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Abstract: A spacecraft attitude estimation approach based on the Unscented Kalman Filter is 

derived. For nonlinear systems the Unscented Kalman Filter uses a carefully selected set of sample 

points to map more accurately the probability distribution than the linearization of the standard 

Extended Kalman Filter, leading to faster convergence from inaccurate initial conditions in attitude 

estimation problems. The filter formulation is based on standard attitude-vector measurements 

using a gyro-based model for attitude propagation. This paper compares the performance of a new 

technique, the Unscented Kalman Filter, when two different mathematical constructs are used to 

represent the attitude: the Euler angles and quaternions. In this study, the attitude of satellite is 

estimated with real time algorithms using real data supplied by gyros, Earth sensors and Sun 

sensors that are on board of the CBERS-2 (China Brazil Earth Resources Satellite). 
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1 Introduction 

 

The attitude of a spacecraft is defined by its orientation in space related to some reference systems. 

The importance of determining the attitude is related not only to the performance of the attitude 

control system but also to the precise usage of information obtained by payload experiments 

performed by the satellite, e.g. [1]. 

 

The attitude estimation is the process of calculating the orientation of the spacecraft in relation to a 

reference system from data supplied by attitude sensors. Chosen the vectors of reference, an attitude 

sensor measures the orientation of these vectors with respect to the satellite reference system. Once 

these one or more vectors measurements are known, it is possible to compute the orientation of the 

satellite processing these vectors, using methods of attitude estimation. Several parameterizations 

can be used to represent the satellite attitude [2]. The most common way to represent the attitude of 

a spacecraft is a set of three Euler angles. These are popular because they are easy to understand and 

use. The main disadvantages of Euler angles are: (1) certain important functions of Euler angles 

have singularities, (2) they are less accurate than the unit quaternion, when used to integrate 

incremental changes in attitude over time, and (3) they use too much trigonometric functions, 

expensive for on board computers. These deficiencies in the Euler angles representation have led 

researchers to use unit quaternions as a parametrization of the attitude of a rigid body. The relevant 

functions of unit quaternions have no singularities and the representation is well-suited to integrate 

the angular velocity of a body over time. The main disadvantages of using unit quaternions are: (1) 

that the four quaternion parameters do not have a intuitive physical meanings, and (2) that a 

quaternion must have unity norm to be a pure rotation.  

 

There are several methods for determining the attitude of a satellite. Each method is appropriate to a 

particular type of application and meets the needs such as: available time for processing and 

accuracy to be attained. However, all methods need observations that are obtained by means of 



sensors installed on the satellite. The sensors are essential for attitude estimation, because they 

measure its orientation relative to some referential, e.g. the Earth, the sun or a star. The method to 

estimate the attitude used is the Unscented Kalman Filter [3]. This method is capable of performing 

state estimation in nonlinear systems, besides taking into account measurements provided by 

different attitude sensors. This work considers real data supplied by gyroscopes, infrared Earth 

sensors and digital sun sensors. These sensors are on board of the CBERS-2 satellite (China-Brazil 

Earth Resources Satellite) [4], and the measurements were downlinked to the Satellite Control 

Centre of INPE (Brazilian Institute for Space Research). 

 

2. The Unscented Kalman Filter for attitude determination 

 

The inherent flaws of the Extended Kalman Filter (EKF) are due to its linearization approach [5] for 

calculating the mean and covariance of a random variable which undergoes a nonlinear 

transformation. The Unscented Kalman Filter (UKF) addresses these flaws by utilizing a 

deterministic “sampling” approach to calculate mean and covariance terms. Essentially, 2n+1, sigma 

points (n is the state dimension), are carefully chosen based on a square-root decomposition of the 

prior covariance [6]. These sigma points are propagated through the true nonlinearity, without 

approximation, and then a weighted mean and covariance is taken. The UKF has several advantages 

over the EKF, including: 1) the expected error is lower than the EKF, 2) the new filter can be 

applied to non-differentiable functions, 3) the new filter avoids the derivation of Jacobian matrices, 

and 4) the new filter is valid to higher-order expansions than the standard EKF. 

 

Consider the nonlinear system model given by: 
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where xk is the n x 1 state vector and yk is the m x 1 measurement vector. The function f is a 

possible nonlinear function of the state xk ∈ ℜn
 and the observation yk ∈ ℜm

 is often a nonlinear 

mapping of the current state. Both the dynamic model and the measurement model are inaccurate, 

due to modeling and/or sensor errors. This is described by the stochastic processes where we assume 

that the process noise wk and measurement-error noise ννννk are zero-mean Gaussian noise process 

with covariances given by Qk and Rk, respectively.  

 

Given the state vector and the covariance matrix at step k-1, we compute a collection of sigma 

points, stored in the columns of the n x (2n+1) sigma point matrix χχχχk-1 where n is the dimension of 

the state vector. The columns of χχχχk-1 are computed by: 
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in which λ∈ℜ, ( )( )k 1
i

P −+ λn is the ith column of the matrix square root of (n+λ) Pk-1 and the 

scalar λ is a convenient parameter for exploiting knowledge about the higher moments of the given 

distribution. Note that we assume matrix ( )( )k 1
i

P −+ λn  as symmetric and positive definite which 

allows us to find the square root using a Cholesky decomposition. 



 

Once χχχχk-1 computed, the sigma points are propagated through the nonlinear system  
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The posterior mean, k
ˆ −x , and covariance, kP− , are determined from the statistics of the propagated 

sigma points as follows 
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where the weights are defined by: 
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To compute the correction step, first we must transform the columns of χχχχk through the measurement 

function to ΥΥΥΥk. In this way 
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With the mean measurement vector, k
ˆ −
y , we compute the a posteriori state estimate using 
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where Kk is the Kalman gain. In the UKF formulation, the Kalman gain is defined by 
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with 
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Finally, the last calculation in the correction step is to compute the a posterior estimate of the error 

covariance given by 
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3. Representation of Artificial Satellite Attitude 

 

There are different types of parameters to represent the attitude of a satellite [7], with highlights to 

the Euler angles representation and representation by quaternions.
 

 

3.1 Attitude by Euler Angles 

 

The attitude of an artificial satellite is directly related to its orientation in space. Through the attitude 

one can know the spatial orientation of the satellite, since in most cases it can be considered as a 

rigid body, where the attitude is expressed by the relationship between two coordinate systems, one 

fixed on the satellite and another associated with a reference system, e.g. inertial system. For a good 

performance of the mission it is essential that the satellite be stabilized in relation to a specified 

attitude. The attitude stabilization is done by the on board attitude control, which is designed to 

acquire and maintain the satellite in a pre-defined attitude. The CBERS-2 attitude is stabilized in 

three axes, geopointed, and can be described with respect to the orbital system. In this reference 

system, the movement around the direction of the orbital velocity is called roll φ. The movement 

around the direction normal to the orbit is called pitch θ, and finally the movement around the 

direction Nadir/Zenith is called yaw ψ. 

  

To transform a vector represented in a given reference into another it is necessary to define a matrix 

of direction cosines (T), where its elements are written in terms of Euler angles (φ, θ, ψ). The 

rotation sequence used in this work for the Euler angles was the 3-2-1, where the coordinate system 

fixed in the body of the satellite (x, y, z) is related to the orbital coordinate system (xo, yo, zo) 

through the following sequence of rotations [4]: 

 

- 1
st
 rotation of an angle ψ (yaw angle) around the zo axis; 

- 2
nd

 rotation of an angle θ (pitch angle) around an intermediate axis y’; 

- 3
rd

 rotation of an angle φ (roll angle) around the x axis. 

 

The matrix obtained through the 3-2-1 rotation sequence is given by: 

 

C C C S S

T S S C C S S S S C C S C

C S C S S C S S S C C C

θ ψ θ ψ − θ 
 = φ θ ψ − φ ψ φ θ ψ + φ ψ φ θ 
 φ θ ψ + φ ψ φ θ ψ − φ ψ θ φ                                                                (12)  

 

 

where Tbo is the matrix of direction cosines with S=sin, C=cos. 

 

By representing the attitude of a satellite with Euler angles, the set of kinematic equations are given 

by [4, 8]: 
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where ω0 is the orbital angular velocity and x y z
ˆ ˆ ˆ, ,ω ω ω  are the components of the angular velocity 

on the satellite system. 

 



Performing the necessary simplifications (small Euler angles) in Eq. 13, the differential equations of 

attitude are modeled by:  
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The advantage of attitude representation by Euler angles is to use only three parameters. However, 

this representation has the disadvantage of the possible occurrence of singularities in the 

mathematical modeling of the satellite's motion, besides the need of trigonometric function 

computations. 

 

3.2. Attitude by Quaternions 

 

The quaternions are useful in inertial navigation systems on board the satellite, shows no 

singularities in the kinematic equations, gives a rule of algebraic products suitable for successive 

rotations, and the rotation matrix in terms of the quaternion does not depend on trigonometric 

functions. However, the quaternions have one redundant component (they are 4) with reference to 

Euler angles (they are 3) and does not have an immediate physical interpretation. 

 

The quaternion set is defined by 
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where ê  is the axis of rotation and ϑ is the angle of rotation. Since a four-dimensional vector is 

used to describe three dimensions, the quaternion components cannot be independent from each 

other. The quaternion satisfies a single constraint given by Tq q 1= . The attitude matrix is related to 

the quaternion by [9]: 
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The quaternion kinematics equation is given by:  
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A major advantage of using the quaternion is that the kinematics equation is linear in the quaternion 

and is also free of singularities. In this paper, it is assumed that the gyro data are assembled in a 

fixed rate and that the angular spin velocity vector in a satellite system, ωωωω, is constant over the 

interval of sampling. Then a solution of Eq. 16 is [7, 8]: 

 

k q k-1q (t ) = Φ ( t, ) q (t )∆ ω                                                   (17) 

 
where ∆t is the sampling interval; q(tk-1) is the quaternion at time tk-1;  q(tk) is the propagated 

quaternion to time tk; e Φq is the transition matrix that computes the system from time tk-1 to tk, 

given by: 
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If the bias term is included in the formulation of the quaternion propagation, i.e., εωω −=ˆ , where 

ε is a vector of gyro biases, then a system state composed by quaternions and gyro biases will have 

the following transition matrix [3, 5]:  
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Note that the system is still linear with respect to system state composed by quaternions and biases. 

Therefore the transition matrix also assures the needed coupling between quaternions and biases to 

be taken into account in the covariance computations. 

 

With such considerations, the quaternion approach makes the system dynamics to be fully linear, i.e. 
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Thus in the prediction of state and covariance cycle, the conventional linear Kalman filter can be 

used so that one saves processing cost. Only the measurement equations are still non linear, and the 

Unscented transformation should be used, with the corresponding sigma-point measurement update 

cycle being implemented in the UKF. 

 

4. The Measurements System of Satellite 

 

This section describes the mathematical models of the sensors used for attitude determination. The 

modeled sensors are: Gyros, Digital Sun sensor and Infrared Earth sensor. 

 



4.1 The Model for Gyros 

 

The advantage of a gyro is that it can provide the angular displacement and/or angular velocity of 

the satellite directly. However, gyros have an error due to drifting, meaning that their measurement 

error increases with time. In this work, the rate-integration gyros (RIGs) are used to measure the 

angular velocities of the body axes of the satellite. The mathematical model of the RIGs is [8]: 
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where ∆ΘΘΘΘ are the angular displacements of the satellite axes in a time interval ∆t, and εεεεi are 

components of bias of the gyroscope. 

 

Thus, the measured components of the angular velocity of the satellite are given by: 
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where ( )tg  is the output vector of the gyroscope; and ( )tηηηη  represents a Gaussian white noise 

process covering all the remaining unmodelled effects: 
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4.2. The Measurement Model for Infrared Earth Sensors (IRES) 

 

One way to compensate for the drifting errors present in gyros is to use the earth sensors. These 

sensors are located on the satellite and aligned with their axes of roll and pitch. In this paper, two 

earth sensors are used, with one measuring the roll angle and the other measuring the pitch angle. In 

principle, an earth sensor cannot measure the yaw angle. 

 

The measurement equations for the earth sensors are given as: 
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where 
Hφη  and 

Hθη  are the white noise representing the small remaining misalignment, installation 

and/or assembly errors assumed gaussian: 
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4.3. The Measurement for Digital Solar Sensors (DSS) 

 

Since an earth sensor is not able to measure the yaw angle, the digital solar sensors are used by the 

Attitude Control System in order to overcome this problem. However, these sensors do not provide 

direct measurements but coupled angle of pitch (αθ) and yaw (αψ). The measurement equations for 

the solar sensor are obtained as follows [4]: 
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where 
ψαη and 

θαη  are the white noise representing the small remaining misalignment, installation 

and/or assembly errors assumed gaussian: 
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The conditions are such that the solar vector is in the field of view of the sensor, and Sx, Sy, Sz are 

the components of the unit vector associated to the sun vector in the satellite system and given by: 
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where S0x, S0y, S0z are the components of the sun vector in the orbital coordinate system and ˆ ˆ ˆ, ,φ θ ψ  

are the Euler angles estimated attitude. 

 

5. Results and Discussions 

 

Here, the results and the analysis from the algorithms developed to estimate the attitude are 

presented. To validate and to analyze the performance of the estimators, real sensors data from the 

CBERS-2 satellite were used. The CBERS-2 satellite was launched on October 21st, 2003. The 

measurements are for the 21st of April 2006, available to the ground system at a sampling rate of 

about 8.56 seconds for around 10 minutes. Indeed the on-board ACS (Attitude Control System) has 

full access to the sensor measurements sampled at the rate of 4Hz for gyros, 1Hz for Earth sensors 

and 0.25Hz for sun sensors. However, owing to limited downlinked TM (telemetry), the ground 

system can recover telemetries for the sensors at around 9 seconds sampling and only during the 

satellite fly over the tracking station. This means that the ground system does not have the whole set 

of measurements available to the on-board ACS [10]. 

 

The algorithms were implemented through MatLab software. To check the performance the UKF 

using the Euler angles and the quaternions, their results were compared considering the following 

set of initial conditions: 

 

 

 

 



• Initial Attitude: 

 roll (φ) = pitch (θ) = yaw (ψ) = 0 deg; 

• Initial Bias of Gyros:  

εx = 5.56 deg/hour; εy = 0.87 deg/hour; εz = 6.12 deg/hour; 

• Initial Covariance (P):  

σ2
φ,θ,ψ = (0.5 deg)

2
 - error related to the attitude with Euler angles;  

σ2
quat 1,2,3 = (2.5x10

-3
)
2 

- error related to the attitude with quaternions;  

σ2
quat 4 = (1.9x10

-5
)
2 

- error related to the attitude with the portion of the quaternion vetorial;  

σ2
biasx,y,z = (1 deg/hour)

2
 - error related to the drift of gyro; 

• Observation error Covariance (R):  

σ2
DSS = (0.3 deg)

2
 - sun sensor; 

σ2
IRES = (0.03 deg)

2 
- earth sensor; 

• Dynamic Noise Covariance (Q):  

σ2
AttEuler= (0.5 deg)

2
 - error related to the attitude with Euler angles;  

σ2
Attquat = (10

-3
)
2 

- error related to the attitude with quaternions;  

σ2
Dgyrox,y = (1 deg/hour)

2
 - error related to the drift of gyro in x, y axes; 

σ2
Dgyroz = (1 deg/hour)

2
 - error related to the drift of gyro in z axis; 

 

The real measurements obtained by the attitude sensors (digital sun sensors, infrared Earth sensors 

and gyros) are shown below in Fig. 1. 

 

 

 

Figure 1. Real measurements supplied by attitude sensors 

 

 

The next figures present the results obtained with the Unscented Kalman filter using the two 

different attitude parameterizations: Euler angles (UKFE) e quaternions (UKFQ). 

 

In Fig. 2 and 3 it is observed the behavior of attitude and the biases of gyros during the period 

analyzed. The mean estimate to roll and pitch are in the order of -0.47 deg and -0.46 deg, 

respectively, for both estimators (UKFE and UKFQ). For yaw a random shape is not observed and its 

mean value is around -1.35 deg for UKFQ and -1.48 deg for UKFE. In Fig. 3 it is observed the bias 

estimates behavior, where the UKFQ still shows a small variation while the UKFE seems to be 

converged. 



 

 

 
 

Figure 2. Estimated Attitude 
 

 

 
 

 

 

Figure 3. Estimated gyros biases 
 

 

The Fig. 4 and 5 presents the standard deviations for both estimators for the attitude and the bias of 

the gyro. It is observed that the standard deviations for attitude and gyro bias decreases with a 

tendency to stabilize around a value for both estimators. However, it is noticed that UKFQ is more 

optimistic with its covariance going most of the times below the covariance of UKFE.  

 



 

 

Figure 4. Attitude Error Estimation 

 

 

 
 

 

Figure 5. Biases Estimation Errors 
 

 

 

In figures 6 and 7, we can see the residues of sun sensors and Earth sensors, respectively. 

Residuals of UKFE looks better in the sense of zero mean statistics. UKFQ residuals still 

present some trends which can mostly be assigned to the still not converged gyro bias 

estimates of the UKFQ algorithm.  

 

 



 

 

Figure 6. Residuals of Sun Sensors 
 

 

 

Figure 7. Residuals of Earth Sensors 

 

6. Final Comments 

 

The main objective of this study was to estimate the attitude of a CBERS-2 like satellite, using real 

data provided by attitude sensors besides using an approach to the nonlinear Kalman Filter, called 

Unscented Kalman Filter UKF [6]. This new filter is utilized considering two different 

parameterizations: the Euler angles UKFE and the quaternions UKFQ. The results obtained were 

compared in order to analyze the advantages and disadvantages of each parameter, besides the 

performance of the results obtained by each filter. 

 



Although quaternions need 4 components with one redundancy when used in attitude estimation 

problems via unscented Kalman filter such parameterization makes the dynamical modeling linear. 

Therefore the overhead due to the unscented transformation to generate the sigma-points appears 

only in the measurement update cycle of the filter, where the measurement model is still nonlinear. 

This in principle translates to a computational saving because a numerical integration of (2n+1) sets 

of differential equations for the dynamics are avoided (n being the number of filter states), which is 

mandatory when using Euler angles. On the other hand, the number of states to be estimated 

increases and so the covariance as well. In a rough test to check CPU time, both the UKFE and 

UKFQ were run 100 times each, on the same PC in MatLab language. The UKFE took 14.26s of 

CPU time against 12.74s of UKFQ. Although UKFE was slower as expected the saving was not so 

significant to be conclusive.  

 

Additionally it should be pointed out that the performance of the UKFQ depicts clearly that this filter 

parameters are still not well tuned. Some other considerations are in order such as quaternion 

normalization, quaternion covariance matrix singularity, numerical errors, and insufficient sampling 

rate to allow the hypothesis of constant angular velocity between samples. A future work in progress 

is considering the formulation of quaternion increments that might be another potential algorithm 

for utilization in the attitude determination problem. 
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