G5 grid resolution, approximately
250 km. Most emissions displayed in the left panel of Fig. 7
are associated with dense industrial and urban areas. On
the right, urban emissions over Europe and biomass burning
emissions associated with deforestation activities in north-
western Africa are presented.

5 Conclusions

In this paper we have described the functionalities of the new
PREP-CHEM-SRC chemical species preprocessor. PREP-
CHEM-SRC was designed to prepare emission fields from a
large set of source types and databases to be used in global
and regional transport models. To interpolate the emis-
sion fields to the model grids, the user can choose between
several map projections and determine the spatial resolu-
tion in a flexible way. The types of emissions considered
are: urban/industrial, biogenic, biomass burning, volcanic,
biofuel use and burning from agricultural waste sources from
most recent databases or determined from satellite fire de-
tections for biomass burning. For urban/industrial emis-
sions, the RETRO, EDGAR and GOCART databases can
be used. Biogenic emissions are from the GEIA and/or
MEGAN databases. Biomass burning emissions can be pro-
vided by the GFEDv2 database or by the 3BEM model us-
ing satellite fire detection products. PREP-CHEM-SRC also
provides the data needed to drive the plume rise parameteri-
zation used in the CCATT-BRAMS, WRF-CHEM and FIM

models. For volcanoes, ash and SO2 degassing are consid-
ered. The way to include both the low and the high buoyancy
emission fluxes calculated by PREP-CHEM-SRC is also dis-
cussed. The main accomplishments of this new preprocessor
are:

– the easy use and grid configuration of the emission
fields on regional or global scales,

– the choice between different databases,

– the choice between different chemical mechanisms.

The code and mostly of the emission data base are avail-
able upon request to the 1st author, to the email address
(gmaicptec.inpe.br) orwrfchemhelp.gsd@noaa.gov.

Appendix A

Description of the parameters of “prep-chem-src.inp”
namelist file, version 1.0.
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Table A1. Parameters of “prep-chem-src.inp” namelist file, version 1.0.

Parameters and examples Description and comments

grid type= “polar”, This parameter (character) defines the grid projection on which the
emission fields will be generated. The options are:

– “polar” = polar stereographic grid

– “gg” = Gaussian grid

– “ll” = rectangular projection grid

– “lambert”= Lambert conformal grid

– “FIM” = FIM model icosahedral grid

ihour=0,
iday=12,
imon=7,
iyear=2004,

The emission date using GMT time. All parameters are integers.

useretro=1,
retro datadir=’./Emission/RETRO/anthro’,
useedgar=1, edgardatadir=’./Emission/EDGAR/anthro’,

To select the anthropogenic sources datasets to be used (1 = yes, 0 =
not) and to provide the directory path where the corresponding input
data is located. The parameters are integers and characters.

usegocart=1,
gocartdatadir=’./Emission/GOCART/emissions’,

To define if GOCART emissions of OC, BC, SO2 and DMS will be
used (1) or not (0) and the path where the raw data is located.

usebioge=1,
biogedatadir=’./Emission/biogenicemissions’,

To select the biogenic sources datasets to be used (0=not, 1=GEIA,
2=MEGAN) and the path where the original data is located.

usefwbawb=0,
fwbawb datadir=’./Emission/ fwbawb ’,

To define if biofuel use and agricultural waste burning emissions will
be used (1) or not (0), and the path where the raw data is located.

usegfedv2=0,
gfedv2datadir=’./Emission/GFEDv2-8days’,

To define if the GFEDv2 biomass burning inventory is to be used (=1)
or not (=0) and the path where the raw data is located.

usebbem=1,
usebbemplumerise=1,

To define if the 3BEM biomass burning inventory and smoke plume rise
parameters will be used (=1) or not (=0).

mergeGFEDv2bbem=0, Defines if the merging of GFEDV2 with 3BEM is desired (integer:
1=yes, 0=no). If yes, 3BEM is used over South America instead of
GFEDv2.

bbemwfabbadatadir=’./Emission/firesdata/WFABBA v60/filt/f’,
bbemmodisdatadir=’./Emission/firesdata/MODIS/Fires.’,
bbeminpe datadir=’./Emission/firesdata/DSA/Focos’,
bbemextradatadir=’./Emission/firesdata/xx,

Fire products for 3BEM/3BEM-plumerise emission models:

– Path of WFABBA fire product. The filtered fire product is rec-
ommended. The last letter ‘f’ is the prefix of the file name.

– Path of MODIS fire product and the prefix of the file name
(“Fires.”).

– Path of INPE/DSA fire product and the prefix of the file name
(“Focos”).

– Additional fire product provided by the user.

veg type datadir=’./surfacedata/GLIGBP MODIS INPE/MODIS Only for 3BEM:
Land cover data set (dir + prefix)

carbondensitydatadir=’./surfacedata/GLOGE INPE/OGE’, Only for 3BEM:
Carbon density data set (dir + prefix)

fuel datadir=’./surfacedata/fuel/glc2000fuel load.nc’, Only for 3BEM: fuel load data provided by the user (dir + full file
name).

USE GOCART BG=1,
GOCART BG DATA DIR=’./Emission/GOCART’,

GOCART background data for H2O2, OH and NO3 (only for WRF-
Chem/FIM models with GOCART aerosol module)
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Table A1. Continued.

Parameters and examples Description and comments

USE VOLCANOES=1,
VOLCANO INDEX=1450,
USE THESEVALUES=’NONE’,
BEGIN ERUPTION=’201004161200’,

This section is to control emission of ASH by eruptive volcanoes. The
data is based on Mastin et al. (2009).

– USE VOLCANOES:1=yes,0=no (integer).

– VOLCANO INDEX: the reference number (integer) of the vol-
cano listed at Mastin et al. (2009) database. This number will pro-
vide trough a look up table a set of default parameters for injection
height, duration and emission of ash.

– USE THESEVALUES: (character) if ‘none’, Mastin et al. (2009)
database will be used. If the user want to use a different set of
numbers, them must be in text file with injheight, duration, mass
ash (units are meters - seconds - kilograms). As example, a file
named ’values.txt’ with the text line: 11000. 10800. 1.5e10

will replace the default values by these numbers by setting
USE THESEVALUES=’./values.txt’

– BEGIN ERUPTION= begin time UTC of eruption YYYYMMD-
Dhhmm

USE DEGASSVOLCANOES=0,
DEGASSVOLC DATA DIR=’./Emission/VOLCSO2’,

This section is to control emission of SO2 by eruptive and non-eruptive
volcanoes. The data is based on Diehl (2009, 2010) papers.

– USE DEGASSVOLCANOES=1=yes, 0=no (integer).

– DEGASSVOLC DATA DIR: character designing the path of the
directory where the raw data is.

GRID RESOLUCAOLON=0.1,
GRID RESOLUCAOLAT=0.1,
NLAT=320,
LON BEG =−170.,
LAT BEG = 40.,
DELTA LON= 90.,
DELTA LAT= 40.,

This section is only for gridtype ’ll’ or ’gg’. The parameter ‘nlat’ is
integer, all others are real.

– GRID RESOLUCAOLON and GRIDRESOLUCAOLAT are
the grid spacing in degrees.

– NLAT is the number of grids on the latitudinal direction for a
Gaussian grid.

– LON BEG and LATBEG are the longitude and latitude in de-
grees of the 1st grid box. The ranges are−180 to +180 and−90
to +90, respectively.

– DELTA LON and DELTA LAT are the total extension of the do-
main in degrees. Set 360 and 180 degrees for global domains,
respectively.

NGRIDS = 1,
NNXP = 275,50,86,46,
NNYP = 250,50,74,46,
NXTNEST = 0,1,1,1,
DELTAX = 5000.,
DELTAY = 5000.,
NSTRATX = 1,2,3,4,
NSTRATY = 1,2,3,4,
NINEST=1,10,0,0,
NJNEST=1,10,0,0,
POLELAT = 65.,
POLELON = -150.,
STDLAT1 = 65.,
STDLAT2 = 65.,
CENTLAT = 65.,−23., 27.5, 27.5,
CENTLON =−150.,−46.,−80.5,−80.5,

This section is only for regional grids.

– NGRIDS (integer) is the number of grids to generate emissions.

– NNXP, NNYP (integer) are the number of x,y gridpoints for each
desired grid.

– NXTNEST (integer) is grid number which is the next coarser grid.

– DELTAX, DELTAY (real) are the X and Y grid spacing (meters).

– NSTRATX, NSTRATY (integer) are the nest ratios between this
grid and the next coarser grid.

– NINEST, NJNEST (integer) are the grid point on the next coarser
nest where the lower southwest corner of this nest will start. If
NINEST or NJNEST =0, use CENTLAT/CENTLON parameters.

– POLELAT, POLELON (real) are, if grid type is polar, the lati-
tude (in degrees) of pole point. If lambert, lat/lon of grid origin
(x=y=0.)

– STDLAT1, STDLAT2 (real, only for Lambert-Conformal) are
standard latitudes of projection in degrees.

– CENTLAT, CENTLON are the center (latitude, longitude, in de-
grees) of each grid.
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Table A1. Continued.

Parameters and examples Description and comments

PROJTO LL=’YES’,
LATI = −90.,−90.,−90.,
LATF = +90., +90., +90.,
LONI = −180.,−180.,−180.,
LONF = 180., 180., 180.,

This section is only for visualization using GrADS software.

– PROJTO LL (character) is to define if a rectangular projection is
desired: ’YES’ or ’NOT’.

– LATI, LATF, LONI, LONF (real, degrees) are the corners of the
emission output domain for each grid.

CHEM OUT PREFIX = ’TEST-RACM’,
CHEM OUT FORMAT=’vfm’, CONVERT TO WRF = ’yes’, – CHEM OUT PREFIX: output file prefix (may include directory

path)

– CHEM OUT FORMAT: the format of the output: use ‘vfm’ for
CCATT-BRAMS, WRF-CHEM or FIM. Binary is also available
by setting ‘bin’ or ‘txt’ for a text file. NetCDF is under implemen-
tation.

– CONVERT TO WRF: convert to WRF/CHEM (‘yes’ or ‘not’,
character).
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