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[1] We present a novel rank-based fully multiple-criteria implementation of the Sobol′
variance-based sensitivity analysis approach that implements an objective strategy to
evaluate parameter sensitivity when model evaluation involves several metrics of
performance. The method is superior to single-criterion approaches while avoiding the
subjectivity observed in “pseudo” multiple-criteria methods. Further, it contributes to our
understanding of structural characteristics of a model and simplifies parameter estimation
by identifying insensitive parameters that can be fixed to default values during model
calibration studies. We illustrate the approach by applying it to the problem of
identifying the most influential parameters in the Simple Biosphere 3 (SiB3) model
using a network of flux towers in Brazil. We find 27–31 (out of 42) parameters to be
influential, most (�78%) of which are primarily associated with physiology, soil, and
carbon properties, and that uncertainties in the physiological properties of the model
contribute most to total model uncertainty in regard to energy and carbon fluxes. We also
find that the second most important model component contributing to the total output
uncertainty varies according to the flux analyzed; whereas morphological properties play
an important role in sensible heat flux, soil properties are important for latent heat flux,
and carbon properties (mainly associated with the soil respiration submodel) are
important for carbon flux (as expected). These distinct sensitivities emphasize the need to
account for the multioutput nature of land surface models during sensitivity analysis and
parameter estimation. Applied to other similar models, our approach can help to establish
which soil-plant-atmosphere processes matter most in land surface models of Amazonia
and thereby aid in the design of field campaigns to characterize and measure the associated
parameters. The approach can also be used with other sensitivity analysis procedures that
compute at least two model performance metrics.
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1. Introduction and Background

[2] Sensitivity analysis (SA) is the study of how uncer-
tainty in the output of a model can be apportioned to dif-
ferent sources of uncertainty in the model input factors (e.g.,
input forcing data, parameters, etc.) [Saltelli et al., 2010].
When applied to parameter estimation (i.e., model calibra-
tion) [Saltelli et al., 1999; Bastidas et al., 1999, 2006;
Demarty et al., 2004; Hall et al., 2005; Tang et al., 2007a,

2007b; van Werkhoven et al., 2008; Prihodko et al., 2008;
Rosero et al., 2010], the objective of SA becomes to identify
the most important parameters that, if optimally determined,
would lead to the greatest reduction in the variance of the
output of interest [Saltelli, 2002a]. Sensitivity Analysis is
an important tool used in environmental modeling [U.S.
Environmental Protection Agency (EPA), 2009], con-
tributes to the understanding of structural characteristics of
a model, and can also help to identify model parameters
having minimal effect on the model output (that can there-
fore be set to default values during simulation).
[3] According to Campolongo et al. [2000], local, one at-

a-time (OAT) sensitivity analysis methods, although widely
applied among scientists, are not appropriate for nonlinear
models because they fail to account for potential interac-
tions among different factors. An approach commonly used
to study parameter sensitivity of catchment and land-
atmosphere interaction models is regionalized sensitivity
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analysis (RSA), which uses Monte Carlo sampling to par-
tition the parameter space into behavioral (acceptable) and
nonbehavioral (nonacceptable) regions [Hornberger and
Spear, 1981; Bastidas et al., 1999, 2006; Demarty et al.,
2004; Rosolem et al., 2005; Prihodko et al., 2008]. How-
ever, RSA does not quantify the extent to which a param-
eter affects the variance of model output and relies upon
subjective decisions to partition between behavioral and
nonbehavioral solutions [Bastidas et al., 1999, 2006;
Demarty et al., 2004]; the metric used for partitioning is
sometimes graphical [Wagener and Kollat, 2007] and
sometimes statistical, in the latter case with thresholds pre-
defined by the user [Bastidas et al., 1999; Prihodko et al.,
2008]. Moreover, a limitation to RSA methods is that once
the partitioning is made, the method ignores potential var-
iations of the output within the class of the acceptable values
[Saltelli, 2002a]. Attempts to identify influential parameters
have also been conducted through the analysis of “signature
measures” [Yilmaz et al., 2008] but the approach can also
become subjective, in the sense that a standardized list of
signature measures is not available for different applications
(e.g., hydrological versus land surface models) and for dif-
ferent regions on Earth, driven by distinct climatic forcing
[e.g., Nemani et al., 2003; Jolly et al., 2005].
[4] In contrast, variance-based (also known as importance

measure) methods have recently become the preferred
approach for sensitivity analysis across a wide range of
applications [Saltelli, 2002a, 2002b; Saltelli et al., 1999,
2006, 2010; Frey, 2002; Frey and Patil, 2002; EPA, 2009],
including hydrological and land surface modeling [Tang
et al., 2007a, 2007b; van Werkhoven et al., 2008; Rosero
et al., 2010]. These methods provide a factor-based decom-
position of the output variance, and provide robust quanti-
tative results regardless of the model used, can deal with
nonlinearities, and are able to account for interactions among
different factors; the price for these properties is that they are
computationally demanding. These methods provides not
just a rank ordering of key factors, but also a quantitative
measure of sensitivity so that it is possible to evaluate how
important a given factor is in relation to others. Among these
methods, the Sobol′ variance-based analysis [Sobol′, 1993]
has become one of the most widely used in environmental
modeling [Saltelli, 2002b; Saltelli et al., 1999, 2006;
Campolongo et al., 2000; Tang et al., 2007a, 2007b; van
Werkhoven et al., 2008; Rosero et al., 2010].
[5] A major drawback of previous evaluation and sensi-

tivity analysis studies of hydrology and land surface inter-
action models, regardless of the analysis method applied,
was their failure to properly consider the fully multiple-
criteria (and often noncommensurable) nature [Gupta et al.,
1998] of model performance. While several studies have
employed multiple objective functions (model performance
criteria), the ultimate sensitivity analysis was typically car-
ried out for each objective function individually, making it
difficult to objectively rank the parameters in regard to their
relative importance in the model or to decide which ones
should be selected for calibration. For example, Liu et al.
[2004] demonstrate that parameters can show varying sen-
sitivities for different criteria, such that a “globally sensitive
parameter” is not necessarily sensitive to all individual criteria.
Consequently, the way this is usually addressed is to define

sensitivity thresholds on each criterion (for variance-based
analysis, “sensitive” is usually chosen to correspond to
≥1% of total variance, and “high sensitivity” corresponds
to ≥10% [Tang et al., 2007a, 2007b; van Werkhoven et al.,
2008]); however, the selection of these thresholds can
sometimes be arbitrary, and introduces subjectivity into the
analysis.
[6] Here we present a fully multiple-criteria implementa-

tion of the Sobol′ SAmethod based on the notion of multiple-
criteria (Pareto) ranking. We demonstrate its value by ana-
lyzing parameter sensitivities of the Simple Biosphere 3
(SiB3) model [Baker et al., 2003, 2008] with regard to sen-
sible and latent heat fluxes, and net ecosystem exchange of
CO2. The results indicate which model parameters are most
influential in controlling simulations of these fluxes at eight
flux tower sites located mainly in the Amazon basin, and
such information can help to define data measurement pri-
orities for future field studies. The results presented here are
designed to illustrate the sensitivity analysis methodology.
Further investigation of sensitivity for all flux tower sites and
subsequent calibration of the SiB3 model parameters are
described by Rosolem et al. [2012].

2. Variance-Based Sensitivity Analysis

2.1. The Sobol′ Method

[7] Sobol′ analysis estimates, via approximate Monte
Carlo integrations, what fraction of the variability of some
entity can be attributed to changes in the values of various
factors that control the value of that entity [Sobol′, 1993;
Saltelli et al., 1999, 2006; Hall et al., 2005]. Consider the
problem formulation:

y ¼ f qð Þ ¼ f q1; q2; ⋯; qkð Þ ð1Þ

where y is the vector of metrics used to evaluate model
performance (e.g., the root-mean-square errors of model fit
to different model simulated fluxes), and q = {q1, q2, ⋯, qk} is
the vector of k model factors (e.g., parameters) that are
believed to control the behavior of the model and hence its
performance as indicated by y. Our interest is in knowing
how much of the total variance V(y) in y, can be explained
by variability in the factors q. The Sobol′ approach computes
this by decomposing the function f (q1, q2, …, qk) into terms
of increasing dimensionality, such that each successive
dimension represents increasing degrees of interactions
among the parameters,

f q1; q2;…; qkð Þ ¼ f0 þ
Xk
i¼1

fi qið Þ þ
X

1≤i≤j≤k
fij qi; qj
� �þ…

þ f1;2;⋯;k q1; q2;…; qkð Þ; ð2Þ

on the basis of which the total variance V(y) in y can be
shown to be composed of the terms

V yð Þ ¼
X
i

Vi þ
X
i<j

Vij þ⇌þ V1;2;⋯;k ð3Þ

where Vi is the portion of V(y) contributed by factor qi, and
Vij is the portion contributed by interactions between factors
qi and qj, etc. The fractional contribution of the ith factor to
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the total output variance V(y) is called the first-order sensi-
tivity index Si (sometimes called “main effect”):

Si ¼ Vi

V yð Þ : ð4Þ

[8] Similarly, the second-order indices Sij, and total order
indices STi are defined as

Sij ¼ Vij

V yð Þ ð5Þ

STi ¼ 1� V�i

V yð Þ ð6Þ

where V�i is the average variance obtained when all of the
factors except for qi are allowed to vary (qi is kept fixed at
one value). The total order index STi (equation (6)) therefore
represents the total contribution of factor qi to the total var-
iance V(y) through both direct and indirect effects.
[9] Software to perform the computations is available

at http://simlab.jrc.ec.europa.eu/. To compute these indices,
the model performance vector y must be assessed at a
sufficiently large number of randomly selected parameter
locations in the feasible parameter space for the estimates
to be stable (note also that the random factor variations
must be uniformly distributed independently of each other).
The main disadvantage of the Sobol′ approach (as with
other variance-based methods) is its large computational
requirement.
[10] In summary, the Sobol′ method is typically used to

produce two matrices for each metric yo in the model per-
formance vector y; one matrix (a vector) specifies the total
order sensitivity index STi

o and the other specifies the first-
order sensitivity indices Si

o. The value of each index can vary
from 0 to 1. When there is only one model performance
metric the factors can easily be ranked in order of sensitivity
by examining Si and STi, while the strength of interactions

can be assessed by examining the matrix of the total order
sensitivity indices when subtracting the magnitudes of the
first-order sensitivity indices [Saltelli et al., 2005]. To select
the “influential” factors, the user then specifies a cutoff
threshold (usually applied to STi) below which the contri-
bution of a factor to variability in the model performance
metric is judged to be inconsequential. However, when there
are several model performance metrics, the typical approach
is to perform such analysis on each performance metric
separately; in this case the user must specify cutoff thresh-
olds for each of the metrics (although, usually a cutoff value
is defined commonly to all metrics). While the approach
then indicates the relative sensitivity of each metric to each
factor, when (as is desirable) metrics tend to be orthogonal
[Gupta et al., 1998], different metrics will inevitably be
sensitive to different factors and specification of the “most
and least” influential factors can become somewhat
subjective.

2.2. Fully Multiple-Criteria Implementation

[11] To achieve a more objective ranking of multiple-
criteria factor sensitivity, we propose a multiple-criteria
screening approach based on the Pareto ranking concept
[Goldberg, 1989]. This enables definition of groups of fac-
tors having relatively stronger and weaker contributions to
overall model performance; this can help, for example, in
establishing which factors to simultaneously optimize
regardless of their relative sensitivity to individual model
performance metrics. The approach assigns a “group rank”
to each factor based on a multiple-criteria assessment of its
individual total order sensitivities. This group ranking then
permits a more objective analysis of how many of factors
contribute significantly to the overall variability in model
performance.
[12] The approach is described below; for simplicity we

discuss a hypothetical case of only two performance metrics
(Y1 and Y2) for a problem having 20 factors (Figure 1). Of
course, more than two metrics can be easily handled.

Figure 1. Hypothetical example of the approach used in this study: (a) Pareto rank calculated for a pair of
Sobol′’s total order indices (STi) associated with objective functions Y1 and Y2. The numbers inside circles
represent hypothetical factor numbers (i.e., parameters). The color coding indicates the parameters belong-
ing to a particular Pareto rank (for clarity all parameters with same Pareto rank are also linked together by
a surrounding dotted line). (b) Relationship between linear correlation coefficient (r) and number of iden-
tified parameters (Npar) based on alternative approach (see section 2.2 for details).
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2.2.1. Step 1: Assign Pareto Rank Group Numbers
to Each Factor
[13] For each factor, assign a Pareto rank r [see Gupta

et al., 1998] on the basis of simultaneous maximization of
the total order sensitivity indices ST1 and ST2 for Y1 and Y2,
respectively. The maximum Pareto rank Rmax will of course
be less than or equal to the number of factors k.
[14] By way of our example, the color coding in Figure 1a

shows that each of the 20 factors occupies a location in the
ST1 and ST2 space (the number in each circle indicates the
factor number). Factors having the strongest influence on
metric Y1 plot closer to the right and on metric Y2 plot closer
to the top, while those strongly influencing both plot toward
the top right. Factors having the same Pareto rank are shown
linked by a dotted line. A factor is assigned rank 1 if there is
no other factor plotting in the upper right quadrant to it.
Factors are assigned rank 2 if they become Pareto optimal
when all rank 1 factors are removed from the plot, and so on,
until all factors have been assigned a rank group number.
2.2.2. Step 2. Create a Control Sequence
[15] Create a “control sequence” of NC points randomly

sampled in the total factor space. Ideally one should use a
stratified sampling method, such as Latin hypercube sam-
pling (LHS) [McKay et al., 1979] to ensure uniform cover-
age. Compute the vector of performance metrics yC at each
sampled location.
2.2.3. Step 3: Create Rank-to-r Factor Sensitivity
Groups
[16] Define a rank-to-r factor sensitivity group as con-

taining all factors belonging to rank groups up to and
including rank r (i.e., ranks 1, 2, …, r); hence, as r is
increased, the number of included factors also increases till
all of them are accounted for.
2.2.4. Step 4: Create Rank-to-r Factor
Sensitivity Samples
[17] For each rank-to-r factor sensitivity group create a

sequence of NC points randomly sampled in the total factor
space such that all the factors belonging to that group are set
to their values in the control sequence while the remaining
(out of group) factors are fixed to their default values. For
each group, compute the corresponding vector yr of perfor-
mance metrics at each sampled location.
[18] The consequence of this is a single control sequence

and Rmax sequences of rank-to-r factor sensitivity samples.
2.2.5. Step 5: Select a Pareto Rank Threshold
to Determine the Influential Factors
[19] To determine which factors should be deemed influ-

ential, proceed as follows. For each rank-to-r factor sensi-
tivity group compute the linear correlation coefficient rr

between yr and yC for each performance metric, and then
compute the minimum rmin

r across all of the metrics. This
coefficient rmin

r indicates how much of the variability in the
control sequence is explained by variability in all factors
belonging to groups having rank r or lower. Generate a plot
of rmin

r versus r (see Figure 1b); note that as r varies from
1 to Rmax the number of included factors increases and
rmin
r approaches 1.0. However, if some of the parameters do

not significantly contribute to variability in model perfor-
mance, rmin

r will effectively become 1 for some r = r* <
Rmax. Notice that this value can be selected by a test
of significance for rmin

r � 1, considering the sample size
NC used.

[20] Of course, one can also examine each of the “rank
correlation lines” generated for each model performance
metric taken separately, thereby obtaining detailed analysis
about different aspects of model behavior (e.g., different
output fluxes); while this approach is analogous to the one-
metric-at-a-time analysis applied by others, it allows for a
more robust and objective statistical evaluation as indicated
above.

3. Case Study: Land Surface Modeling of Flux
Sites in the Amazon Basin

[21] The influence on global climate on the Amazon
region selected for this study is unquestionable [Nobre et al.,
1991; Cox et al., 2000; Betts et al., 2004;Malhi et al., 2009],
and therefore, an understanding of ecological and hydro-
meteorological interactions in this region is of great impor-
tance. Because of its spatial extent (on the order of �5.4
million km2), the Amazon basin contributes substantially to
regional and global hydrological cycles [Salati, 1987;
Shuttleworth, 1988; Brubaker et al., 1993; Eltahir and Bras,
1994;Werth and Avissar, 2004] and is a major participant in
the global carbon budget [Malhi and Grace, 2000;
Houghton et al., 2001; Malhi and Davidson, 2009].
[22] In general circulation models the soil-vegetation-

atmosphere interface is described by land surface parame-
terization schemes (LSPs) [Sellers et al., 1997; Pitman,
2003; Sakaguchi et al., 2011]. Some of these LSPs are
highly complex model containing tens of parameters to be
specified by the user. As part of the Large-Scale Biosphere-
Atmosphere Experiment in Amazonia (LBA) [LBA Science
Planning Group, 1996; Avissar and Nobre, 2002; Keller
et al., 2004, 2009], the Data-Model Intercomparison Proj-
ect (LBA-DMIP; http://www.climatemodeling.org/lba-mip/)
seeks to improve the description of land surface processes in
this region by analyzing the performance of several LSPs
relative to observations. Here we apply the multiple-criteria
sensitivity analysis approach described above to evaluate the
relative importance of various parameters in the SiB3 model
with regard to the strength of their influence on the beha-
viors of sensible and latent heat fluxes, and net ecosystem
exchange of CO2 simulated by the model.

3.1. The Simple Biosphere 3 (SiB3)
Land Surface Model

[23] The land surface parameterization scheme used in this
study is a version of the third generation [Baker et al., 2003]
of the SiB land surface model [Sellers et al., 1986, 1996a,
1996b] that includes a prognostic representation of canopy
air space properties [Vidale and Stöckli, 2005], a user-
determined number of soil layers, soil representation based
on the Community Land Model [Dai et al., 2003], and a
new soil water stress parameterization [Baker et al., 2008].
The model is driven by meteorological data (air temperature
and specific humidity, horizontal wind speed, barometric
surface pressure, downward longwave and shortwave
radiation, and rainfall), and simulates various aspects of
biosphere-atmosphere interaction (momentum, heat, water
exchange, biogeochemistry, etc.) at the interface between
the land surface and the atmosphere [Randall et al., 1996].
Our version has been slightly modified to incorporate an
alternative soil respiration submodel and a more realistic
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physically based estimate of cloud fraction (based on orig-
inal work by Rosolem et al. [2010] and applied to Amazo-
nian conditions). It also includes a factor to correct for
systematic bias in nighttime NEE.

3.2. LBA Study Sites and Data

[24] Continuous hourly meteorological forcing data for
eight sites in Brazil were provided by the LBA-DMIP proj-
ect, and validation data comprising sensible heat flux (H),
latent heat flux (lE) and net ecosystem exchange of CO2

(NEE) were obtained from the principal investigators
responsible for each site. The sites are part of Brasilflux, the
eddy covariance flux tower network in Brazil (N. Restrepo-
Coupe et al., What drives the seasonality of productivity
across the Amazon basin? A cross-site analysis of eddy flux
tower measurements from the Brasil flux network, submitted
to Agricultural and Forest Meteorology, 2010) and include
four evergreen broadleaf forests (EBF), a deciduous broad-
leaf forest (DBF), a savanna biome (SAV), and two cropland/
pasture biomes (CROP) following IGBP classification.
Table 1 summarizes the main characteristics of each field
site and includes individual site references; for details on
climatological characteristics, see Rosolem et al. [2008] and
da Rocha et al. [2009]. For most sites data are available for
three consecutive years between 1999 and 2005, but the
period of collection varies.
[25] To reduce uncertainties in the measurements, simple

quality control procedures were applied to the validation
data (fluxes). A visual inspection was first made to remove
unrealistic outliers in the fluxes. Hourly NEE values were
then calculated by adding the eddy flux (FCO2

) and storage
(SCO2

) observations [Wofsy et al., 1993], except at the PDG
and FNS sites where no storage measurements were made
and NEE was necessarily set equal to eddy flux alone. At
sites where carbon storage measurements were made there
were sometimes periods with missing data. When this
occurred, the missing value of SCO2

at a given hour of the
day was estimated to be the monthly average hourly value of
SCO2

at the same hour. If the hourly average value of SCO2
for

that month could not be calculated (no measurements
available), the equivalent hourly value in the mean annual
diurnal cycle was used. This approach is similar to the one
used by Hutyra et al. [2008]. Nighttime NEE values were
also filtered for reliability at some sites on the basis of
thresholds of friction velocity (u*). For the Manaus K34 site,

nighttime NEE observations were considered unreliable
when u* < 0.15 m s�1, and at Tapajós sites (K67 and K83)
when u* < 0.22 m s�1. The selection of the u* threshold
values for these sites were based on previous site-specific
studies [Araújo et al., 2002; Kruijt et al., 2004; Saleska
et al., 2003].

3.3. Time-Varying Inputs

[26] Phenology information, such as leaf area index (LAI)
and fraction of the absorbed photosynthetically active radi-
ation (FPAR), was derived from a prognostic phenology
model [Stöckli et al., 2008] that assimilates Moderate Res-
olution Imaging Spectroradiometer (MODIS) LAI/FPAR
products at a monthly time scale. Monthly LAI was provided
by LBA-DMIP and monthly FPAR by R. Stöckli (unpub-
lished data, 2009). Additional time-varying inputs, such as
green fraction of vegetation, were acquired from the global
1982–2001 European Fourier-adjusted and interpolated
normalized difference vegetation index (EFAI-NDVI; 10
day temporal and 0.1� spatial resolution) derived from
advanced very high resolution radiometer Pathfinder NDVI
data. Biophysical land surface inputs were derived from
EFAI-NDVI by applying simple empirical relationships
between satellite radiometry and vegetation physiology; see
Stöckli and Vidale [2004]. For these additional time-varying
inputs, a climatological monthly mean was used in this
study.

3.4. Parameters Used as Factors in the Sensitivity
Analysis

[27] Our modified version of SiB3 has 42 parameters (see
Table 2), all of which were used as factors in this study
(time-varying inputs, such as LAI and FPAR, were not
included in the sensitivity analysis). Parameters ranges
highlighted in bold are specified in the form of a multiplier
as opposed to actual parameter value; these correspond to
parameters whose ranges depend on the values of other
parameters. This procedure helps to ensure that the inde-
pendence assumption of the Sobol′ methodology is met;
Prihodko et al. [2008] applied a similar approach to SiB2.5.
Note that for those parameters, we test the sensitivity of the
multiplier rather than that of the actual parameter. Seven
such relationships exist as indicated in Table 2, where the
‘M ’ terms indicate the multipliers applied in each case.
[28] Feasible ranges for each parameter (minimum and

maximum values) were selected to encompass values for a

Table 1. Geographical and Main Meteorological Characteristics of the LBA-DMIP Sites Used in This Studya

Site Site Name Latitude Longitude
Elevation

(m)

Reference
Height
(m) Data Period

Annual
Rainfall
(m)

Annual
Temperature

(�C)
Dry Season
(Length)

Biome
Type

K34 Manaus Km34 2�36′33″S 60�12′33″W 130 50 2002–2005 2.4 25.6 Jul–Sep (3 months) EBF
K67 Santarém Km67 2�51′24″S 54�57′32″W 130 63 2002–2004 1.6 25.3 Jul–Nov (5 months) EBF
K83 Santarém Km83 3�01′05″S 54�58′17″W 130 64 2001–2003 1.7 25.9 Jul–Nov (5 months) EBF
RJA Reserva Jarú 10�04′59″S 61�55′51″W 191 60 2000–2002 2.3 25.1 Jun–Oct (5 months) EBF
BAN Bananal Island 9�49′28″S 50�09′33″W 120 40 2004–2006 1.7 26.4 May–Sep (5 months) DBF
PDG Reserva Pé de Gigante 21�37′10″S 47�39′00″W 690 21 2002–2003 1.3 22.5 Apr–Sep (6 months) SAV
K77 Santarém Km77 3�01′11″S 54�53′40″W 130 18 2001–2005 1.6 26.3 Jul–Nov (5 months) CROP
FNS Fazenda Nossa Senhora 10�45′54″S 62�21′13″W 306 8.5 1999–2001 1.7 24.7 Jun–Oct (5 months) CROP

aBiome types: evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), savanna (SAV), and cropland/pastureland (CROP). References: K34
[Araújo et al., 2002], K67 and K83 [Saleska et al., 2003; Miller et al., 2004; Hutyra et al., 2007], RJA and FNS [von Randow et al., 2004], BAN [Borma
et al., 2009], PDG [da Rocha et al., 2002], and K77 [Sakai et al., 2004; R. K. Sakai et al., Relating carbon and water exchange over an intensive agriculture
field in the Amazon crop to locally and remotely sensed phenological measurements, submitted to Agricultural and Forest Meteorology, 2010].
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broad range of biome types and defined following Prihodko
et al. [2008] and recognizing the ranges proposed by the
Land Data Assimilation System for these biome types
(http://ldas.gsfc.nasa.gov/gldas/GLDASmapveg.php). Note
that the parameter ranges defined in Table 2 are common to
all biomes. This choice is deliberate since our interest in this
study is to compute the sensitivity of a given parameter
across all biome types; hence the parameter ranges encom-
pass the natural ecosystems for the study region.

3.5. Soil Moisture Initialization

[29] To maintain consistency in the model simulations,
careful soil moisture initialization was carried out for each

parameter set sampled. Testing showed very little difference
between a strategy of initializing soil moisture by using a
single year of data repeatedly, versus using the entire time
series of forcing data repeatedly. Consequently, we used the
former approach to “spin up” the model, resulting in sig-
nificant computational savings. For each site, the spin-up
year was selected (from those for which forcing data were
available) to be the one most climatologically similar to the
year prior to the period for which model simulations were to
be conducted [Rosolem et al., 2008]. Consistent with LBA-
DMIP protocol, the spin-up year was applied repeatedly
until the difference in total column soil moisture from year to
year changed by less than 0.1%.

Table 2. Summary of SiB3 Parameters and Feasible Rangesa

Parameter Description Units Minimum Maximum

Morphological Properties
z2 Canopy top height m 0.3 45.0
z1* [z1 = M1 ⋅ z2] Canopy bottom height m 0.025 0.800
z0d* [z0d = M2 ⋅ z2] Canopy roughness length m 0.05 0.20
zp_disp* [zp _ disp = M3 ⋅ z2] Canopy zero plane displacement height m 0.65 0.85
vcovr Vegetation cover fraction 0.4 1.0
chil Leaf-angle distribution factor �0.3 0.3

Optical Properties
tran(1,1) Live leaf transmittance visible band 0.0400 0.0800
tran(1,2) Dead leaf transmittance visible band 0.0005 0.2500
tran(2,1) Live leaf transmittance near infrared band 0.0100 0.4000
tran(2,2) Dead leaf transmittance near infrared band 0.0005 0.4000
ref(1,1) Live leaf reflectance visible band 0.0500 0.1500
ref(1,2) Dead leaf reflectance visible band 0.1000 0.4000
ref(2,1) Live leaf reflectance near infrared band 0.4000 0.6000
ref(2,2) Dead leaf reflectance near infrared band 0.3500 0.6000
soref(1) Soil reflectance visible 0.05 0.15
soref(2)* [soref(2) = M4 ⋅ soref(1)] Soil reflectance near infrared 1.1 2.5

Physiological Properties
vmax0 Maximum Rubisco capacity at canopy top mol m�2 s�1 2.50E-5 1.50E-4
effcon Intrinsic quantum efficiency mol mol�1 0.03 0.15
gradm Stomatal slope factor 3 18
binter Minimum stomatal conductance mol m�2 s�1 1.00E-8 0.04
atheta Photosynthesis coupling coefficient 0.5 1.0
btheta Photosynthesis coupling coefficient 0.5 1.0
trda Slope of high temperature inhibition function (leaf respiration) K�1 0.1 2.0
trdm* [trdm = M5 ⋅ trop] One half point of high temperature inhibition function (leaf respiration) K 1.01 1.20
trop Temperature coefficient in photosynthesis-conductance submodel K 283.16 308.16
respcp Respiration fraction of Vm 0.005 0.030
slti Slope of low-temperature inhibition function (Vm) K�1 0.1 2.0
shti Slope of high-temperature inhibition function (Vm) K�1 0.1 2.0
hlti One half point of low-temperature inhibition function (Vm) K 273.16 298.16
hhti* [hhti = M6 ⋅ hlti] One half point of high-temperature inhibition function (Vm) K 1.01 1.20

Soil Properties
bee Soil wetness exponent 2.5 19.0
phsat Soil water potential at saturation m �0.80 �0.03
satco Soil hydraulic conductivity at saturation m s�1 1.00E-6 1.00E-4
poros Soil water content at saturation (porosity) m3 m�3 0.2 0.8
wssp Soil water stress curvature parameter 0 1
kroot* [kroot = M7/scalez] Root density extinction coefficient 0.01 0.20
scalez Factor to determine exponential distribution of soil depths 0.01 0.10

Parameters Associated with CO2 Components
wopt Soil moisture percent at maximum soil respiration rate % 30 80
wsat Parameter for soil respiration at saturation 0.3 0.8
zm Skewness exponent for soil respiration submodel �2 1
respref Reference soil respiration rate mmol m�2 s�1 1 10
alpha Multiplier to account for systematic bias on nighttime NEE components 0 1

aThe sensitivity of parameters followed by an asterisk is analyzed on the basis of its multipliers (i.e., the M term in each parameter’s equation). Although
description and units refer to actual parameters in SiB3, parameter values in bold represent the multiplier values (instead of actual parameter).
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3.6. Sensitivity Analysis Procedure

[30] The 42 parameters defined in Table 2 were used as
factors in the sensitivity analysis. To evaluate model per-
formance, we computed three metrics at each field site, the
root-mean-square error (RMSE) between model simulated
and observed values of H, lE, and NEE, where RMSE is
defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

t¼1 Fs;t � Fo;t

� �2
m

s
ð7Þ

and Fs,t and Fo,t are the simulated and observed hourly
fluxes of energy H, lE, or NEE calculated over the entire
time series (when observations available). The method was
applied to each site, with the parameters sampled randomly
at �45,000 locations uniformly distributed throughout the
feasible space. Saltelli et al. [2005] shows that the pairs of
first and total order indices can be computed at a cost of
(k + 2)N model simulations, where k is the number of factors
(k = 42 in our case), and N should typically be between 500
and 1000. Hence, our sample size may be considered con-
servative (N � 1000). For the occasional situation where
(because of truncation errors) slightly negative indices were
obtained, these values were set to zero [see Tang et al.,
2007b].
[31] To compute the linear correlation coefficient rr used

to establish which parameters are to be deemed sensitive in
the multiple criteria sense we used a sample size NC = 1000;
we also tested the effect of using larger sample sizes (NC =
2000 and NC = 4000) and found no significant impact on the
results.

4. Results

4.1. Total Parameter Sensitivities and the
Contributions of Direct and Indirect Effects

[32] Sobol′ total order indices (STi) calculated for each
SiB3 parameter at each site are summarized in Figure 2.
Assuming the conventional variance cutoff values of 1% and
10%, the values indicate that the simulated fluxes show
significant sensitivity to 13–20 and 3–8 of the model para-
meters tested, respectively (with level of sensitivity varying
from site to site). Similar results were reported for SiB2.5 at
a temperate site [Prihodko et al., 2008] and for SiB2 at the
K83 site [Rosolem et al., 2005] using the RSA approach.
The fact that so many of the parameters show lack of sen-
sitivity in this and other studies suggests that the SiB model
may be overparameterized [Saltelli et al., 2006] with respect
to the simulation of energy and carbon fluxes in the region
(the parameters may, of course, be important for other
aspects of model performance). To check this fact, we per-
formed a similar application of the Sobol′ approach using
runoff, ground heat flux, and canopy heat storage flux, for
which observational data are not available, as individual
criteria; to enable this, the RMSE was calculated with
respect to the output values provided by a control simulation
using the default parameter values. In summary, most of soil
property parameters were found to be highly sensitive to
runoff at all sites (especially, bee, satco, poros, and scalez),
and z2 and vcovr (plus poros, for ground heat flux analysis)
were found to be the most influential parameters for both

ground heat flux and canopy heat storage flux (results not
shown).
[33] In general the parameters that dominate the list in

terms of influence are related to physiology, soil and car-
bon properties. This includes the physiology parameters
vmax0 (maximum Rubisco enzyme capacity at canopy
top), gradm and binter (slope and intercept coefficients in
the Ball-Berry-Collatz equation), and hlti and hhti (low-
and high-temperature half-inhibition points for internal
temperature stress). Similarly, while the sensitivity of soil
properties is not high, the influential parameters include
bee (Clapp and Hornberger coefficient), phsat (soil water
potential at saturation), poros (soil porosity), and scalez
(which controls the exponential distribution of soil layers
in the model).
[34] Not unexpectedly, the carbon-related parameters

(related to soil respiration and possible systematic bias in
nighttime NEE flux) show sensitivity only when computing
carbon fluxes. On the basis of the cutoff used (1%), almost
all carbon-related parameters are sensitive at all sites. A
surprising exception is the parameter associated with
potential systematic bias in observed nighttime carbon flux
(alpha), which shows no sensitivity at almost all forest sites.
This result supports the study of Hutyra et al. [2008], which
shows that most of the systematic bias can be reduced after
careful screening using the friction velocity (u*) filter. In
their study, the magnitudes of CO2 flux obtained using the
u* filter match closely with their best estimate of CO2 flux at
K67 site. We assume their results can be extrapolated to
other tall canopy sites in our study; therefore, we would
expect a reduction in systematic biases due to proper u*
filtering also at K83 and K34 sites. Finally, notice that all
other sites that did not contain appropriate screening for
turbulent conditions suggest some sensitivity to the param-
eter alpha, regardless of canopy height.
[35] From Figure 2 (computed for STi) and Figure 3

(computed for Si), an interesting pattern emerges that sensi-
tive parameters (high total order sensitivity) make their
contributions mainly through direct effects (e.g., z2, vcovr,
hhti, and respref), while those with low total order sensi-
tivity make their contributions mainly through interactions
or a combination of direct and interaction effects (e.g., effcon
for NEE fluxes, hlti, wssp, and wopt). However, it is notable
that for a few high sensitivity parameters (e.g., gradm, hhti,
poros, for SAV and CROP sites) the parameter interaction
effects dominate. We mention this because Rosero et al.
[2010] suggest that physical realism of models should go
hand in hand with fewer undesirable (unrealistic) parameter
interactions and that the Noah model did not correspond well
with this principle. While we are not sure whether their
argument should hold in every case, it is interesting that
most of the flux variability in this model originates from
direct parameters contributions. For completeness, Figure S1
in the auxiliary material shows the results for the indirect
effect index, SINDi, computed as the difference STi � Si
between total and direct sensitivity.1

[36] In equation (4), Vi describes the so-called “additive”
part of a model [Saltelli et al., 2005]. In simple words,
additive models have the property that the combined

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JD016355.
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Figure 2
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response of interest can be defined by the sum of their sep-
arate effects. In turn, additive models are defined as those for
which ∑iSi = 1. In general, as a rule of thumb, if ∑iSi > 0.6
then the analysis is considered to be successful [Saltelli
et al., 2005; Liepmann and Stephanopoulos, 1985], and the
model can be considered nearly additive if ∑iSi > 0.8
[Campolongo et al., 2000]. Figure 4a shows that while the
sensitivity analysis of SiB3 produced satisfactory results,
SiB3 does not behave as a nearly additive model. Although
the “additive” part of the model can be high for some site/
flux combinations (e.g., BAN and PDG for H flux, and
almost all sites for NEE flux), in general ∑iSi for SiB3 falls
below 0.8, implying that interaction effects need to be con-
sidered in the analysis. Therefore, we focus our analysis on
the total order indices (STi). With STi, we no longer have to
limit the analysis to additive models [Saltelli et al., 2005].
[37] Another important aspect of variance-based sensitivity

analysis methods (such as Sobol′) is the ability to group inputs
as if they were a single factor corresponding directly to the idea
of importance measures [Frey, 2002; Saltelli, 2002a]. In our
case, grouping the individual factor (based on Sobol′ total
order indices) contributions to the output variance of a given
flux can provide valuable information about the SiB3 model
(Figures 4b–4d). Our SiB3 results (evaluated for all LBA sites
as a whole) can be summarized as follows: (1) “Physiological
properties” in the model are the most important measure that if
tackled appropriately can provide the largest reduction in SiB3
uncertainty of all fluxes for the Amazon region, and (2) if all
fluxes are considered equally important (in terms of contri-
bution to model development), it is not clear which model
component is second most important (after the physiological
properties). For sensible heat flux (Figure 4b), the physiolog-
ical component of the model corresponds to almost 50% of the
total output variance, followed by “morphological properties”
which correspond to about 25%. On the other hand, physio-
logical component explains about 65% of the latent heat flux
variance with “soil properties” being the second most impor-
tance measure, representing about 25% (Figure 4c). Notice
that “carbon properties” make no contribution to the variance
of these fluxes but are, not surprisingly, important for carbon
fluxes in SiB3, corresponding to about 35% of the output
variance, while the physiological component of the model
suggests approximate 50% contribution. The simple analysis
presented above reinforces the need to account for the multi-
objective nature of the system, an aspect that is sometimes
ignored when dealing with hydrological and land surface
models. This is the mainmotivation for our proposedmultiple-
criteria method whose results are described below.

4.2. Multiple-Criteria Analysis
of Parameter Sensitivities

[38] The main purpose of Figure 1a is to provide a rela-
tively simple and direct example of the methodology so that

potential users can be easily guided through each of the
steps. Figure 5 shows examples of a two-dimensional Pareto
ranking analysis conducted for the BAN and K83 sites. For
ease of illustration, Figure 5 shows 2D scatterplots, although
our ultimate goal is to analyze the Pareto ranking in the 3D
criteria space (i.e., STi for H, lE, and NEE simultaneously).
As expected, actual results will not necessarily resemble our
simplest case depicted in Figure 1a, although several Pareto
rank fronts are easily observed (the number inside each cir-
cle is the index number of a parameter following the order
presented in Figure 2 and Table 2, i.e., z2 = parameter 1, z1 =
parameter 2, z0d = parameter 3, and so on). For instance, at
the BAN site (Figure 5a), parameters vcovr, hhti, and respref
(parameters 5, 30, and 41, respectively) belong to the same
group of factors (i.e., rank 1) on the basis of Pareto ranking.
However, their individual contributions to the total output
variance in SiB3 are different depending on the simulated
fluxes analyzed. The parameter respref is highly influential
to NEE while it exerts minimal (or no) influence on the
simulated H. On the other hand, vcovr (parameter 5) has
strong influence in simulating H but low influence in NEE.
Finally, hhti shows a good balance of influence in both of
these fluxes. Similar analyses can be performed for subse-
quent Pareto ranks in this site. Figure 5b shows that hhti is
identified as the only Pareto rank 1 factor because of its
strong influence on both lE, and NEE fluxes simulated by
SiB3 (STi for both criteria are above 40%). Pareto rank 2
factors include respref (parameter 41) highly influential for
NEE, hlti (parameter 29) with contributions to both lE, and
NEE, and surprisingly the parameters associated to the
photosynthesis-conductance formulation in SiB3 (grad and
binter, parameters 19 and 20, respectively) which show
relative higher influence on lE but low influence on NEE.
Examples from other sites are somewhat similar to those
presented in Figure 5 but are not shown because they can be
easily reproduced with the information provided in Figure 2.
[39] To illustrate the shortcomings of a single-criterion-

based sensitivity test and for comparison with our multiple-
criteria approach, we show the r versus rank plots for site
K67 in Figure 6. The rank correlation lines obtained when
using only one of the H, lE, and NEE model performance
metrics at a time are shown in Figures 6a, 6b, and 6c,
respectively. The 95% confidence interval of each correla-
tion coefficient (r) is estimated using the Fisher transform
(also known as r-to-z transform) method [Fisher, 1915,
1921]; and the shaded area indicates the lowest and highest
bounds of any computed r for these analyses. This graphical
approach allows us to interpret the results in terms of both at
what rank (r = r* < Rmax) the value of rmin effectively
becomes one, and by examining at what rank the confidence
interval r � d < r < r + d of the estimate overlaps the
optimal value of r = 1 (r � d indicates the confidence
interval of r). The results show a tendency for simulations of

Figure 2. Sobol′’s total order indices (STi) calculated for each SiB3 parameter and associated with each site–objective func-
tion combination. Each column corresponds to one of 42 parameters used in SiB3, and the columns (parameters) are grouped
by model features they control. The rows correspond to each of the eight sites and are grouped by the three objective func-
tions; from top to bottom, the groups are root-mean-square error (RMSE) of NEE, lE, and H. Each cell is color coded to
indicate the magnitude of STi computed for each combination of parameter and objective function at each site. Larger values
of STi indicate a greater contribution by parameter i to the total variance and hence greater sensitivity of the modeled
response to this parameter. Consistent with the literature, a minimum threshold of STi ≥ 0.01 was used so that colors are only
shown for parameters and sites that contribute at least 1% to the total variance.
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Figure 3. The same as Figure 2, but for Sobol′’s first-order indices (Si).
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both energy fluxes to improve simultaneously as more
parameters are included in the analysis. However, there is a
marked difference between these energy fluxes and the flux
associated with CO2 exchange in SiB3 model. The reason is
that some parameters having strong influence on both H and
LE are ranked as having very low influence on NEE
(Figure 2). For instance, parameters binter and scalez con-
tribute 6% and 2% of the total variance of RMSE for H and
11% and 4% of RMSE for lE; they are ranked 7th and 12th
for H flux and 4th and 7th for lE flux. On the other hand,
these two parameters are only ranked 26th and 20th for NEE
flux, contributing marginally to the total variance of RMSE.
Conversely, parameters respref and wopt contribute
approximately 28% and 4% to the total variance associated

with NEE flux (ranked 2nd and 6th, respectively). However,
these parameters have essentially no contribution to the
variance associated with H and lE errors, and are located
near the bottom of each individual ranks. As a result, the
linear correlation coefficient (either taken as rmin or as r� d)
effectively becomes one (for all metrics) only when almost
all parameters are taken into account.
[40] The corresponding results for our multiple-criteria

approach are shown in Figure 6d. Clearly, as more ranks
(and hence parameters) are included, the explanation of
variability in all three fluxes increases, so that the correlation
coefficients approach unit. Of interest is that the increases in
r occur almost simultaneously for all three of the flux cri-
teria so that no metric is “left behind.” Consequently, the

Figure 4. (a) Sum of individual Sobol′ first-order indices (∑iSi) computed at each site (color coded) and
for each SiB3 flux. The black asterisks correspond to average values calculated for each flux. In general,
when ∑iSi is greater than 0.6 (i.e., solid black line), the analysis is considered to be satisfactory. When
∑iSi, is greater than 0.8, the model can be considered nearly additive (see section 4.1 for details). Sum
of Sobol′ total order indices (ST) grouped for each model component (color-coded) for (b) sensible heat
flux (H), (c) latent heat flux (lE), and (d) net ecosystem exchange of CO2 (NEE).
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overall lower and upper bounds are better constrained,
improving the robustness of the analysis and making it easier
to identify the most influential parameters and separate those
that exert no influence at all to these fluxes. If deemed nec-
essary to identify a smaller set of parameters, one can reduce
the target value for r to a lower value than unity (such as
0.95). In our case, it is clear that a rank-to-N equal to 6
(i.e., Npar = 20 for rmin � 0.95) is sufficient to explain
most of the system performance, whereas the single-criterion
approach indicates that at least 30 parameters must be
included to achieve the same target value for all fluxes.
Further, we now find that a rank number of eight (i.e.,
Npar = 28) is sufficient to account for all of variability in
the RMSE calculated for all fluxes (i.e., rmin reaches unit).
[41] This analysis shows that 14 of the model parameters

have little or no effect on the simulation of energy and car-
bon fluxes, and can therefore be fixed to their nominal
values during calibration of SiB3 to these fluxes at site K67.
Note that “freezing” unimportant factors contributes to
model simplification and was indeed the original motivation
of the work of Sobol′ [1993]. Other sites (Figure 7) show
similar results. Overall, we find that approximately 27 to 31
parameters influence the simulation of H, lE, and NEE at
these sites. The smaller number is for broadleaf forests while
the larger number is for savannah and cropland/pastureland
biomes.
[42] For completeness, we also compare our fully multiple-

criteria approach with three partial multiple-criteria approa-
ches (here called “pseudo” multiple objective methods)
applied to the K67 site (Figure 8). The first approach (pseudo
multiobjective method 1) identifies the common set of param-
eters that simultaneously have Sobol′’s total order indices
for all flux metrics greater or equal than the threshold

subjectively chosen to be between 1% and 10% (we focus our
analysis on parameters whose STi > 1% but it becomes
obvious that the subjective choice of the cutoff value impacts
largely these results) (Figure 8a). Only nine parameters were
found to be “sensitive” (i.e., vcovr, vmax0, gradm, trop, hlti,
hhti, bee, phsat, and wssp), and the corresponding rmin was
found to be approximately 0.57 (Table 3). Notice that this
approach may be considered too conservative allowing only
those parameters whose contributions are above the speci-
fied cutoff value for all fluxes simultaneously.
[43] The second approach (pseudo multiobjective method

2) computes the average ST from all individual indices (i.e.,
ST = (ST1 + ST2 + ST3)/3, where 1, 2, 3 indices correspond to
H, lE, and NEE, respectively). This method can be inter-
preted as an attempt to reduce a three-dimensional optimi-
zation space to a one-dimensional problem. The approach is
sometimes referred to as the weighting method, originally
proposed by Zadeh [1963] and mentioned by others [Gupta
et al., 1998; Bastidas et al., 1999]. In optimization, the
weighting coefficients may be adjusted until the results are
satisfactory [Yan and Haan, 1991a, 1991b], but the initial
assumption used is that all of the objectives contribute
equally. Although optimization has not been applied in this
study, we use this first assumption in our analysis. Once
again, we tested cutoff values from 1% to 10% and found
that a cutoff value of 1% indicates 20 influential parameters
with a corresponding rmin � 0.96 (Figure 8b and Table 3).
The remaining contribution to the variability of model out-
put (indicated by rmin < 1) is because this method does not
include additional parameters (assumed to be influential in
our Pareto ranking method) that contribute to about 2% to
6% of the total output variance of the simulated fluxes as a
whole. Interestingly, an increase of only 1% in the cutoff

Figure 5. Two-dimensional Pareto ranking results for Sobol′ total order indices (STi) computed for
(a) RMSE of sensible heat flux (H) and net ecosystem exchange of CO2 (NEE) at the Bananal Island site
(BAN) and (b) RMSE of latent heat flux (lE) and net ecosystem exchange of CO2 (NEE) at the Santarém
K83 site (K83). The number inside each circle represents a parameter following the order presented in
Figure 2 and Table 2 (i.e., z2 = parameter 1, z1 = parameter 2, z0d = parameter 3, and so on). The color
coding indicates the parameters belonging to a particular Pareto rank (for clarity all parameters with same
Pareto rank are also linked together by a dotted line).

ROSOLEM ET AL.: MULTICRITERIA SOBOL′ SENSITIVITY ANALYSIS D07103D07103

12 of 18



value (i.e., 2% threshold) affects the results dramatically
(reducing the number of influential parameters to 12 and
rmin to �0.85). Notice also that, unlike pseudo multi-
objective method 1 and 3 (explained in the next paragraph),
this approach does allow for ranking the parameters since
the three-dimensional problem becomes one-dimensional.
[44] The third method (pseudo multiobjective method 3)

was proposed during review of this manuscript; it may per-
haps be viewed as the most sensible strategy of the three.
Upon selection of a cutoff value, the approach accepts any
parameter whose total order index is larger than the pre-
specified threshold, regardless of which objective function is
being analyzed. In our opinion, this approach is weak in that
no information is exchanged among individual criteria; it is
essentially equivalent to three single-criterion analyses
applied one at a time (in contrast, for example, to method 1
where we have a three-dimensional objective analysis
applied once). For a threshold of 1%, the method identifies
23 parameters as influential and yet rmin does not reach unity
(rmin � 0.97) (Figure 8c). About 4% of the total output
variance of the simulated fluxes is still not captured by this
method (Table 3). These results also confirm that the

subjectivity inherent in pseudo multiple-criteria approaches
can dramatically influence the outcome of the analysis, with
a small 1% increase in the threshold cutoff value reducing
the number of influential parameters to 18 and rmin to
�0.89.

5. Discussion and Conclusions

[45] We present a novel rank-based multiple criteria
implementation of the Sobol′ sensitivity analysis approach
and apply it to the problem of identifying the most influen-
tial parameters in the SiB3 model for a network of flux
towers in Brazil. The approach implements an objective
fully multiple-criteria strategy to evaluate parameter sensi-
tivity. We show that it is superior to single-criterion
approaches while avoiding the high subjectivity involved in
pseudo multiple-criteria methods. While robust and simple
to apply, the Pareto ranking method applied to the Sobol′
sensitivity analysis does require large numbers of model
simulations because variance-based are known to be com-
putationally expensive. In addition, we recognize the
importance of traditional analyses of parameter sensitivity
such as those presented in Figures 2, 3, and 4; therefore the

Figure 6. Linear correlation coefficient (r) versus number of parameters (Npar) calculated on the basis
of a single-criterion-based test for (a) H, (b) lE, and (c) NEE fluxes and compared to (d) our newly pro-
posed multiple-criteria approach. Results are for the K67 site, and individual rank correlation lines in each
plot are shown as red, blue, and green for H, lE, and NEE, respectively. The 95% confidence interval of
each correlation coefficient (error bars) and the shaded area, indicating the lowest and highest bounds of
any computed r for these analyses, are also shown. Rank-to-N values for the multiple-criteria approach
(Figure 6d) are shown on the top x axis.
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rank-based strategy we are proposing is intended to com-
plement (arguably, in a more objective way) rather than
substitute these analyses. While certain parameters might
not show up in a rank-based strategy, we certainly believe
that for diagnostic reasons it is very valuable to understand
whether they make a contribution to the overall variance
or not.
[46] For SiB3, we found 27 to 31 parameters to be influ-

ential with the lower value associated with broadleaf forests
and the higher value associated with savannah and cropland/
pastureland biomes. The majority of these parameters
(�78%) are associated mainly with physiology, or soil and
carbon properties; optical properties were found to have little
influence on surface fluxes taken together. This result can be
used to constrain the dimension of the parameter space
during model calibration studies [see Rosolem et al., 2005].
Note that freezing unimportant parameters was a major
motivation for the development of the Sobol′ variance-based
method in the early 1990s.
[47] The lack of sensitivity observed in some parameters

could suggest that the SiB3 model may be over-
parameterized with respect to the simulation of energy and
carbon fluxes in the region, but nothing can be said about the

overall behavior of the model in simulating other compo-
nents, in other regions of the world. The sensitivity of SiB3
parameters was tested under meteorological conditions
assumed to be representative of the long-term climatology in
the region [Rosolem et al., 2008]. Whether the sensitivity of
these parameters might change under future climate or dur-
ing extreme events (e.g., droughts of 2005 and 2010) needs
further investigation.
[48] Although the application discussed in this study is

focused on the Amazon region and for a single model, we
encourage testing of the method for other regions and rec-
ommend its use for evaluating the sensitivity of parameters
in other land surface parameterization schemes. Applied to
several land surface schemes, the approach can help in
establishing which aspects of soil-plant-atmosphere pro-
cesses matter most in land surface models of Amazonia and
other regions, while accounting for the different aspects
represented by those models. Such studies can be helpful in
informing the design of field campaigns that aim to charac-
terize and measure these parameters. Note that the multiple-
criteria ranking and parameter selection methodology is
general and can be applied to other numerical models (e.g.,
hydrological models) and/or with other sensitivity analysis

Figure 7. Linear correlation coefficient (r) versus number of parameters (Npar) calculated on the basis
of our newly proposed multiple-criteria approach for the (a) RJA, (b) BAN, (c) PDG, and (d) FNS sites.
Individual rank correlation lines in each plot are shown as red, blue, and green for H, lE, and NEE,
respectively. The 95% confidence interval of each correlation coefficient (error bars) and the shaded area,
indicating the lowest and highest bounds of any computed r for these analyses, are also shown. Rank-to-N
values for the multiple-criteria approach (Figure 7d) are shown on the top x axis.

ROSOLEM ET AL.: MULTICRITERIA SOBOL′ SENSITIVITY ANALYSIS D07103D07103

14 of 18



Figure 8. Linear correlation coefficient (r) versus number of parameters (Npar) calculated on the basis
of three pseudo multiple-criteria approaches (see section 4.2 for details). (a) Method 1 identifies the com-
mon set of parameters that simultaneously have Sobol′’s total order indices for all flux metrics greater than
or equal to the threshold subjectively chosen. (b) Method 2 computes the average ST from all individual
indices (i.e., ST = (ST1 + ST2 + ST3)/3, where indices 1, 2, 3 correspond to H, lE, and NEE, respectively)
and selects those parameters whose ST is above a prespecified threshold. (c) Method 3 accepts any param-
eter whose total order index is larger than the prespecified threshold, regardless of which objective func-
tion is being analyzed. The degree of subjectivity of those methods is shown by allowing the thresholds to
be defined between 1% and 10%. Individual rank correlation lines in each plot are shown as red, blue, and
green for H, lE, and NEE, respectively. The 95% confidence interval of each correlation coefficient (error
bars) and the shaded area, indicating the lowest and highest bounds of any computed r for these analyses,
are also shown.
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procedures provided a measurable sensitivity index (or sta-
tistics) is computed for at least two objective functions.
Furthermore, note that we have computed all Pareto rank
groups for the sake of clarity of our new proposed approach
(Figures 6d and 7). One can easily automate this method to
stop when rmin becomes statistically close to unity (1.0)
without the need to compute the remaining rank groups. If
this condition had been used in our case, it would have
avoided 23,000 additional model simulations. As always, we
welcome dialog on these and other ideas related to land
surface model calibration. Code for the multiple-criteria
sensitivity analysis approach is available from the first
author by request.
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