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Abstract: A challenging topic in the field of planetary rover simulations is the modeling of
the contact between the rover and its environment. Multibody simulation models are used to
represent the kinematic structure of a wheeled rover, but its interface with the environment
relies on sand-wheel contact dynamics. A new advanced contact model is presented and tuned
according to single wheel experiments by comparison between experimental data and predicted
values. Finally, stochastic model updating is performed to assess parameter uncertainty level
due to soil properties. As a result, the mean percentage error of the tuned model is inside the
acceptable range, but additional improvements in the rover sinkage computation model are still

desired.
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1. INTRODUCTION

The dynamic model to identify is the contact model be-
tween a single wheel and deformable terrain. It is a bread-
board version of a planetary exploration rover intended to
operate on Mars and drive on a rocky environment with
loose sandy soil. Our modeling efforts allow simulation of
a rover in different scenarios containing complexly shaped
rocks and undulating terrain with different kinds of soft
soil and rigid surfaces. The contact between wheels and
soft soil is of major concern due to critical constraints (i.e.
excessive slip and sinkage) imposed to the mobility of the
vehicle in such terrains. The following section describe the
contact modeling for a smooth rigid wheel in soft soil and
the contact dynamics of the propelling grousers which can
be attached to the smooth wheels to improve the traction
performance in soft soil.

2. MODELING
2.1 Contact dynamics of a smooth wheel in soft soil

Our model must be able to predict contact forces and
reaction torques when interfacing the vehicle with the
terrain through rigid wheels. These wheels can either
operate in towed mode or actuated mode with driven by
motors, and steerable or not steerable; which allow us to
define the forces to be modeled to cope with each one of
these situations.

Towed wheels are not able to produce traction but are
subjected to the motion resistance forces as the rover
moves and sand is compacted (compaction) and pushed
(bulldozing). Driven wheels produce traction as a function

of the available soil thrust. Steering maneuvers are affected
by longitudinal forces and lateral forces as well. Lateral
forces will not be considered in this paper, because our
tests were performed without steering maneuvers. Com-
paction and traction are the most dominant longitudinal
forces and are modeled as follows.

Figure 1-left shows a driven smooth rigid wheel sank in
soft soil; figure 1-right shows a diagram of the forces and
stresses considered. The wheel has radius r, width b and is
subjected to the load Fy, (weight of the kinematic structure
of the rover plus payload, sensors, motor, batteries, etc. are
lumped into this force). The contact region with the soil
is defined with respect to the polar coordinates fixed in
the wheel from 6, (rear part) to 6y (front part); which
are respectively functions of Az and z, see figure 1 where
A is the sinkage ratio. The normal pressure distributed
under the rim is (), where 6 is the same polar coordinate
fixed in the wheel. 7(6) is the shear stress which generates
traction. Drawbar pull is the resulting force Fpp = Fp —
Fe, where Fr is the traction force and F¢ the compaction
force. Both forces can be obtained integrating shear stress
and normal pressure distribution in the direction of motion
as follows
9,

(T cosf — osinf) db (1)
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Accordingly with Bekker (1956) the resistance torque is
obtained by the integral of the shear stresses.

Or

T=T2b/7'd9 (2)

Of



Direction of motion

Fig. 1. (Left) perspective of the modelled situation. (Right)
stresses and forces in the contact between a loaded
wheel and sand
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Fig. 2. Distribution of the normal pressure under the wheel

The shear stress is a function of the pressure under the
wheel, 7 = (¢ + o tan ¢) [1 - e%} . Cohesion ¢ and friction

angle ¢ are mechanical properties of the soil considered as
known a-priori. Soil deformation j and shear deformation
modulus k describe the shear stress deformation curve. In
Wong (2001) the soil deformation is derived as a function
of slip ratio: j = r[f;—60—(1—s)(sinf; —sinf)]. A
positive slip ratio s = 1 — .= holds for rw > v, ie.
the wheel rotating faster than the achieved translational
velocity in the longitudinal direction. The value of k is a
parameter to be estimated. Also o has to be estimated,
but this is a function of # and not a parameter. There
are classical analytic descriptions of o which are normally
used in the literature Shilby et al. (2005), but these are
empirical models unable to model subtleties concerning
the change of its shape as a function of slip ratio and load.

Our numerical description of o is based on Chaikin (1974)
for smooth and fast computation of the curve in figure 2
by four control points. This method generates a quadratic
uniform B-spline curve and is very useful because allows
to adjust the curve by successive refinement of the given
control polygon. The control points (which generate a
control polygon) are defined by the numerical values of 6,4,
Oy O¢b, O, 0rp, and ogp. But there are some constraints
to these parameters in order to get meaningful results
comparing with the experimental knowledge available in
the terramechanics literature. Note that 6, and 0, are
not freely changed, they depend on sinkage z and sinkage
ratio A of the rear part of the wheel. The maximal normal
pressure is given by Bekker’s equation 0,4, = (% +ky)2",
considering b as the smaller dimension of the rectangular
patch formed by the wheel sunk into the soil. For small
sinkage depths b, < b is considered. The sinkage z and the
smaller dimension of the contact patch by are computed
through the inversion of the following equation

Fig. 3. (Left) photo of the experimental situation as
reference for the modeled case. (Right) contact forces
between grouser and failure regions
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A search procedure is implemented to find the values
of by and z which always agree with equation 3. Equa-
tions 1-3 allow the computation of the variables to be
compared with the measured experimental data (draw-
bar pull, torque, sinkage), the parameter vector ¢s, gs =
NE O O, 011,00 041 01p) T has to be estimated in order to
achieve an acceptable model correlation at each slip value.

2.2 Contact dynamics of grousers in contact with sand

Grousers can be attached to a smooth wheel to improve
its driving performance, especially weak terrain. Figure 3
shows our rigid wheel with grousers and the scheme of the
corresponding contact geometry at one grouser.

There are two failure regions illustrated in the scheme of
figure 3, they are the equilibrium wedge A and the log
spiral zone B as described in Hermawan et al. (2000). In
two dimensions, the traction force of the grouser is

Fig=Fys+U+Us+ N+ N (4)

where F,, is the force on the interface region A-grouser
interface, U on the region B, Us; due to cohesion on
the interface A-B, N gravitational force of A, N, due
to cohesion on the interface region A-soil under A. The
drawbar pull of equation 1 can be revised by adding the
term Figb, the multiplication by b is to correct for a
three dimensional wheel driving straight ahead without
camber angle. The equilibrium wedge is a function of the
terrain properties and specific interaction between soil
and grouser, since ¢ = 90 — ¢ and k = f(v,a) (« is
the rotation angle of the wheel) define two dimensions of
the equilibrium wedge. The angle v is the instantaneous
direction in which the soil is moving. A vector with
components in directions x and z is the tractive force Fy,
provided by the grouser to lift and push the wheel. In the
present analysis just the pushing component is important,
since the lifting force is very small compared with the
weight of the wheel plus load.

Three additional parameters have to be estimated, they
describe 1) the movement of sand at the basis of the
equilibrium wedge and 2) the amount of sand pushed to
the back of the wheel. The first set of parameters is defined
as a linear dependence on the angle of rotation of the



wheel: v = 1 + &. The second set is defined as a slip
dependent additive sinkage to the rear part of the wheel:
A18z. Another parameter vector to be estimated can be
constructed as

T
a9 =[& & M ()
2.3 Normal pressure distribution

The normal pressure distribution o is a particularly im-
portant function, all variables to be identified are strongly
dependent on this function. The classical description of o
is based on the pressure-sinkage relationship for a rectan-
gular plate, a wheel is described like small plates vertically
pushed against the soil in different sinkage depths. Some
practical works like Hegedus (1962) showed that the shape
of the normal pressure distribution is not so well behaved
like the classical analytical description predicts. Neverthe-
less, we know that the amplitude of the maximal pressure
is fairly accurate and that the shape of this function has
some trend in the slip domain. The arrows in figure 2
illustrate the trend of the shape as the slip ratio increases.
These assumptions allow us to define the constrains to o
parameters listed in table 1

Table 1. Constraints to the trend of ¢ in the
slip domain

Parameter  Monotonic trend
0, non decreasing
Om non decreasing
0y non decreasing
Ow non increasing
Orb non increasing
Trb non decreasing

However, there is an infinity number of functions that
describe those monotonic trends. As solution, we consider
that the changes at o(0) are smooth with s by introducing
the following functions

Pnd(s) = { (1 — pnd(O))(l - e_s/zfd) +pnd(0) : p'r?d -0
(1= pal0))(ePna/**ona) 4 p,4(0) : phy <0

—p _S/Pgi _—
puils) = e T P
—Pni(0)(1 — ePne/¥Pni) 2 pr <0

were the subscripts ,; and ,q stand for non increasing
and non decreasing respectively. These monotonic smooth
functions were chosen because they are able to represent
almost linear behavior and smooth abrupt changes as well.
The parameters p” can be substituted by the correspond-
ing parameters in table 1 to make the following parameter
vector to be estimated

a, = 03" 0 035 03 ol 03] (6)
It results in slip varying control points of the o curve like
e'rb = f(e’r‘bv 077}(;1,8)7 sy Ofp = f(gfbv 0?578)‘

3. IDENTIFICATION METHOD AND TOOL

For identification and optimization purposes we have an
in-house developed tool, MOPS (Multi-Objective Param-
eter Synthesis), implemented as a Matlab toolbox. In this

Sinkage (indirect measure) /'

Fig. 4. Single wheel test: experiment setup

tool we are able to define the parameters to be esti-
mated and the objective functions to be minimized. As
a normalization factor the value of 20% of MPE (mean
percentage error for n samples of index si, MPE =

n
1 Z predicteds; —measureds;
n

measured ) between the computed values

si=1
of Fpp, T and z from equations 1-2 and the measured
data is used. We intend to minimize the objective function

2 2
J = %(—FDPZvSJPE + —Tﬂgé’E + ZMEE 2) by changing the
parameter vector ¢ = [gs ¢q4 ¢p]. The optimization algo-

rithm chosen was DE (differential evolution) in order to
perform global minimization over the continuous space of
q considering nonlinear changing of the objective function.
DE was implemented like in Storn and Price (1995), and
the strategy to generate candidates ¢ for new population
members was

ci:qi_‘_FB.(qbest_qi)_‘_F_(qu_qr2) (7)

where ¢’ is the new candidate, ¢* the current parameter
vector, FF'B = 0.8 the amplification factor, F = 0.8 the
amplification factor for random differential variation, and
the indices ry and r, are integers randomly chosen from
the interval [1, P] € Z, P is the population size normally
chosen as two times the size of vector q.

4. SINGLE WHEEL TESTS

Several drawbar pull tests were performed at the Single
Wheel Testbed (SWT) of the DLR’s Institute for Space
Systems (DLR-RY), see figure 4.

A drawbar pull test consists of imposing a translational
velocity to the wheel and commanding its nominal angular
velocity so that a known slip ratio is obtained. The tests
covered a range from 0% to 90% slip at three different
normal load cases. Each drawbar pull, torque and sinkage
measurement set was used to tune the model described in
section 2 using the method and tool introduced in section
3. The tuned model shows that the pressure distribution
under the wheel changes its shape as a function of load
and slip as figure 5 illustrates.

Figure 5-top shows a comparison between the equivalent
analytic classical description and the identified shape.
Figure 5-bottom shows the shape at the three load cases.
Figures 6, 7, and 8 show the correlation between measured
and predicted forces/torques for the 3 load cases. This
pressure distribution was assumed as the same for smooth
wheel and for a lugged wheel



load 70 N, slip 0% load 101 N, slip 0% load 150 N, slip 0%
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Fig. 5. Top: pressure distribution at 0% slip, (solid) classi-
cal and (dotted) numeric description. Bottom: three
different slip values, 0% (left), 50% (middle) and 90%
(right)
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Fig. 6. Load case 7ON: correlation of drawbar pull and
torque in slip domain and sinkage constraint for
smooth wheel (top) and lugged wheel (bottom)
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Fig. 7. Load case 101N: correlation of drawbar pull and

torque in slip domain and sinkage constraint for
smooth wheel (top) and lugged wheel (bottom)

The agreement of drawbar pull and resistance torque
remains in the acceptable range (20%), but the sinkage
prediction does not fit very well to the measurement data.
The prediction errors can be summarized as follows in
table 2.

A MPE of 20% is acceptable to our purposes. Although,
incorporation of external effects present in the dynamics
of the test apparatus and its interaction with the wheel
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Fig. 8. Correlation of drawbar pull and torque in slip
domain and sinkage constraint for smooth wheel (top,
load case 150N) and lugged wheel (bottom, load case
147N)

could improve the results. Currently, we do not know how
friction and internal slip in the mechanisms are disturb-
ing the experiment. Also the soil parameters (Bekker’s
parameters) are affected by variability which can disturb
the results, this issue is discussed in the next section.

5. STOCHASTIC MODEL UPDATING

The parameter estimation of section 3 considers determin-
istic input and output parameters and searches for a model
parameter setup that yields a good matching with exper-
imental data. Nevertheless, model parameters are often
affected by inherent variability that calls for a stochastic
treatment of the problem. Experimental evidence, Apfel-
beck et al. (2010), shows that the Bekker parameters
measured via Bavameter tests are always affected by signif-
icant uncertainty. If this uncertainty is accounted for and
propagated through the computer model, the predicted
outputs become non-deterministic quantities as well. A
more comprehensive updating procedure seeks parameter
uncertainty levels that result in a satisfying agreement
between the variability of given model outputs and the
corresponding experimental variability.

Here, we consider a stochastic procedure where means
and variances of the Bekker’s parameters, modeled as
uncorrelated normal random variables, are tuned. The
corresponding parameter vector to estimate is

Q= ke kync® of o%¢ o o 0% | (8)

where ® and 02 denote the mean and variance of e.
The quantity to minimize is the squared loss function
L = FTF where

F: [Fl FQ Fg 0’%71 0%2 0'%3] (9)
Table 2. Mean percentage error between mea-

surement data and model prediction for each
set of tests

Wheel type | Load case DP error Torque error
70N 7.6% 9.8%
Smooth 101N 7.0% 5.4%
150N 7.0% 7.5%
TON 12% 26%
Lugged 101N 13% 19%
147N 6.0% 17%




with

Fi=[Afi(s1) -+ Afi(s10) ] (10)
o = [Aai(sl) Aa?i(sl())] (11)
and
Afi(sy) = fi7(s5) — F™ (s5) (12)
Aot (s;) =07 (s5) —aF,"" " (s5) (13)

where f1 = Fppp, fo = T, f3 = z and e°"(s;) and
"M (s;) denote the experimental and numerical value
of the quantity e calculated at the slip value s;, with
j=1,...,10 representing the analyzed 10 slip values
The minimization of the loss function is a nonlinear
least-squares problem which is solved through the ’trust-
region-reflective’ algorithm implemented in the standard
optimization toolbox of Matlab. The algorithm requires at
each step the determination of the loss function L, that is
F', and the Jacobian matrix .J of F. The output parameter
vector F' is estimated via crude Monte Carlo simulation
(MCS), while the construction of J implies the calculation
of the Jacobian of means J™ and variances J". A generic
element of the matrix J™ is defined as

dfi(s;)

Opi,

3

J; (14)

o

7 Prk=Dk

with [ being function of ¢ and j and pi the k-th model
parameter of the set [kc, kppi,n,c, ®]. J is determined
via finite differences at the current mean value of the
parameter pg. Under admissible assumptions Govers and
Link (2010) the elements of J¥ can be approximated by

le.,k = _( ?jl,k)2

The optimization procedure starts assuming an initial pa-
rameter vector QU that defines the statistical parame-
ters for the 100-sample MCS and the point at which the
derivatives are to be evaluated. Once MCS is completed
F and J are calculated as described above. Then, the
trust-region-reflective algorithm identifies a new Q")
and the procedure repeats until a stopping criterion is met.
A general scheme of the optimization procedure is given
in Figure 5. A more detailed description of the procedure
can be found in Govers and Link (2010).

Monte Carlo simulation

calculate L

calculate oJ

trust-region-reflective
algorithm

(15)

no

stopping
criterion

i

opt) = Q(neW)

Fig. 9. Stochastic model updating procedure diagram
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Fig. 10. Description of the Fpp and T variability after
stochastic model updating procedure

In this application the mean terms of QU have been
choosed equal to the optimal values obtained from the
deterministic optimization, while the variance terms have
been set to zero. After a few iterations the procedure
converges to a solution that represents a local minimum
for the loss function. The results of the stochastic model
updating, presented in Table 5 and Figure 5, show almost
no changes for the experimental-numerical correlation of
the means of Fpp, T and z when compared with the
results of the deterministic optimization (see Figure 6,
load case 70N). However, large part of the experimental
variance is now described by the variability of the Bekker’s
parameters.

Table 3. Initial and estimated statistics of the
Bekker’s parameters

Parameter plin) ol(fn) plort) G}(}Opt)
ke [N/m™FT] -6.67e5 0 -6.66e5  9.61led
kpni [N/m™+2]  1.92e8 0 1.91e8  1.16e7
n [-] 1.80 0 1.81  6.70e-3
¢ [Pa] 13.00 0 14.87 4.28
® [rad) 0.23 0 0.24  5.60e-3

6. CONCLUSION AND OUTLOOK

Modeling, parameter estimation and stochastic model up-
dating were performed. The tuned model (with estimated
parameters) includes the shape of the pressure distribution
as a function of slip and load. The correlated curves show
that the prediction of sinkage still have to be improved.
Drawbar pull force and resistance torque fit to the experi-
mental data with MPE smaller than 20%, it can be further
improved if external aspects are included in the modeling.
Friction and slip between mechanical parts of the test
apparatus could be estimated in future works to quantify
or even decouple their influence from the tuned model.
The contact model shall be used in the simulation of our
full rover modeled as an articulated multibody system to
finally validate the contact model against useful test cases.
We are working on the validation of the model against the
tests performed under the ExoMars B2X2 test campaign.
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