ANÁLISE DA COMPOSIÇÃO FLORÍSTICA E ESTRUTURA DE UM TRECHO FLORESTAL NA PORÇÃO SUL AMAZÔNICA, QUERÊNCIA – MT

Yhasmin Mendes de Moura¹, Geógrafa, pós-graduanda em Sensoriamento Remoto, Brasil

Lênio Soares Galvão¹, Geólogo, Doutor em Geofísica, Brasil João Roberto dos Santos¹, Engenheiro Florestal, Doutor em Sensoriamento Remoto, Brasil

> ¹Instituto Nacional de Pesquisas Espaciais – INPE Caixa Postal: 12227-010, São José dos Campos, SP – Brasil {yhasmin, lenio, jroberto}@dsr.inpe.br

Resumo: O objetivo deste trabalho é analisar a composição florística e estrutural de um trecho na porção sul amazônica, localizada na bacia do Xingu. A área experimental está situada na Fazenda Tanguro, Querência - MT. Um inventário foi executado em 20 transectos (100 x 25 metros) representativos da tipologia definida como floresta.de transição. Todos os indivíduos com diâmetro à altura do peito (DAP) maiores que 10 cm foram mensurados, geoposicionados nos transectos e identificados botanicamente. Estimativas visuais foram consideradas para estimação da altura total (HT). A diversidade de espécies foi estimada com o índice de Shannon-Weaver (H') e com a equabilidade de Pielou (J). Estimativas de densidade, dominância e fregüência de espécies foram feitas para a caracterização estrutural. Para avaliação da similaridade florística entre as parcelas foi utilizada a análise de agrupamento por média de grupo (UPGMA) a partir do índice de Morisita. A densidade estimada da área amostral foi de 550 árvores/ha, o número total de indivíduos foi de 2.749, distribuídos em 20 famílias botânicas e 26 espécies. A distribuição diamétrica dos indivíduos apresentou-se na forma de J-invertido, com predomínio nos intervalos diamétricos mais baixos (5 a 25 cm). O valor obtido para o índice Shannon-Weaver (H' = 2,48) indicou uma baixa diversidade da amostra. A equabilidade de Pielou (J = 0,70) confirmou a existência de uma baixa diversidade florística. Os resultados encontrados neste trabalho apontam para uma baixa riqueza florística e certa homogeneidade da área de estudo, observando a concentração de espécies em um número pequeno de famílias botânicas.

1. Introdução

Devido às particularidades florísticas e fisionômicas da borda sul amazônica, diversos estudos vêm sendo desenvolvidos para realização de um mapeamento e classificação consistentes com a realidade de campo encontrada nesta região (Ivanauskas et al., 2008; Kunz et al., 2009). Especificamente, a região amazônica é caracterizada pela grande diversidade florística, devido à variabilidade dos condicionantes ambientais, os quais promovem diversas associações entre os componentes bióticos deste ecossistema (Leitão-Filho, 1987). No caso da borda sul amazônica, as dificuldades sobre o entendimento desta área são baseadas na mistura entre a Floresta Ombrófila, a Floresta Estacional e o Cerrado, bem como a forte influência do menor índice pluviométrico e sazonalidade bem definida, o que traz modificações ao aspecto da floresta. O conhecimento a respeito da diversidade na porção sul amazônica ainda é pouco explorado, principalmente na borda amazônica localizada no estado do Mato Grosso, que abrange a bacia do rio Xingu (Kunz, et al., 2010). Desta forma, estes estudos são úteis na definição de projetos que viabilizem a restauração florestal, caracterizações e mapeamentos consistentes, permitindo avaliar a potencialidade das áreas florestais, e servir como subsídio à conservação e ao manejo sustentável da floresta (Kunz, et al., 2009). O objetivo deste trabalho foi identificar a composição florística e estrutural de um trecho de floresta de transição, contribuindo desta forma para um melhor entendimento deste ambiente, como também servir ao suporte na caracterização florestal.

2. Metodologia

A área experimental está situada na região centro-leste no município de Querência – Estado de Mato Grosso (Brasil), na Fazenda Tanguro – Grupo André Maggi. O município é caracterizado por ser uma zona de transição entre o domínio dos Cerrados e da Floresta Amazônica.

(Figura 1)

Em relação à tipologia florestal da área de estudo será utilizado neste trabalho a classificação realizada pelo projeto Sistema de Vigilância da Amazônia (SIVAM, 2002) na escala 1:250.000. De acordo com a classificação do SIVAM, a tipologia predominante da área de estudo é Floresta Estacional Semidecidual Submontana Dossel Emergente, caracterizada, sobretudo pela presença de duas estações bem definidas, uma seca e outra chuvosa (BRASIL, 1982).

De acordo com a classificação de KOPPEN, o clima é do tipo "Aw" Tropical Chuvoso de Savana, que corresponde a um clima onde a temperatura mais fria se encontra em torno de 18°, com uma estação seca de inverno (Vianello e Alves, 2002).

Para caracterização florística e estrutural da vegetação atividades de campo foram executadas em agosto de 2010 (estação seca) em 20 transectos (100 x 25 metros), na área florestal situada na Fazenda Tanguro, em Querência - MT. Cindo hectares de área foram inventariados, onde todos os indivíduos com diâmetro à altura do peito (DAP) maior que 10 cm foram mensurados, realizando-se também as estimativas visuais da altura total (HT), o geoposicionamento de cada indivíduo nos transectos, bem como a sua identificação botânica.

As estimativas visuais de HT foram ajustados por um modelo de regressão simples, adotado por Gonçalves e Santos (2008). A localização das parcelas foi feita com GPS e o posicionamento dos indivíduos nas parcelas foi realizado a partir do registro de coordenadas cartesianas, onde X corresponde a uma distância que vai de 0 a 100 m, contados a partir do início das parcelas e Y representa a distância perpendicular de 12,5 m do lado direito, e 12,5 m do lado esquerdo, de cada indivíduo à linha de referência no centro da parcela. A identificação botânica das espécies foi realizada de forma tradicional por um especialista botânico familiarizado com a flora da região.

Para caracterização do povoamento florestal, a suficiência amostral do inventário foi caracterizada a partir da curva espécie-área utilizando-se todas as parcelas de 100x25m inventariadas. Para análise da composição florística técnicas de análise quantitativa foram aplicadas, onde a diversidade de espécies foi estimada com o índice de Shannon-Weaver (H') e com a equabilidade de Pielou (J), conforme sugerido por Magurran (1988). Para a caracterização estrutural da área amostral foram incluídas estimativas de densidade, dominância e freqüência de cada espécie, de acordo com descrições de Mueller-Dombois & Ellenberg, 1974.

Da mesma forma realizada na caracterização do povoamento florestal, a caracterização das parcelas amostrais foi feita através da diversidade de espécies estimada para cada parcela amostral com a utilização do Índice de Shannon-Weaver e Equabilidade de Pielou (J). Para avaliação da similaridade florística entre as diferentes parcelas amostrais foi utilizada a análise de agrupamento por média de grupo (UPGMA – Unweighted Pair Groups Method using Arithmetic Averages) a partir do índice de Morisita (Morisita, 1959).

3. Resultados e Discussão

Nos cinco hectares de floresta de transição em Querência-MT, foram inventariados 2.749 indivíduos arbóreos, distribuídos em 20 famílias botânicas e 26 espécies. Estes números estão abaixo dos esperados para uma região que se encontra dentro dos limites do Bioma Amazônico, como os encontrados em estudos sobre a riqueza florística em trechos da Floresta Ombrófila Amazônica, com valores entre 40 a 500 espécies (Lima-Filho et al., 2004 e Gonçalves e Santos, 2008). De acordo com Kunz et al., 2009, esta variação no número de espécies é decorrente desta região estar afastada da área *core* de característica ombrófila. Em direção aos extremos, caso desta área estudada, num trecho transicional com o bioma cerrados, há diminuição da riqueza florística.

Outros estudos já apontavam para a baixa riqueza encontrada na borda sul amazônica, como demonstrados por Ivanauskas et al., 2004, em Gaúcha do Norte-MT, com variações entre 51 a 66 espécies encontradas. No trecho amostrado em Querência-MT, mais de 50% do total de espécies amostradas se distribuem em cinco famílias, representadas por *Burseraceae*, com 20,66% (568 indivíduos), *Proteaceae*, com 16,44% (452 indivíduos), *Myrtaceae*, com 14,84% (408 indivíduos), *Rubiaceae*, com 13,39% (368 indivíduos) e *Annonaceae*, com 10,15% (279 indivíduos).

O valor obtido para o índice Shannon-Weaver (H' = 2,48) indicou um baixo grau de incerteza em prever a que espécie pertencerá um indivíduo escolhido ao acaso no conjunto amostral, indicando desta forma, baixa diversidade da amostra. A

equabilidade de Pielou (J = 0,70) confirmou a existência de uma baixa diversidade florística. Apesar da baixa diversidade, a equabilidade sugere que o trecho analisado apresenta alta dominância ecológica. Os resultados obtidos foram compatíveis com outros estudos conduzidos na floresta de transição, em que o índice de diversidade não ultrapassou o valor de 3,3 (Ivanauskas et al., 2004), considerando o mesmo critério de inclusão (DAP > 10 cm). A densidade estimada da área amostral foi de 550 árvores/ha⁻¹, com área basal de 14,31 m² (Tabela 1).

(Tabela 1)

Em relação à altura dos indivíduos arbóreos foi verificada a ocorrência de três classes principais, compostas pelas alturas de 15, 20 e 25 m, que correspondem a 991, 723 e 474 indivíduos, respectivamente, representando aproximadamente 80% do total amostral. A altura média dominante foi de 23,76 m, indicando uniformidade nas copas das árvores inventariadas. A área basal média foi de 14,31 m², com freqüência predominante de indivíduos com área basal de 15 m². O valor de DAP mais freqüente está concentrado em 25 cm, representando aproximadamente 84% dos indivíduos arbóreos inventariados.

Na Figura 4 pode ser observada a distribuição diamétrica do conjunto total dos indivíduos arbóreos, em classes de diâmetro com intervalos de 10 cm. A estrutura diamétrica do povoamento apresentou o padrão habitual de florestas inequiâneas (Jinvertido), demonstrando um equilíbrio entre o recrutamento e a mortalidade de árvores. Foi possível observar uma alta concentração de árvores nas primeiras classes de diâmetro, com aproximadamente 82% dos indivíduos concentrados nas classes de 5 a 25 cm.

(Figura 2)

Na Figura 5 são apresentados os parâmetros fitossociológicos das dez famílias amostradas com maior IVI. O trecho de floresta de transição amostrado em Querência, apresentou uma concentração dos indivíduos em um número limitado de famílias botânicas. Do total de 2.749 indivíduos arbóreos inventariados, 86% (2.367 indivíduos) estão representados apenas pelas famílias apresentadas na Figura 4.

(Figura 3)

A Tabela 2 apresenta os parâmetros fitossociológicos das espécies amostradas por ordem alfabética de famílias. É possível verificar que as cinco espécies com maior valor de importância foram: *Protium brasiliense* (16,95%), *Roupala Montana* (14,69%), *Blepharocalyx salicifolius* (11,11%), *Xylopia emarginata* (8,1%) e *Alibertia edulis* (7,25%).

(Tabela 2)

O resultado da análise de agrupamento (UPGMA) é apresentado no dendograma da Figura 6, baseado no índice de Morisita. No conjunto de 20 parcelas amostrais inventariadas, pode-se verificar a separação destas parcelas em dois grupos: um menor, composto pelas parcelas P1, P2, P3 e P4, e outro grande grupo formado pelas demais parcelas inventariadas. O grupo formado pelas parcelas P1, P2, P3 e P4,

correspondem exatamente àquelas com maior índice de Shannon-Weaver (H') (Tabela 3).

(Figura 4)

As parcelas P10, P11 e P14, P15 apresentaram os maiores valores de similaridade entre elas. Mesmo distantes, as parcelas P10 e P11 apresentaram a mesma espécie dominante (*Protium brasiliense*), podendo indicar uma homogeneidade em relação às características florísticas da área (Figura 7). Em relação às parcelas P14 e P15, os índices de Shannon-Weaver (H') e a Equabilidade de Pielou (J) foram praticamente os mesmos (Tabela 3).

(Figura 5)

(Tabela 3)

4. Conclusão

Os resultados encontrados apontam para uma baixa riqueza florística, concentrada em um número pequeno de famílias botânicas. A análise da composição florística e estrutural permitiu caracterizar de maneira consistente a tipologia florestal, e se mostrou coerente com estudos já reportados na literatura. Desta forma, torna-se evidente a potencialidade de estudos florísticos estruturais na caracterização e delimitação de unidades fitogeográficas, como aquelas ainda pouco exploradas a respeito da diversidade e da conservação na região da borda sul amazônica.

Agradecimentos

Ao Grupo André Maggi, especialmente para Wagner de Ré, por apoiar as atividades de campo. Ao CNPq pelas bolsas de produtividade em pesquisa dos co-autores. Á CAPES pela bolsa de estudo do autor e ao Programa de Pós-Graduação em Sensoriamento Remoto – INPE no suporte participativo do V CONFLAT. Os autores também agradecem ao Sr. José Ferreira Paixão (CPAC/EMBRAPA) pelo apoio na identificação botânica.

REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL. Ministério das Minas e Energia. Secretaria Geral. **Projeto RADAMBRASIL Folha SE.21 Cuiabá.** Rio de Janeiro, 1982. v. 27, 448 p.

Gonçalves, F. G.; Santos, J. R. Composição florística e estrutura de uma unidade de manejo florestal sustentável na Floresta Nacional do Tapajós, Pará. **Acta Amazonica**, v. 38, p.155-173, 2008.

Ivanauskas, N. M., Monteiro, R., Rodrigues, R. R. Classificação fitogeográfica das florestas do Alto Rio Xingu. **Acta Amazonica**, v.38, p.387-402, 2008.

Ivanauskas, N.M., Monteiro, R., Rodrigues, R.R. Estrutura de um trecho de floresta Amazônica na bacia do alto rio Xingu. **Acta Amazônica**, v. 34, p. 275-299, 2004.

Kunz, S. H., Martins, S. V., Ivanauskas, N. M., Silva, E., Stefanello, D. Estrutura fitossociólogica de um trecho de Floresta estacional Perenifólia, bacia do ria das Pacas, Querência-MT. **Revista Cerne**, Lavras, v. 16, n. 2, p. 115-122, 2010a.

Kunz, S. H., Ivanauskas, N. M., Martins, S. V., Silva, E., Stefanello, D. Análise da similaridade florística entre florestas do Alto Rio Xingu, da Bacia Amazônica e do Planalto Central. **Revista Brasileira de Botânica**, v.32, p. 725-736, 2009b.

Leitão-Filho, H. F. Considerações sobre a florística de florestas tropicais e sub-tropicais do Brasil. **IPEF**, v. 35, p. 41-46, 1987.

Lima-Filho, D. A.; Revilla, J.; Amaral, I. L.; Matos, F. D. A.; Coêlho, L. S.; Ramos, J. F.; Silva, G. B.; Guedes, J. O. Aspectos florísticos de 13 hectares da área de Cachoeira Porteira-PA. **Acta Amazonica**, Manaus, v. 34, p. 415-423, jul./set. 2004.

Magurran, A.E. **Ecological diversity and its measurement**. Princeton: Princeton University Press, 179 p. 1988.

Morisita, M. Measuring of the dispersion and analysis of distribution patterns. Memoires of the Faculty of Science, Kyushu University, Series E. Biology, v.2, p.215-235, 1959.

Mueller-Dombois, D.; Ellemberg, H. *Aims and methods vegetation ecology*. Wiley, New York. p.547, 1974.

Oliveira, A.N.; Amaral, I.L. Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. **Acta Amazonica**, v. 34, p. 21-34, 2004.

PROJETO SIVAM. Relatório metodológico de trabalho. Revisão 3. Diretoria de Geociência. Rio de Janeiro, 2002. 330 p.

Vianello, R. L., Alves, A. R. **Meteorologia básica e aplicações.** Viçosa:UFV, 2002, 449p.

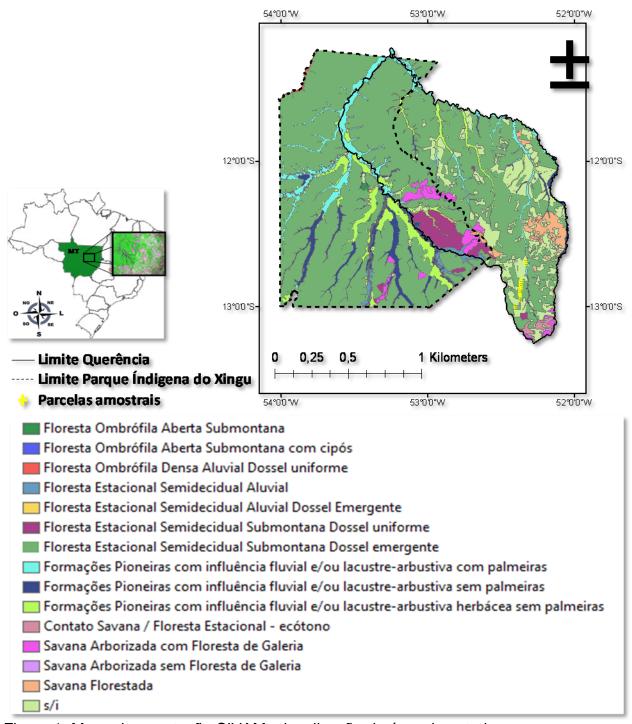


Figura 1. Mapa de vegetação SIVAM e localização da área de estudo.

Tabela 1 – Valores médios e desvio padrão dos parâmetros coletados na floresta de transição no município de Querência – MT

N° de parcelas amostrais	20
Tamanho das parcelas amostrais	2500m²/parcela
N° de árvores amostradas (>10cm)	2749
N° de árvores por ha	549.8 ± 88.4
Área basal (m²)	14,31 ± 2,52
Altura média (m)	17,13 ± 1,30
Altura média dominante (m)	$23,76 \pm 2,69$
Altura comercial (m)	8,67 ± 1,17
Índice de diversidade de Shannon (H')	$2,48 \pm 0,21$
Equabilidade de Pielou (J)	0.70 ± 0.05

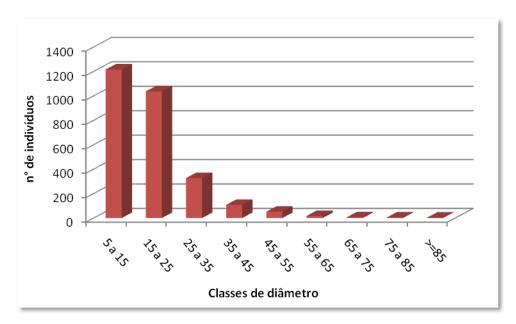


Figura 2. Distribuição diamétrica dos 2.749 indivíduos arbóreos amostrados.

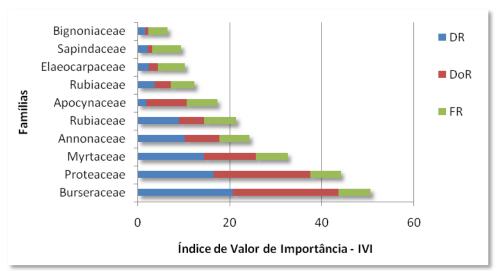


Figura 3. Parâmetros fitossociológicos das 10 famílias amostradas com maior Índice de valor de importância (IVI). DR, DoR, e FR correspondem, respectivamente, à densidade, dominância e freqüência relativas.

Tabela 2 – Parâmetros fitossociológicos das espécies arbóreas amostradas na área florestal da Fazenda Tanguro, com o respectivo número de árvores (N), densidade absoluta (DA), densidade relativa (DR), dominância absoluta (DoA), dominância relativa (DoR), freqüência absoluta (FA), freqüência relativa (FR) e índice do valor de importância relativo (IVI%), por ordem alfabética de famílias.

Familias a Famésias	NI NI	DA.	DD.	D-A	D-D	-A	- FD	13/10/
Famílias e Espécies Anacardiaceae	N	DA	DR	DoA	DoR	FA	FR	IVI%
Tapirira guianenses	2	0,4	0,07	0,032	0,16	10	0,7	0,31
Annonaceae		0,4	0,07	0,032	0,10	10	0,7	0,31
Xylopia emarginata	279	55,8	10,15	1,438	7,45	95	6,6	8,07
Apocynaceae	213	33,6	10,13	1,430	7,45	95	0,0	0,07
Aspidosperma nobile	2	0,4	0,07	0,005	0,02	5	0,35	0,15
Himatanthus articulatus	5	1	0,18	0,018	0,09	20	1,39	0,56
Araliaceae	<u> </u>		5,.5	5,5.5	3,00		1,00	0,00
Didymopanax morototoni	10	2	0,36	0,088	0,46	35	2,44	1,09
Bignoniaceae		_	3,00	2,222	3,13		_,	1,00
Tabebuia serratifolia	2	0,4	0,07	0,01	0,05	10	0,7	0,27
Jacaranda copaia	6	1,2	0,22	0,108	0,56	15	1,05	0,61
Gomidesia serratifolia	41	8,2	1,49	0,146	0,76	60	4,18	2,14
Boraginaceae								
Cordia alliodora	4	0,8	0,15	0,014	0,07	5	0,35	0,19
Burseraceae								
Protium brasiliense	568	113,6	20,66	4,43	22,94	100	6,97	16,86
Combretaceae								
Terminalia glabrescens	31	6,2	1,13	0,259	1,34	30	2,09	1,52
Elaecarpaceae								
Sloaneae guianensis	66	13,2	2,41	0,364	1,88	85	5,92	3,4
Hippocrateaceae								
Salacia amygdalina	25	5	0,91	0,076	0,39	40	2,79	1,36
Leguminosae mimosoideae								
Enterolobium shomburgkii	8	1,6	0,29	0,23	1,19	35	2,44	1,31
Malpighiaceae								
Guazuma ulmifolia	24	4,8	0,87	0,131	0,68	15	1,05	0,87
Malvaceae								
Luchea paniculata	6	1,2	0,22	0,06	0,31	15	1,05	0,52
Myrtaceae								
Blepharocalyx salicifolius	395	79	14,37	2,162	11,19	100	6,97	10,84
Gomidesia lindeniana	13	2,6	0,47	0,032	0,17	15	1,05	0,56
Papilionaceae								
A. vermifuga	1	0,2	0,04	0,003	0,02	5	0,35	0,13
Proteaceae								
Roupala montana	452	90,4	16,44	4,058	21,01	95	6,62	14,69
Rubiaceae								
Ferdinandusa speciosa	101	20,2	3,67	0,658	3,41	75	5,23	4,1

Alibertia edulis	243	48,6	8,84	1,071	5,54	100	6,97	7,12
Amaioua guianensis	24	4,8	0,87	0,321	1,51	35	2,43	1,61
Sapindaceae								
Talisia edulis	57	11,4	2,07	0,2	1,04	90	6,27	3,13
Simaroubaceae								
Simarouba versicolor	2	0,4	0,07	0,078	0,4	10	0,7	0,39

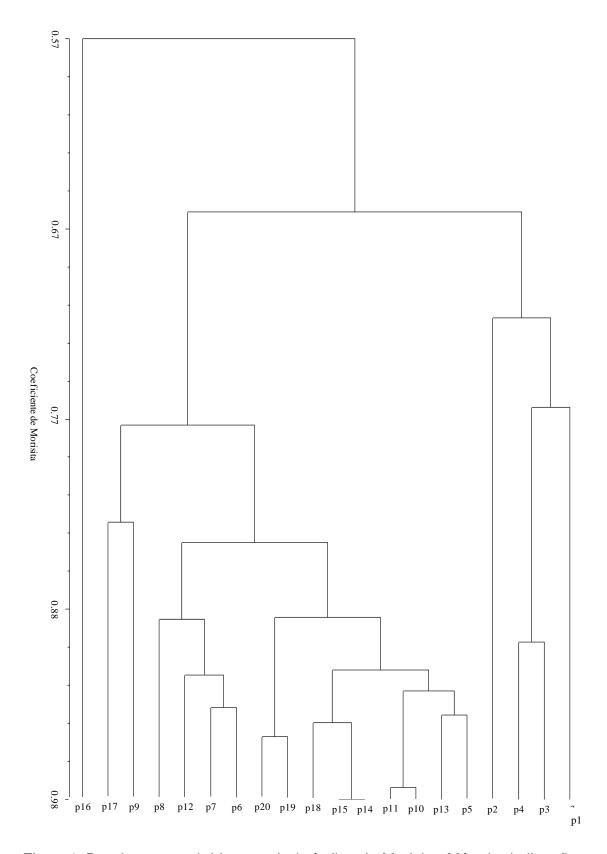


Figura4. Dendrograma obtido a partir do índice de Morisita. Método de ligação: UPGMA.

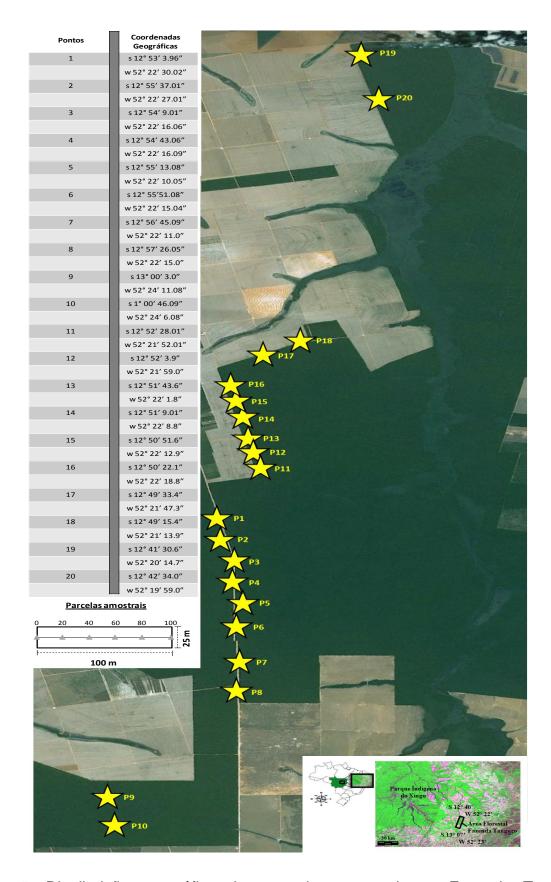


Figura 5. Distribuição geográfica das parcelas amostrais na Fazenda Tanguro, Querência-MT.

Tabela 3 – Número total de árvores de cada parcela amostral do inventário florestal, com o respectivo valor do índice de Shannon-Weaver (H') e Equabilidade de Pielou (J)

Parcelas	n° de árvores	Índice Shannon-Weaver (H')	Equabilidade Pielou (J)
1	117	2,50	0,81
2	138	2,41	0,83
3	160	2,56	0,85
4	147	2,37	0,90
5	132	2,20	0,79
6	133	2,29	0,89
7	100	2,16	0,84
8	136	2,22	0,84
9	181	2,06	0,76
10	179	2,08	0,79
11	165	2,18	0,83
12	128	2,01	0,79
13	139	2,00	0,81
14	146	1,65	0,72
15	140	2,00	0,78
16	116	2,02	0,84
17	143	1,93	0,71
18	130	2,05	0,80
19	101	1,94	0,73
20	118	2,11	0,82