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Evaluation of Radiances Generated by 
Solving the Radiative-Transfer 
Equation with Different Approaches1 

Radiative transfer is the main phenomenon in the basis of several relevant problems of 
scientific and technological interest. Examples of application of the mathematical and 
computational modeling of such phenomenon can be found in astronomy, environmental 
sciences, engineering and medicine among many different areas. The integro-differential 
equation known as Boltzmann equation describes mathematically the interaction of the 
radiation with the participating medium, i.e. a medium which may absorb, scatter and emit 
radiation. Several methods have been developed for the solution of the Bolztmann 
equation. In the present work we present a comparison of the solutions obtained for the 
one-dimensional problem with four different methods: (i) Monte Carlo (MC) method; (ii) 
Discrete Ordinates method (��) combined with a finite difference approximation; (iii) 
Analytical Discrete Ordinates method (���); and (iv) Laplace Transform Discrete 
Ordinates method (����). Our final objective is to solve the inverse radiative transfer 
problem and for that purpose, we want to investigate methods that may provide accurate 
and fast solutions for the direct problem. 
Keywords: radiative transfer, Boltzmann equation, Monte Carlo method, Discrete 
Ordinates method, Laplace Transform Discrete Ordinates method 
 
 
 

Introduction1 

The formulation and solution of direct and inverse radiative 
transfer problems are directly related to several relevant applications 
in a large number of areas of scientific and technological interest 
such as tomography (Kim and Charette, 2007; Carita Montero et al., 
2004), remote sensing and environmental sciences (Spurr et al., 
2007; Verhoef and Bach, 2003; Hanan, 2001; Fause et al., 2001), 
and radiative properties estimation (Sousa et al., 2007; Silva Neto et 
al., 2007; Zhou et al., 2002), among many others. 

Many approaches have been developed for the solution of such 
problems. Hansen and Travis (1974) and Lenoble (1977) provided 
excellent reviews on the methods for the solution of the direct 
radiative transfer problem, and McCormick (1992) did the same 
with respect to the inverse problem. 

In recent years it has been observed a growing interest towards 
the stochastic Monte Carlo method for the solution of the direct 
problem (Maurente et al., 2007; Chen and Liou, 2006; Battaglia and 
Mantovani, 2005; Postylyakov, 2004, 2004a), as well as towards 
variations of the Discrete Ordinates Method (Çayan and Selçuk, 
2007; Chalhoub, 2003, 2005) which was originally proposed by 
Wick (1943) and Chandrasekhar (1944, 1950). Moreover, some 
researchers have performed comparisons of different solution 
strategies in order to identify accurate and fast methods to be used 
both in the direct and inverse radiative transfer problems (Jensen et 
al., 2007; Bulgarelli and Doyle, 2004; Chalhoub et al., 2003). 

In the present work we present a comparison of the solutions 
obtained for the direct radiative transfer problem in one-dimensional 
homogeneous and gray participating media with isotropic scattering 
using four different methods: (i) a Monte Carlo (MC) method; (ii) 
the Discrete Ordinates Method combined with a finite difference 
approximation, here denominated SMDO (Single Mesh Discrete 
Ordinates); (iii) the Analytical Discrete Ordinates method (AS�); 
and (iv) the Laplace Transform Discrete Ordinates Method (LTS�). 

                                                 
1 A condensed version was presented at COBEM 2007 – 19th International Congress of 
Mechanical Engineering, November 5-9, 2007, Brasília, DF, Brazil. 
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Our main objective is to investigate methods that can provide 
accurate and fast solutions to the direct problem, in order to be used 
in the solution of the inverse radiative transfer problem. 

Nomenclature �� ,�� = k-th coefficients of the linear system of ��  algebraic 
equations, dimensionless ��  = i-th weight of the quadrature order, dimensionless ��  = j-th weight of the quadrature order, dimensionless �� = n-th weight of the quadrature order, dimensionless ��,�� = positive and negative eigenvalues, dimensionless 		 = intensity of the isotropic external source of 
radiation incident at 
 = 0 in photons, dimensionless 	
 = intensity of the isotropic external source of 
radiation incident at 
 = 
� in photons, dimensionless � = number of photon histories, dimensionless � = N-order identity matrix, dimensionless 
 = intensity (radiance) of the radiation field in photons, 
dimensionless 
� = intensity (radiance) of the radiation field in photons, 
at the m-th collocation point of the quadrature, 
dimensionless 

±(
, ∆�) = photons traveling at a given location 
 and within a 
given polar angle interval ∆�, dimensionless 
(
, ±�) = average radiance in photons, dimensionless � = geometrical length, m � = number of collocation points of the quadrature, 
dimensionless ����

� (�) = ���� Nq-order matrix, dimensionless � = number of nodes for spatial discretization, 
dimensionless �� = � = number of collocation points of the quadrature or 
quadrature order, dimensionless � = ��/2, dimensionless �(�) = probability density function, dimensionless �	,�
 = probabilities, dimensionless � = probability distribution function, dimensionless �� = random number for the calculation of the distance 
to collision, dimensionless 
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�� = random number for the calculation of the single 
scattering albedo, dimensionless 

�� = random number for the calculation of the cosine of 
the scattering angle �, dimensionless 

�� = random number for the calculation of the azimuthal 
angle �, dimensionless 

� = total source rates, dimensionless 
��,�,�, ��,�,�, ��,�,�  = Cartesian coordinates, dimensionless 

Greek Symbols 

��, �� = polar coordinates, dimensionless 
� = polar angle, dimensionless 
� = azimuthal angle, dimensionless 
� = cosine of the polar angle, dimensionless 
�� = j-th value of the cosine of the polar angle, 

dimensionless 
�	 = m-th value of the cosine of the polar angle, 

dimensionless 
	 = single scattering albedo, dimensionless 

 = optical variable, dimensionless 

� = optical thickness, dimensionless 
��,�,�


 , ��,�,�
� , ��,�,�

�  = direction cosines, dimensionless 
�
 = absorption coefficient, m-1 
�� = scattering coefficient, m-1 
�� = attenuation coefficient of the medium, m-1 

���,�� = phase function for anisotropic scattering, 

dimensionless 

���� = phase function for isotropic scattering, 

dimensionless 
∆� = polar angle interval, dimensionless 
����,��� = j-th component of the eigenvector	����� associated 

with the eigenvalue 1/��, dimensionless  
�����,���= j-th component of the eigenvector ������ 

associated with the eigenvalue �1/��, dimensionless 

The Test Problem 

In this work we consider a one-dimensional gray homogeneous, 
participating medium of optical thickness 
�, with transparent 
boundary surfaces that are subjected to external radiation. It is 
assumed that the emission of radiation by the medium due to its 
temperature is negligible in comparison to the intensity of the 
external incoming radiation. Also the effects of possible differences 
on the refractive indices of the participating medium and 
surrounding environment are not taken into account. Our equation 
of transfer for such problem considering azymuthal symmetry and 
isotropic scattering within the medium is then given by (Özişik, 
1973; Silva Neto and Moura Neto, 2005) 
 

�
�

��
��
, �� � ��
, �� �

�

�
� ��
, �′�
�

��
��′	             (1) 

 
for 
 ∈ �0, 
��, �	 ∈ !�1,1", and 	 ∈ �0,1�, subject to the boundary 
conditions 
 

	��0, �� 	� 	#����							and							��
�, �� 	� 	#����                    (2) 
 
for � ' 0 and � ( 0, respectively, where ��
, �� denotes the 
intensity (radiance) of the radiation field, 
 the optical variable, � 
the cosine of the polar angle,		 the albedo for single scattering, and 
#���� and #���� the intensity of the isotropic external sources of 
radiation incident at 
 � 0 and 
 � 
�, respectively. 

 A schematic representation of the physical situation considered 
here is shown in Fig. 1. 

 

 
Figure 1. Schematic representation of the 1D participating medium. 

 
In order to solve the direct problem described by Eqs. (1) and (2), 

we use a Monte Carlo (MC) method and three variations of the Discrete 
Ordinates Method, proposed by Wick (1943) and Chandrasekhar (1944, 
1950): SMDO – Single Mesh Discrete Ordinates; AS� – Analytical 
Discrete Ordinates; and LTS� – Laplace Transform Discrete Ordinates. 
These four methods, whose corresponding computational codes are 
referred to as MCPP, SMDO, PEESNA and LTSN, respectively, are 
described in the following sections. 

The MC Method (MCPP Computational Code) 

We present a summary of a Monte Carlo method that was based 
on the works of Cashwell and Everett (1959), and of Carter and 
Cashwell (1975). In this method, we adopted a physical approach 
that describes the transfer of radiation by following the history of 
many individual photons that are generated to represent a light 
source, until they are absorbed or escape the scattering medium. 
Quantities describing the photon initial position, the photon 
trajectories (such as direction of original emission, direction 
following scattering, and path length between interactions), and 
quantities describing interaction types (absorption or scattering) may 
be considered as random variables, each being characterized by 
some probability density function. In the following paragraphs, we 
show how to sample each one of the above-mentioned quantities in 
order to track a photon as it penetrates into the considered medium. 

The first required quantities are the position and direction of 
original emission (point sources), given in terms of the Cartesian 
coordinates ��, �� and ��, and the polar coordinates �� and -� (see 
Fig. 2), with which we can calculate the first set of direction cosines 
that are needed to determine the photon position at the first collision. 

 
Ω�

 	 � 	sin	��cos	��              (3a) 

 
Ω�
� 	 � 	sin	��sin	��               (3b) 

 
Ω�
� 	� 	cos	��               (3c) 

 

 
Figure 2. Photon Initial position and direction. 
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The sampling of the photon paths length, performed by 

calculating the probability of a collision between the distances 3 and 
3 � d3 along its line of flight, is given by 
 

4�3�d3 � 5������d3	                 (4) 
 
where 4�3� denotes the probability density function and �� the 
attenuation coefficient of the medium, which is interpreted as the 
probability per unit length of a collision. After setting 
 

�� � � 5������d6
�

�
� 1 � 5����                (5) 

 
where � is the probability distribution function and R� is a random 
number, we obtain the expression for the distance to collision as 
 

		3 � �
�

��
ln�1 � ��� � �

�

��
ln��		               (6) 

 
noting that �1 � ��� is distributed in the same manner as �� (Carter 
and Cashwell, 1975). To simplify our calculations, we opted for 
using the optical length 
 instead of the geometrical length 3, and so 
the expression of the distance to collision simply becomes 
 


 � 3�� � �	ln��                 (7) 
 

The new position can now be calculated by 
 

�� � �� � 
Ω�

 		              (8a) 

 
�� � �� � 
Ω�

�               (8b) 
 
	�� � �� � 
Ω�

�               (8c) 
 

where the subscripts 1 and 2 refer to the photon positions at 
subsequent collisions. Note that for the first collision �� �	��,
�� � ��, �� � ��, Ω�


 �	Ω�

, Ω�

� �	Ω�
� 		and		Ω�

� �	Ω�
�. With these 

new positions at hand, we are able to determine whether the particle 
is still within the system or escaped from it, in which case the 
sampling process is terminated. 

In sampling the interaction types we define the probabilities 
 
	4� � 	 �

��

��
										and										4� �

��

��
	              (9) 

 
with �� = �� + �
, where 	 denotes the single scattering albedo (or 
the probability of photon survival), �� the scattering coefficient and 
�
 the absorption coefficient, and by drawing a random number �� 
we are able to determine the interaction type. So we let the 
interaction be an absorption event, considering the particle 
eliminated from the system, and consequently the sampling process 
is terminated, when 
 

		�� 9 		                (10) 
 
otherwise the interaction results in scattering. 

The sampling of the scattering direction permits the estimation 
of the scattering angle through the use of the phase function	
���, ��. 
Here we consider that the phase function is only dependent on the 
scattering angle � and that the azimuthal angle � is uniformly 
distributed on the interval from 0 to 2:. Thus � and � become 
independent random variables that can be sampled separately. We 
also consider isotropic scattering, thus 
���� = 1/4 (Mobley, 1994). 
So, by setting 

 

	�� � 2: � 
����d�′
�

��
,						�� � cos	��	           (11a) 

and  
 

	�� �
�

��
� d�′
�

�
              (11b) 

 
we obtain 

 
	cos	� � 2�� � 1             (12a) 
 

and 
 

� � 2:��	             (12b) 
 
The new sets of direction cosines can now be calculated by the 

equations  
 

	Ω�

 	� 	sin	�		cos	�	             (13a) 

 
	Ω�

� 	� 	sin	�		sin	�	            (13b) 
 
	Ω�

� 	� 	cos	�	              (13c) 
 
The above sampling processes are repeated until the photon is 

absorbed or escapes the system under investigation. Radiometric 
quantities are computed by a suitable counting of photons through 
simulated detectors (counters) that are placed on the boundaries and 
layer interfaces. So by counting photons ��

��
, ∆�� traveling at a 
given location 
 and within a given polar angle interval ∆�, we are 
able to estimate the average radiance 

 

		��
, <�� �
�

=

��
��
, ∆��

2:	|�||∆�|
																																																														�14� 

 
where � denotes the total source rates and = the number of photon 
histories, for � ∈ [−1, 0) and (0, 1], with � averaged within the 
interval ∆�. 

The SMDO Method (SMDO computational code) 

This method consists on a combination of the Discrete Ordinates 
Method with the finite difference method. First, the angular domain 
is discretized as shown in Fig. 3, and the spatial domain is 
discretized as shown in Fig. 4. 
 

 
Figure 3. Angular domain discretization. 

 
 
 

 
Figure 4. Spatial domain discretization. 
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The radiation intensities in the angular and spatial discretized 
domain are represented by 

 	
�� = 
(
� ,��)																																																																																(15) 
 

with 
� = (� − 1)∆
, � = 1, 2, … ,�, and � = 1, 2, … ,�, where 
 

∆
 =
��

��	
	  

 
The integral term on the right hand side of Eq. (1) is replaced by 

a Gauss-Legendre quadrature 
 

	�� =
�
2
� 
(
, �′)d�′ ≈

	

�	

�
2
���	
����

��	

																																									(16) 

 
where �� (� = 1,2, . . . ,��) are the weights of the quadrature. The 
values of ��,� = 1, 2, … ,�	(� = ��), used in the angular domain 
discretization shown in Fig. 3, are the corresponding collocation 
points of the quadrature used. 

Considering a forward and a backward finite difference 
discretization of the first term on the left hand side of Eq. (1) given, 
respectively, by 

 	�
(
,�)�
 �
(��,��)

=

���	 − 
��

∆
 																																																							(17a) 

 
and 
 �
(
,�)�
 �

(��,��)

=

�� − 
���	

∆
 																																																							(17b) 

 
and from Eqs. (1) and (15)-(16) we obtain 

 	
���	 = �1 −
∆
�� 
�� +

∆
�� �� 																																																					(18a) 

 
and 
 	
���	 = �1 +

∆
�� 
�� −
∆
�� �� 																																																					(18b) 

 
We performed forward (up to node N) and backward (back to 

node 1) sweeps, using the discrete boundary conditions expressed as 
 	
�	 = 		(��),			� = 1, 2, … ,

�
2
																																																		(19a) 

 
and 

 
�� = 	
!��",			� =
�
2

+ 1,
�
2

+ 2, … ,�																																(19b) 

 
considering the following stopping criterion 

 #(
�� )��	 − (
�� )�# < $																																																																			(20) 
 
with � = 1, 2, … ,� and � = 1, 2, … ,�, where $ is a prescribed 
tolerance and % is the iteration index. 

 

The ASN Method (PEESNA Computational Code) 

In this section, we present a summary of an improved version of 
the analytical discrete-ordinates method that has been the subject of 
some recent works (Barichello and Siewert, 1999; Barichello et al., 
2000; Chalhoub and Garcia, 2000; Siewert, 2000). In particular, the 
method incorporates some recently developed techniques for finding 
particular solutions (Barichello et al., 2000; Siewert, 2000) and 
dummy-node inclusion (Chalhoub and Garcia, 2000) as its angular 
interpolation technique. Note that we only present here a simplified 
version for treating the type of problems described in the test 
problem section. 

For defining our discrete-ordinates version of the problem posed 
by Eqs. (1) and (2), we begin by introducing a quadrature of order �� with nodes &��' and weights &��' to approximate the integral in 
Eq. (1). The selected quadrature scheme is the double quadrature of 
order �� = 2� obtained by applying a standard Gauss-Legendre 
scheme of order � to each of the half-intervals [0, 1] and [−1, 0]. 
Then we set � = �� , ( = 1, 2, … ,��, in the resulting equations to 
find the discrete-ordinates equations 
 

	�� ��
 
(
,��) + 
(
,��) =
�
2
���
��

��	

!
,��"																														(21) 

 
for ( = 1, 2, … ,�� , and the boundary conditions 

 	
)0, ��* = 		)��*,					( = 1, 2, … , �																																												(22a) 
 
and 
 
(
�,��) = 	
(��),					( = � + 1,� + 2, … ,�� 																								(22b) 
 
Note that the nodes of the quadrature scheme are ordered in such a 
way that the first � nodes are positive and the remaining � are 
negative, as shown in Fig. 3. 

Making use of the elementary solutions of the discrete-ordinates 
equations and their orthogonality property developed in Barichello 
et al. (2000), we can write the general discrete-ordinates solution of 
order �� to the problem formulated by Eqs. (21) and (22) as 

 							
)
,��* = ���Φ)+�,��*�

��	

,� �

��		 
											+ � ��Φ(−+�,��)

��

����	

,�(����)/��	 ,														(23) 

 
for ( = 1, 2, … ,��. The elementary solutions Φ(+�,��) and 
Φ(−+�,��) in Eq. (23) are, respectively, the j-th components of the 
eigenvectors Φ(+�) and Φ(−+�), associated, respectively, with the 
eigenvalues 1/+� and −1/+�. Finally, the coefficients {��} and 
{��} are the solutions to the linear system of �� algebraic equations 
obtained by imposing that the general solution expressed by Eq. (23) 
satisfies the boundary conditions expressed by Eqs. (22) 
 

���Φ(+�,��)

�

��	

+ � ��Φ(−+�,��)

��

����	

,���/��	 = 
)0, ��*						(24a) 

 
for ( = 1, 2, … ,�, and 
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���Φ(+�,��)

�

��	

,���/��	 + � ��Φ(−+�,��)

��

����	

= 
(
�, ��)					(24b) 

 
for ( = � + 1,� + 2, … ,�� . We conclude this summary by pointing 
out that once the linear system formulated by Eqs. (24) is solved for 
{��} and {��}, we can evaluate the radiances with Eq. (23) for any 
 ∈ [0, 
�]. 

The LTSN Method (LTSN Computational Code) 

The LTS� scheme appeared in the early nineties in the neutron 
transport context (Barichello and Vilhena, 1993), and was then 
extended to radiative transfer problems (Segatto and Vilhena, 1994). 
Its convergence was established using the -�-semi group theory 
(Segatto and Vilhena, 1994). This method applies the Laplace 
transform on the radiative transfer discrete ordinates equation, Eq. 
(21). This yields a system of algebraic equations on the Laplace 
transform parameter �: 

�
�̅!�" +
1�� 
�̅!�" =

�
2�� �����

��	


�̅!�" + 
��!0"																					(25) 

 
where 
�̅(�) ≡ / 
�(
),���d
�

�
. Equation (25) can be formulated 

in matrix form: 
 

	����

� (�)	
̅�(�) = 
�(0)																																																																		(26) 
 
being ����

� (�) = �0 + �� , where the ��-order matrix ����

� (�) is 

called the LTS� matrix, and I is the ��-order identity matrix. The 
entries of the �� matrix are given by 
 

��(�, () =

123
24 1�� −

���
2�� , if	� = (	

					−���
2�� , if	� ≠ (	 																																															(27) 

 
In order to solve the matrix equation (27), we must multiply it 

by the inverse matrix of ����

� (�), as follows 

 						
�̅!�" = 5����

� !�"6�	 
�!0" 		⟺ 		 
�̅!�" = �7�!�"
�!0"					(28) 

 
And by applying the Laplace inverse transform yields 

                                     
�(
) = ��!
"
�!0"																																																																				(29) 
 
with 
 ��!
" ≡ ℒ�	8�7�!�"9																																																																				(30) 

 
Matrix inversion is usually expensive. The diagonalization 

method (Segatto et al., 1999) takes advantage of the fact that the 
LTS� matrix, Eq. (29), is non-degenerate, i.e. all eigenvalues are 
distinct, and therefore, �� can be diagonalized: 

 �� = :�;�	(:�)�																																																																					(31)  
 
where <�	is a diagonal matrix containing the eigenvalues of =�, 
and >� is the corresponding eigenvectors matrix. Therefore, the 
matrix B can be expressed as 
 

	��!
" = ℒ�	8!�0 + ��"�	9 = :�ℒ�	8!�0 + ;�"�	9!:�"�	
= :�,���!:�"�																																																					 	(32) 

 
Then, by substituting Eq. (32) into Eq. (29) yields 
 

			
�!
" = :�,���!:�"�	
�!0"																																																						
= :� ?,�	� 0

0 ,�
�
@� !:�"�	
�!0"	 (33) 

 
where A� and A� are the positive and negative eigenvalues, respectively. 

The method, as described by Eqs. (29) and (30), does not work 
well due to the numerical overflow for large slab thicknesses and/or 
large values of Nq. This feature can be avoided by a change of variables 
(Gonçalves et al., 2000). Equation (33) can be written as follows 
 

				 
�(
) = 				 :� ?,�	(����) 0

0 ,�
�
@� ?,�	�� 0

0 1
@� !:�"�	
�(0)													= ℬ�!
"B�!0"																																																																				(34)

 

 
where 
 		ℬ�!
" = 	 :� ?,�	(����) 0

0 ,�
�
@� 																																												(35) 

and 
 B�(0) = ?,�	�� 0

0 1
@� !:�"�	
�!0"																																								(36) 

 
Equation (34) can also be represented by block matrices: 

 	?
	(
)

(
)
@� = ?ℬ		(
) ℬ	
(
)

ℬ
	(
) ℬ

(
)
@� ?B	(0)B
(0)

@� 																														(37) 

 
with indexes 1 and 2 pointing to either right and left directions of 
radiances, respectively. This equation can be applied at the position C = C�, allowing to compute the unknown values 8��(D)9� for 
completing the EFG� solution. 

Numerical Results 

Due to the good performance of the AS� method (PEESNA 
computational code) in the comparisons of radiances generated by 
selected methods that were performed in a previous work (Chalhoub 
et al., 2003), we decided to use its generated results as reference 
values for the comparisons to be performed in this work. 

Five test cases, whose parameters are shown in Table 1, were 
chosen in order to perform the required comparisons. Besides these 
parameters we considered a quadrature order � = �� = 20 for the 
SMDO, PEESNA and LTSN codes. In Table 2, we show the reference 
values which are the radiances 
(0, �) and 
(
�,�) at the selected 
values of �, generated by the PEESNA code for the chosen problems. 

 

Table 1. Parameters used to define the Test Case problems. 

Parameter Meaning 
Test Case 

1 2 3 4 5 � single scattering 
albedo 

0.1 0.1 0.9 0.9 0.5 
� optical thickness 0.5 5.0 0.5 5.0 2.0 		 incident radiation at 
 = 0 
1.0 1.0 1.0 1.0 1.0 	
 incident radiation at 
 = 
� 
0.0 0.0 0.0 0.0 0.0 
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Table 2. Radiation intensity �(�,�) and �(��,�) generated by the PEESNA code (A�� method) for the chosen Test Cases. 

� 
Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5 
 = 0 
 = 
� 
 = 0 
 = 
� 
 = 0 
 = 
� 
 = 0 
 = 
� 
 = 0 
 = 
� 

−.9983 1.2023E−2 0.0 1.6460E−2 0.0 1.6997E−1 0.0 4.1359E−1 0.0 1.1329E−1 0.0 
−.9830 1.2317E−2 0.0 1.6764E−2 0.0 1.7406E−1 0.0 4.1812E−1 0.0 1.1527E−1 0.0 
−.9426 1.2873E−2 0.0 1.7333E−2 0.0 1.8180E−1 0.0 4.2639E−1 0.0 1.1896E−1 0.0 
−.8765 1.3750E−2 0.0 1.8208E−2 0.0 1.9397E−1 0.0 4.3865E−1 0.0 1.2457E−1 0.0 
−.7864 1.5047E−2 0.0 1.9460E−2 0.0 2.1190E−1 0.0 4.5529E−1 0.0 1.3249E−1 0.0 
−.6750 1.6937E−2 0.0 2.1206E−2 0.0 2.3786E−1 0.0 4.7683E−1 0.0 1.4328E−1 0.0 
−.5451 1.9725E−2 0.0 2.3639E−2 0.0 2.7578E−1 0.0 5.0408E−1 0.0 1.5784E−1 0.0 
−.4003 2.3970E−2 0.0 2.7110E−2 0.0 3.3240E−1 0.0 5.3823E−1 0.0 1.7766E−1 0.0 
−.2446 3.0686E−2 0.0 3.2347E−2 0.0 4.1782E−1 0.0 5.8140E−1 0.0 2.0570E−1 0.0 
−.0823 4.1229E−2 0.0 4.1435E−2 0.0 5.2819E−1 0.0 6.3885E−1 0.0 2.5007E−1 0.0 
   .0823 1.0 2.1375E−2 1.0 6.6726E−5 1.0 3.1047E−1 1.0 2.3734E−2 1.0 2.2502E−2 
 . 2446 1.0 1.3295E−1 1.0 8.3119E−5 1.0 4.3493E−1 1.0 2.9994E−2 1.0 2.9163E−2 
  .4003 1.0 2.8155E−1 1.0 1.1019E−4 1.0 5.4492E−1 1.0 3.6249E−2 1.0 4.1542E−2 
 . 5451 1.0 3.9250E−1 1.0 2.0825E−4 1.0 6.2029E−1 1.0 4.2794E−2 1.0 6.3509E−2 
 . 6750 1.0 4.7044E−1 1.0 6.0521E−4 1.0 6.7145E−1 1.0 4.9672E−2 1.0 9.1293E−2 
 . 7864 1.0 5.2516E−1 1.0 1.5370E−3 1.0 7.0675E−1 1.0 5.6675E−2 1.0 1.1958E−1 
 . 8765 1.0 5.6350E−1 1.0 2.9783E−3 1.0 7.3123E−1 1.0 6.3347E−2 1.0 1.4481E−1 
 . 9426 1.0 5.8977E−1 1.0 4.6397E−3 1.0 7.4788E−1 1.0 6.9123E−2 1.0 1.6504E−1 
  .9830 1.0 6.0657E−1 1.0 6.1245E−3 1.0 7.5849E−1 1.0 7.3484E−2 1.0 1.7938E−1 
   .9983 1.0 6.1547E−1 1.0 7.0790E−3 1.0 7.6410E−1 1.0 7.6038E−2 1.0 1.8743E−1 

 
 

We note that critical parameters in MCPP and SMDO codes had 
to be adjusted before performing the comparisons. For MCPP the 
critical parameter is the number of photon histories H and for 
SMDO it is the number of points in the spatial grid N. The greater 
the value of these parameters, the more precise the resulting 
radiances are when compared with the reference values. Table 3 
shows for MCPP the number of photon histories H, where, for 
example, 1K = 10� and 1M = 10� histories, and for SMDO the grid 
points N used to reach the established precision (deviations with 
respect to the reference values lower than 1%). This table only 
shows the CPU times for the MC method. As for the other methods 
the CPU times are less than 0.1 second. Note that the codes were 
executed on a IBM compatible personal computer equipped with a 
Pentium M 1.7 GHz processor. 
 

Table 3. Critical parameters and CPU times (s). 

Test 
Case 

MCPP SMDO 
H CPU (s) N 

1 1M 1.5 50 
2 100M 266.0 1000 
3 10M 1.5 10 
4 1M 53.0 200 
5 10M 27.0 200 

 
 

Due to the utilization of test case problems having simple 
scattering conditions, i.e., isotropic scattering, we were not able to 
point out the difference in efficiencies presented by the SMDO, 
PEESNA, and LTSN codes. 

To illustrate how the critical parameters were chosen, Fig. 5 
shows results obtained by running Test Case 3 with MCPP and 
SMDO codes using four different values of H and N, respectively. 
The E values, shown in this figure, represent the global percent 
deviations that were calculated by a modified version of the 
Euclidean metric, 
 

																																						H =
100��

I�J�� − ���� K

��

��	

																												(38) 

 
where �� , ( = 1, 2, … ,��, denote the radiances 
(
 = 0, ��), ( =	�	 + 	1, �	 + 	2, . . . ,�� and 
(
 = 
�,��), ( = 1,2, . . . ,�, generated 
with a given critical value and �� (( = 1, 2, … ,��), those generated 
with a higher critical value. We also note that for the performed 
comparisons we chose the critical values that generated results with H	 ≤ 	1%. 

In Figs. 6-8 we show the radiances generated by the four 
codes, as well as the  E  values that represent the global percent 
deviation in the radiances generated by each one of the codes from 
the reference values generated by the PEESNA code. The good 
quality of the approximated solutions obtained with the four 
methods is observed. 

Conclusions 

From the comparisons of the radiance generated by MCPP, 
SMDO, PEESNA, and LTSN codes, we conclude the following: 

• As expected, the Monte Carlo method is the most 
expensive numerical procedure when compared with 
deterministic techniques. 

• The SMDO code requires some analyses to find out the 
ideal critical parameter, needing a preprocessing scheme. 

• The Monte Carlo method requires also a preprocessing in 
order to determine the lower number of particles that 
provides good converged solutions. 

• AS� and LTS� are semi-analytical methods and their 
solutions are exact for the space variable, as there are no 
intrinsic truncation errors. 

• We plan to solve, in a future work, more realistic problems 
with anisotropic scattering, represented by complicated 
scattering functions that contain hundreds of terms and, 
consequently, requiring extensive CPU times to solve the 
radiative-transfer equation.  
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The inverse radiative transfer problems can be formulated as an 
optimization problem (Silva Neto and Becceneri, 2009; Lobato et 
al., 2010). Such strategy requires the solution of the direct problem 
many times until convergence is achieved; therefore, one important 
feature is to identify methods that provide accurate and fast 
solutions for the direct problem. The results shown in the present 
work allow us to say that any one of the used codes: SMDO, 
PEESNA, and LTSN, is a good choice to fulfill such requirements, 

considering an isotropic and homogenous medium, and without a 
source term. Furthermore, if someone is interested in testing inverse 
problem solution procedures, one can use the Monte Carlo method 
output to represent the experimental measurements, minimizing then 
the inverse crime, in which the same method is used for the 
simulation of the phenomena of interest in the direct and inverse 
problems (Kaipio and Somersalo, 2007). 

 
 
 
 
 
 

  

Figure 5. Radiance generated by MCPP and SMDO with 	 = �.
 and �� = �.� (Test Case 3). 

 
 
 
 
 
 

  
Figure 6. Radiance generated by the four codes with 	 = �.
 and �� = �.� (Test Case 1) and 5.0 (Test Case 2). 
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Figure 7. Radiance generated by the four codes with 	 = �.
 and �� = �.� (Test Case 3) and 5.0 (Test Case 4). 

 

 

 
 

 
Figure 8. Radiance generated by the four codes with 	 = �.� and �� = �.� (Test Case 5). 
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