Ezzat Selim Chalhoub
ezzat@lac.inpe.br

Instituto Nacional de Pesquisas Espaciais — INPE
Laboratério Associado de Computacéo Aplicada
12227-010 Sao José dos Campos, SP, Brazil

Haroldo F. de Campos Velho
haroldo @lac.inpe.br

Instituto Nacional de Pesquisas Espaciais — INPE
Laboratério Associado de Computagéo Aplicada
12227-010 S&o José dos Campos, SP, Brazil

Antonio José da Silva Neto
ajsneto@iprj.uerj.br

Instituto Politécnico — IPRJ

Universidade do Estado do Rio de Janeiro - UERJ
28630-050 Nova Friburgo, RJ, Brazil

Chalhoub et al.

Evaluation of Radiances Generated by
Solving the Radiative-Transfer
Equation with Different Approaches'

Radiative transfer is the main phenomenon in the basis of several relevant problems of
scientific and technological interest. Examples of application of the mathematical and
computational modeling of such phenomenon can be found in astronomy, environmental
sciences, engineering and medicine among many different areas. The integro-differential
equation known as Boltzmann equation describes mathematically the interaction of the
radiation with the participating medium, i.e. a medium which may absorb, scatter and emit
radiation. Several methods have been developed for the solution of the Bolztmann
equation. In the present work we present a comparison of the solutions obtained for the
one-dimensional problem with four different methods: (i) Monte Carlo (MC) method; (ii)
Discrete Ordinates method (Sy) combined with a finite difference approximation; (iii)
Analytical Discrete Ordinates method (ASy); and (iv) Laplace Transform Discrete
Ordinates method (LTSy). Our final objective is to solve the inverse radiative transfer
problem and for that purpose, we want to investigate methods that may provide accurate
and fast solutions for the direct problem.

Keywords: radiative transfer, Boltzmann equation, Monte Carlo method, Discrete
Ordinates method, Laplace Transform Discrete Ordinates method

Introduction

The formulation and solution of direct and inverseliative
transfer problems are directly related to severt@vant applications
in a large number of areas of scientific and te@dgioal interest
such as tomography (Kim and Charette, 2007; Chtdatero et al.,
2004), remote sensing and environmental sciencpsar(Set al.,
2007; Verhoef and Bach, 2003; Hanan, 2001; Faus#.,e2001),
and radiative properties estimation (Sousa e2@Dy7; Silva Neto et
al., 2007; Zhou et al., 2002), among many others.

Many approaches have been developed for the soloficuch
problems. Hansen and Travis (1974) and Lenoble {L®vovided
excellent reviews on the methods for the solutidnthe direct
radiative transfer problem, and McCormick (1992) die same
with respect to the inverse problem.

In recent years it has been observed a growingeisitéowards
the stochastic Monte Carlo method for the solutidnthe direct
problem (Maurente et al., 2007; Chen and Liou, 2@taglia and
Mantovani, 2005; Postylyakov, 2004, 2004a), as wslltowards
variations of the Discrete Ordinates Method (Capend Selcuk,
2007; Chalhoub, 2003, 2005) which was originallpgmsed by
Wick (1943) and Chandrasekhar (1944, 1950). Monreoseme
researchers have performed comparisons of diffesmitution
strategies in order to identify accurate and fasthods to be used
both in the direct and inverse radiative transfabfems (Jensen et
al., 2007; Bulgarelli and Doyle, 2004; Chalhoulalet2003).

In the present work we present a comparison ofstiietions
obtained for the direct radiative transfer probienane-dimensional
homogeneous and gray participating media with @gidr scattering
using four different methods: (i) a Monte Carlo (M@ethod; (ii)
the Discrete Ordinates Method combined with a dirdifference
approximation, here denominated SMDO (Single MeshciBte
Ordinates); (iii) the Analytical Discrete Ordinatesethod ASy);
and (iv) the Laplace Transform Discrete Ordinateshdd (.TSy).

1A condensed version was presented at COBEM 200#th-Ifiternational Congress of
Mechanical Engineering, November 5-9, 2007, BrasiiF, Brazil.
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Our main objective is to investigate methods tret provide
accurate and fast solutions to the direct probierorder to be used
in the solution of the inverse radiative transfiertppem.

Nomenclature

Ay, B, = k-th coefficients of the linear systemof N, algebraic
equations, dimensionless

a; = i-th weight of the quadrature order, dimensionless

a; = j-th weight of the quadrature order, dimensionless

an = n-th weight of the quadrature order, dimensionless

d*,d~ = postive and negative eigenvalues, dimensionless

fi = intensity of the isotropic external source of
radiation incident at = 0 in photons, dimensionless

fa = intensity of the isotropic external source of
radiation incident at T = t,, in photons, dimensionless

H = number of photon histories, dimensionless

1 = N-order identity matrix, dimensionless

I = intensity (radiance) of theradiation field in photons,
dimensionless

L = intensity (radiance) of theradiation field in photons,
at the m-th collocation point of the quadrature,
dimensionless

IZ(t, Au) = photons traveling at a given location 7 and within a
given polar angle interval Ay, dimensionless
I(t,+p) = averageradiancein photons, dimensionless

l = geometrical length, m

M = number of collocation points of the quadrature,
dimensionless

1\711\’;; (s) = LTSy Ng-order matrix, dimensionless

N = number of nodes for spatial discretization,
dimensionless

Ng = M = number of collocation points of the quadrature or
quadrature order, dimensionless
n = Ny/2, dimensionless

110 = probability density function, dimensionless

P1,P2 = probabilities, dimensionless

R = probability distribution function, dimensionless
R; = random number for the calculation of the distance

to collision, dimensionless
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Ry = random number for the calculation of the single
scattering albedo, dimensionless

R, = random number for the calculation of the cosine of
the scattering angle 6, dimensionless

Ry = random number for the calculation of the azimuthal
angle ¢, dimensionless

S = total source rates, dimensionless

X0,1,2> Yo,1,2: Zo,1,2 = Cartesian coordinates, dimensionless

Greek Symbols

60, 9o = polar coordinates, dimensionless

0 = polar angle, dimensionless

@ = azimuthal angle, dimensionless

u = cosine of the polar angle, dimensionless

Y = j-th value of the cosine of the polar angle,
dimensionless

Um = mth value of the cosine of the polar angle,
dimensionless

@ = single scattering albedo, dimensionless

T = optical variable, dimensionless

T = optical thickness, dimensionless

0815, 2315, 081, = direction cosines, dimensionless

04 = absorption coefficient, m*

s = scattering coefficient, m*

Ot = attenuation coefficient of the medium, m*

B(6,9) = phasefunction for anisotropic scattering,
dimensionless

B(©) = phase function for isotropic scattering,
dimensionless

Au = polar angle interval, dimensionless

@ (v, u;) = j-th component of the eigenvector @ (v;.) associated
with the eigenvalue 1 /v, dimensionless

@ (—vy,uj)= j-th component of the eigenvector @ (—vy)
associated with the eigenvalue —1 /vy, dimensionless

The Test Problem

In this work we consider a one-dimensional gray bgemeous,
participating medium of optical thicknesg,, with transparent
boundary surfaces that are subjected to exterrdihtran. It is
assumed that the emission of radiation by the nmediue to its
temperature is negligible in comparison to the risty of the
external incoming radiation. Also the effects obgible differences
on the refractive indices of the participating medi and
surrounding environment are not taken into accoOnir equation
of transfer for such problem considering azymuthahmetry and
isotropic scattering within the medium is then giviey (Ozsik,
1973; Silva Neto and Moura Neto, 2005)

a ’ ’
W ) + 1) =5 [ 1 i) du (1)
fort € (0,79), # € [-1,1], andw € (0,1), subject to the boundary
conditions

10,p) = fi(w) and  I(zo,) = (W) @)
for u >0 and u <0, respectively, wherel(z,u) denotes the
intensity (radiance) of the radiation field,the optical variabley

the cosine of the polar angte,the albedo for single scattering, and
fi(uw) and f,(n) the intensity of the isotropic external sources of

radiation incident at = 0 andt = 7, respectively.
A schematic representation of the physical sitimationsidered
here is shown in Fig. 1.
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Figure 1. Schematic representation of the 1D participating medium.
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In order to solve the direct problem described bg.E1) and (2),
we use a Monte Carlo (MC) method and three vanatal the Discrete
Ordinates Method, proposed by Wick (1943) and Ctematthar (1944,
1950): SMDO - Single Mesh Discrete Ordinat&Sy — Analytical
Discrete Ordinates; arldl'Sy — Laplace Transform Discrete Ordinates.
These four methods, whose corresponding compughticodes are
referred to as MCPP, SMDO, PEESNA and LTSN, regmdyt are
described in the following sections.

The M C Method (M CPP Computational Code)

We present a summary of a Monte Carlo method tlaatlvased
on the works of Cashwell and Everett (1959), andCafter and
Cashwell (1975). In this method, we adopted a maysapproach
that describes the transfer of radiation by follegvihe history of
many individual photons that are generated to smmiea light
source, until they are absorbed or escape theesoattmedium.
Quantities describing the photon initial positiothe photon
trajectories (such as direction of original emissiadirection
following scattering, and path length between imtdpons), and
quantities describing interaction types (absorptioscattering) may
be considered as random variables, each being atherad by
some probability density function. In the followimpgragraphs, we
show how to sample each one of the above-mentiqoadtities in
order to track a photon as it penetrates into ¢msidered medium.

The first required quantities are the position ahction of
original emission (point sources), given in ternistree Cartesian
coordinates,, y, andz,, and the polar coordinatég and¢, (see
Fig. 2), with which we can calculate the first eétirection cosines
that are needed to determine the photon posititredirst collision.

QF = sin fycos @q (3a)
QY = sin @gsin @, (3b)
Qf = cos 6, (3¢)

Photon
. Direction

(0, Yo. 20)

Figure 2. Photon Initial position and direction.
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The sampling of the photon paths length, perforniad
calculating the probability of a collision betwettre distance$ and
1+ dl along its line of flight, is given by

p(Ddl = e %lg,dl (4)
where p(l) denotes the probability density function aagd the

attenuation coefficient of the medium, which iseipreted as the
probability per unit length of a collision. Afteetsing

R, = fol e 9Sg,ds =1 — e~ %! (5)
whereR is the probability distribution function arRl. is a random
number, we obtain the expression for the distano®lision as
1 1

l= —a—tln(l - R‘r) = _o'_tlnRT (6)
noting that(1 — R;) is distributed in the same mannerias(Carter
and Cashwell, 1975). To simplify our calculatiomss opted for
using the optical length instead of the geometrical lendthand so
the expression of the distance to collision simggomes

T =lo; = —InR;

™

The new position can now be calculated by

Xy = xq1 +TQF (8a)
Y2 =y +10] (8b)
Zy =z, + 0% (8c)

where the subscripts 1 and 2 refer to the photositipns at
subsequent collisions. Note that for the first is@h x; = x,,
y1="Y0 71 =20, Qf = QF, Q) = Q) and Qf = QF. With these
new positions at hand, we are able to determingheh¢he particle
is still within the system or escaped from it, irhieh case the
sampling process is terminated.
In sampling the interaction types we define thebphilities
Os

=W =—
P1 o

and Py = Za 9)

ot
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R, =2m [* B(®)dy', (u=cos6) (11a)
and

Ry == J7 d¢' (11b)
we obtain

cosf =2R, —1 (12a)
and

@ =2mR, (12b)

The new sets of direction cosines can now be caledlby the
equations

QF = sin@ cos¢ (13a)
Q) = sinf sing (13b)
Q% = cos @ (13c¢)

The above sampling processes are repeated untphben is
absorbed or escapes the system under investig&iadiometric
guantities are computed by a suitable countinghaftgns through
simulated detectors (counters) that are placedemoundaries and
layer interfaces. So by counting photatigz, Ay) traveling at a
given locationt and within a given polar angle intersg, we are
able to estimate the average radiance

S IE(z,Aw)

) =%
@A) = ol

(14)

whereS denotes the total source rates @&the number of photon
histories, foru € [-1, 0) and (0, 1], withu averaged within the
interval Ap.

The SMDO Method (SM DO computational code)

This method consists on a combination of the Disc@rdinates
Method with the finite difference method. Firstetangular domain
is discretized as shown in Fig. 3, and the spatianain is
discretized as shown in Fig. 4.

with ¢, = o5 + 0,, wherew denotes the single scattering albedo (or

the probability of photon survivaly, the scattering coefficient and
o, the absorption coefficient, and by drawing a randaumberR
we are able to determine the interaction type. So let the
interaction be an absorption event, considering theaticle
eliminated from the system, and consequently thepkag process
is terminated, when

Rz 2@

(10)

otherwise the interaction results in scattering.

The sampling of the scattering direction permits éstimation
of the scattering angle through the use of theghasctionf (6, ¢).
Here we consider that the phase function is onfyeddent on the
scattering angled and that the azimuthal angle is uniformly
distributed on the interval from O tor2 Thus# and ¢ become
independent random variables that can be sampleatately. We
also consider isotropic scattering, th&i@) = 1/4 (Mobley, 1994).
So, by setting

186 / Vol. XXXIV, No. 2, April-June 2012

u<0 u>0
s /. .\ .
N
u=0
Figure 3. Angular domain discretization.
1 2 -1 i i+l N-1 N
| | | | | | |
| I I I I I |
7=0 — T=1
At
Figure 4. Spatial domain discretization.
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The radiation intensities in the angular and spaliscretized
domain are represented by

Iin = 1(ti, ) (15)

witht; = (i — 1DAt,i=1,2,..,N,andm = 1,2,..., M, where

The integral term on the right hand side of Eq.i¢leplaced by
a Gauss-Legendre quadrature

1 Na
w I Ndu' ~w Ii
? (T'#) U N? Qan In
-1 n=1

wherea, (n =1,2,...,N,;) are the weights of the quadrature. Th
values ofu,,, m = 1,2,..,M (M = Ng), used in the angular domain
discretization shown in Fig. 3, are the correspogdiollocation
points of the quadrature used.

Considering a forward and a backward finite differe
discretization of the first term on the left handesof Eq. (1) given,
respectively, by

q' = (16)

al(x, I3t — i
(@ _Im I (17a)
ot (Ti,km) At
and
al(r, Ih, — It
@ _Im—1In (17b)
0T Virypum) At
and from Egs. (1) and (15)-(16) we obtain
It = (1 —E)I,in +£qi (18a)
Hm Hm
and
It = (1 + E)Ii —fqi (18b)
" Hm " Hm

We performed forward (up to nodd and backward (back to
node 1) sweeps, using the discrete boundary condigxpressed as

1 M
Im = fl(ﬂm)r m=12,.. —

5 (19a)
and
1Y = folum), m=%+1,%+2,...,M (19b)
considering the following stopping criterion
[Tt = ()| < e (20)

with i =1,2,..,N andm =1,2,..,M, wheree is a prescribed
tolerance and is the iteration index.
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The ASy Method (PEESNA Computational Code)

In this section, we present a summary of an imptoxgsion of
the analytical discrete-ordinates method that heges lihe subject of
some recent works (Barichello and Siewert, 1999jdRello et al.,
2000; Chalhoub and Garcia, 2000; Siewert, 2000palticular, the
method incorporates some recently developed teabsiépr finding
particular solutions (Barichello et al., 2000; Sety 2000) and
dummy-node inclusion (Chalhoub and Garcia, 2000jtsaangular
interpolation technique. Note that we only predesre a simplified
version for treating the type of problems describedthe test
problem section.

For defining our discrete-ordinates version of pheblem posed
by Egs. (1) and (2), we begin by introducing a qatade of order
N, with nodes{y;} and weight{a;} to approximate the integral in
Eq. (1). The selected quadrature scheme is thelelouiadrature of
order N, = 2n obtained by applying a standard Gauss-Legendre
scheme of orden to each of the half-interval®, 1] and [—1, 0].
Then we sefu = uj,j =1,2,..,Ng, in the resulting equations to
find the discrete-ordinates equations

N,
d [0} :
Wy 1) + 1) = 2 el (5 ) 1)
i=1
forj = 1,2, ..., Ny, and the boundary conditions
10,0))=fi(;), j=12,.,n (22a)
and
I(To,1j) = fz(,uj), j=n+1n+2,..,N; (22b)

Note that the nodes of the quadrature scheme degeat in such a
way that the firstn nodes are positive and the remainimgare
negative, as shown in Fig. 3.

Making use of the elementary solutions of the dieordinates
equations and their orthogonality property devetbjpe Barichello
et al. (2000), we can write the general discretBrates solution of
orderN, to the problem formulated by Egs. (21) and (22) as

n
I(T, ,uj) = Z Ak(D(vk_uj) e vk
k=1

Ng

+ By ®(—vy ) e~ oD/ Vi,
k=n+1

(23)

for j=1,2,..,N;. The elementary solutionsb(v,u;) and
®(—viu;) in Eq. (23) are, respectively, tieh components of the
eigenvectorsb(v,) and®(—vy), associated, respectively, with the
eigenvaluesl/v, and —1/v,. Finally, the coefficient{4,} and
{By} are the solutions to the linear systemVgfalgebraic equations

obtained by imposing that the general solution esped by Eq. (23)
satisfies the boundary conditions expressed by @283.

n Ng
ZAk(D(Vk,Hj) + Z By ®(=viuj) e~V = 1(0,p;)  (24a)
k=1 k=n+1

forj=1,2,..,n, and
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n Ng
D M) e+ Y Bd(—viep) = [T ) (24D)
k=1 k=n+1

forj=n+1n+2,..,N;. We conclude this summary by pointing

out that once the linear system formulated by E2#) is solved for

{A,} and{B,}, we can evaluate the radiances with Eq. (23) figr a

T € [0,70]-

The LTSy Method (LTSN Computational Code)

Chalhoub et al.

B™(7) = L71[(s1 + AM)~1] = X™L=1[(sI + DM)~1](X™)"1

— XmeDm‘r(Xm)—l (32)
Then, by substituting Eq. (32) into Eq. (29) yields
™ () = XmeP"T(Xx™)~1™(0)
(33)

=Xxm €d+T 0 m(Xm)—llm(O)

- 0 ed’T

whered* andd~ are the positive and negative eigenvalues, réggigct
The method, as described by Egs. (29) and (30% doework

The LTSy scheme appeared in the early nineties in the areutr\ye|| due to the numerical overflow for large sldicknesses and/or

transport context (Barichello and Vilhena, 1993)d avas then
extended to radiative transfer problems (Segattb\éinena, 1994).
Its convergence was established using €gesemi group theory
(Segatto and Vilhena, 1994). This method applies lthaplace

transform on the radiative transfer discrete ordisaequation, Eq.

(21). This yields a system of algebraic equationstlee Laplace
transform parameter.

m L pm —qu m(s) + ™0 25
ST) + o (s)—z—m;ai (s) +I™(0) (25)

where™(s) = fom I™(7)e~5'dr. Equation (25) can be formulated a

in matrix form:

M;;; () T"(s) = I'™(0) (26)
being 1\71,’\}2(5) = s+ A™, where theN,-order matrix M,’\;‘q(s) is
called theLTSy matrix, andl is the N -order identity matrix. The
entries of thed™ matrix are given by

(1 wa
/,{__2_/,4“ 1fl=]
am@n =" o (27)
oL ifi #j

In order to solve the matrix equation (27), we musitiply it
by the inverse matrix QVI,(,':I (s), as follows

n(s) =[] M) o M) =Ensmo) @8)

And by applying the Laplace inverse transform ygeld

™ (z) = B™(7)I™(0) (29)
with
B™(1) = L7YB™(s)] (30)

Matrix inversion is usually expensive. The diagaration
method (Segatto et al., 1999) takes advantageeofatt that the
LTSy matrix, Eq. (29), is non-degenerate, i.e. all eigdues are
distinct, and thereforel™ can be diagonalized:

A™ = Xmp™ (x™)~1 1)
where D™ is a diagonal matrix containing the eigenvaluesA%f

and X™ is the corresponding eigenvectors matrix. Thereftine
matrix B can be expressed as

188 / Vol. XXXIV, No. 2, April-June 2012

large values olN,. This feature can be avoided by a change of Jagab
(Gongalves et al., 2000). Equation (33) can beaemris follows

m _ m ed+(T_T0) 0 " €d+T° 0 " my—1ym
ORI N ] ¢ RO
=B™(1)§™(0) (34

where

m om ed*’(r—n,) 0 m

B = X" ) (35)
nd

m — o Om my—1ym

=" O ammo (36)

Equation (34) can also be represented by blockiceatr

'O _[Bu@® Bp@)"[EHO"

I*(7) _[7321('[) By2(7) [52(0) &7

with indexes 1 and 2 pointing to either right apft Hirections of
radiances, respectively. This equation can be et the position
T = 14, allowing to compute the unknown valu¢g'(0)]™ for
completing theL. TSy solution.

Numerical Results

Due to the good performance of tASy method (PEESNA
computational code) in the comparisons of radiargmserated by
selected methods that were performed in a prewiark (Chalhoub
et al., 2003), we decided to use its generateditseas reference
values for the comparisons to be performed invluiek.

Five test cases, whose parameters are shown ire Tablere
chosen in order to perform the required comparisBesides these
parameters we considered a quadrature dvfler N, = 20 for the
SMDO, PEESNA and LTSN codes. In Table 2, we shawéfierence
values which are the radiance®, u) andI(t,, 1) at the selected
values ofu, generated by the PEESNA code for the chosengmabl

Table 1. Parameters used to define the Test Case problems.

. Test Cas
Parameter Meaning 1 > 31 27 5
@ | shdescatening | og | 01| 09 09 05
T optical thickness 05 50 0p 50 20
fi Lngdoent radiation at 10l 10l 10 1d 10
fa incident radiation at 00! ool 0ol 0d 00
T=Tg
ABCM
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Table 2. Radiation intensity I(0, ) and I(ty, u) generated by the PEESNA code (ASy method) for the chosen Test Cases.

Test Case 1

Test Case 2

Test Case 3 Test Case 4 t Cabesb

T=0

T=Tg

7=0

T=Tg

7=0

T=T, =0 T =T, T=0 T=T,

—.9983
—.9830
—.9426
—.8765
—.7864
—.6750
—.5451
—.4003
—.2446
—.0823
.0823
.2446
4003
.5451
.6750
.7864
.8765
.9426
9830
.9983

1.2023E-2
1.2317E-2
1.2873E-2
1.3750E—-2
1.5047E-2
1.6937E-2
1.9725E-2
2.3970E-2
3.0686E-2
4.1229E-2

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
2.1375E-2
1.3295E-1
2.8155E—-1
3.9250E-1
4.7044E-1
5.2516E—-1
5.6350E—1
5.8977E-1
6.0657E—1
6.1547E—1

1.6460E—-2
1.6764E-2
1.7333E-2
1.8208E-2
1.9460E-2
2.1206E-2
2.3639E-2
2.7110E-2
3.2347E-2
4.1435E-2

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
6.6726E—5
8.3119E-5
1.1019E—4
2.0825E—4
6.0521E—4
1.5370E-3
2.9783E-3
4.6397E-3
6.1245E-3
7.0790E-3

1.6997E-1
1.7406E—-1
1.8180E—-1
1.9397E-1
2.1190E-1
2.3786E—-1
2.7578E—-1
3.3240E-1
4.1782E-1
5.2819E-1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0 4.1359E-1 0.0 1.1329E-1 0.0

0.0 4.1812E-1 0.0 1.1527E-1 0.0

0.0 4.2639E—-1 0.0 1.1896E—-1 0.0

0.0 4.3865E—1 0.0 1.2457E-1 0.0

0.0 4.5529E-1 0.0 1.3249E-1 0.0

0.0 4.7683E—-1 0.0 1.4328E-1 0.0

0.0 5.0408E—-1 0.0 1.5784E-1 0.0

0.0 5.3823E-1 0.0 1.7766E—1 0.0

0.0 5.8140E—1 0.0 2.0570E—-1 0.0

0.0 6.3885E—1 0.0 2.5007E-1 0.0
3.1047E-1 1.0 2.3734E-2 1.0 2.2502E-2
4.3493E-1 1.0 2.9994E-2 1.0 2.9163E-2
5.4492E-1 1.0 3.6249E-2 1.0 4.1542E-2
6.2029E-1 1.0 4.2794E-2 1.0 6.3509E-2
6.7145E—1 1.0 4.9672E-2 1.0 9.1293E-2
7.0675E—1 1.0 5.6675E-2 1.0 1.1958E-1
7.3123E-1 1.0 6.3347E-2 1.0 1.4481E—-1
7.4788E—-1 1.0 6.9123E-2 1.0 1.6504E—-1
7.5849E—1 1.0 7.3484E-2 1.0 1.7938E—-1
7.6410E-1 1.0 7.6038E-2 1.0 1.8743E-1

We note that critical parameters in MCPP and SMB@es had
to be adjusted before performing the comparisowns.\fFCPP the
critical parameter is the number of photon his®ii¢ and for
SMDO it is the number of points in the spatial gddThe greater
the value of these parameters, the more preciserdhelting

radiances are when compared with the referenceesvalliable 3
shows for MCPP the number of photon histori¢s where, for
example, 1K =102 and 1M =10° histories, and for SMDO the grid
points N used to reach the established precision (deviatieith
respect to the reference values lower than 1%)s Thible only
shows the CPU times for the MC method. As for ttteomethods

the CPU times are less than 0.1 second. Note ligatddes were

executed on a IBM compatible personal computerpgmpd with a

Pentium M 1.7 GHz processor.

Table 3. Critical parameters and CPU times (s).

Test MCPP SMDO
Case H CPU (s) N
1 1M 1.t 50
2 100M 266.0 1000
3 10M 15 10
4 M 53.C 20C
5 10M 27.0 200

(38)

where p;,j =1,2,..,N,, denote the radiancesr = 0,u;),j =
n+ Ln + 2,...,Nqg and I(t = 7o, u;),j = 1,2,...,n, generated
with a given critical value ang; (j = 1,2, ..., N;), those generated
with a higher critical value. We also note that fbe performed
comparisons we chose the critical values that geéeémresults with
E < 1%.

In Figs. 6-8 we show the radiances generated byfdbe

codes, as well as th& values that represent the global percent

deviation in the radiances generated by each omleeofodes from
the reference values generated by the PEESNA chue.good
quality of the approximated solutions obtained witke four
methods is observed.

Conclusions

From the comparisons of the radiance generated PR

SMDO, PEESNA, and LTSN codes, we conclude the fatig:

Due to the utilization of test case problems havsigple
scattering conditions, i.e., isotropic scatterimg were not able to
point out the difference in efficiencies presentgd the SMDO,
PEESNA, and LTSN codes.

To illustrate how the critical parameters were @msFig. 5
shows results obtained by running Test Case 3 Mi@PP and
SMDO codes using four different values ldfand N, respectively.
The E values, shown in this figure, represent the glgbaicent
deviations that were calculated by a modified wersiof the
Euclidean metric,

J. of the Braz. Soc. of Mech. Sci. & Eng.

« As expected, the Monte Carlo method is the most
expensive numerical procedure when compared with
deterministic techniques.

e The SMDO code requires some analyses to find cait th
ideal critical parameter, needing a preprocessthgrse.

* The Monte Carlo method requires also a preprocgssin
order to determine the lower number of particleat th
provides good converged solutions.

e ASy and LTSy are semi-analytical methods and their
solutions are exact for the space variable, asthez no
intrinsic truncation errors.

e We plan to solve, in a future work, more realigtioblems
with anisotropic scattering, represented by conapdid
scattering functions that contain hundreds of teansd,
consequently, requiring extensive CPU times to esahe
radiative-transfer equation.
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The inverse radiative transfer problems can be titatad as an
optimization problem (Silva Neto and Becceneri, 20Dobato et
al., 2010). Such strategy requires the solutiothefdirect problem
many times until convergence is achieved; therefone important
feature is to identify methods that provide acaurand fast
solutions for the direct problem. The results shawrthe present
work allow us to say that any one of the used co&dDO,
PEESNA, and LTSN, is a good choice to fulfill suglgquirements,

I, m)

084 MCFF

——- H=100K, E= 41%
— H= IM; E=05%

"

-1 0 1.

Chalhoub et al.

considering an isotropic and homogenous medium, vaititbut a
source term. Furthermore, if someone is interesteesting inverse
problem solution procedures, one can use the MBatéo method
output to represent the experimental measurememtanizing then
the inverse crime, in which the same method is ufsedthe
simulation of the phenomena of interest in the di@nd inverse
problems (Kaipio and Somersalo, 2007).

Figure 5. Radiance generated by MCPP and SMDO with w = 0.9 and 1y, = 0.5 (Test Case 3).

Fpnr)
0.6 '
----- MCPP H=1M; BE=50%
——- SMDO N = B0 B=14%
------ LTSN E=04%
—— FPEESNA
=10
07 _._—.__._.__.__.-—’"'-.
T T =
—1. 0] I

)
08+
——- N=10; E=07%
— N=20; E=04%
...... N =40
0_
T T T -’u’
—1 0 1
Iy
0.04 4
r=am==58.0
----- MCFPF  H = 100M; E = 3.0%
——-3MDO N= 1000 BE=15%
------ LTSN E=03%
—— PEESNA J
O_
T T T
4 0 1

Figure 6. Radiance generated by the four codes with w = 0.1 and 1ty = 0.5 (Test Case 1) and 5.0 (Test Case 2).
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Figure 7. Radiance generated by the four codes with w = 0.9 and ty = 0.5 (Test Case 3) and 5.0 (Test Case 4).
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Figure 8. Radiance generated by the four codes with w = 0.5 and 1y, = 2.0 (Test Case 5).
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