GTSC: Automated Model-Based Test Case Generation from
Statecharts and Finite State Machines

Valdivino Alexandre de Santiago Junior!, Nandamudi L. Vijaykumar?’,
Erica F. de Souza!, Danielle S. Guimaries!, Raffael C. da Costa'

"nstituto Nacional de Pesquisas Espaciais (INPE)
Sao José dos Campos — SP — Brazil

valdivino@das.inpe.br, vijay@lac.inpe.br

{ericaferrso, dani.guimaraes, raffaelc}@gmail .com

Abstract. In this paper we present GTSC, a tool that allows test designers to
model software behavior using Statecharts or Finite State Machines (FSMs) in
order to automatically generate test cases based on some test criteria for FSM
and some for Statecharts. Three test criteria for FSM models, Distinguishing
Sequence, Unique Input/Output, and H-switch cover are implemented in GTSC
as well as there are four test criteria from the Statechart Coverage Criteria Fam-
ily (SCCF) targeting Statechart models implemented within the tool. GTSC has
been successful in generating test cases for research and development projects
in the space domain, and the seven different choices of test criteria provide flex-
ibility for the test designer to choose the one that best suits his/her application.

1. Introduction

It is almost inconceivable to think about an industrial project that can proceed without
tools. In accordance with several studies previously presented in the literature and also
with a more recent survey undertook by [Woodcock et al. 2009], the lack of commercially
supported tools is an impediment to take-up of formal methods for systems development.
In their survey, [Woodcock et al. 2009] also remark that some comments indicate that
tools are still not usable, in the words of one respondent, “by mere mortals”. They iden-
tified some challenges for the development of tools to support formal methods such as
support for automated deduction, and common formats for the interchange of models and
analysis.

Compared to other formal methods, Finite State Machines (FSMs)
[Lee and Yannakakis 1996] and Statecharts [Harel et al. 1987] are relatively easy to
understand. However, even these formal methods require a basic knowledge in automata
theory, and certainly demand for tools that can assist professionals in their processes
related to software development. Thus, ease of use is a fundamental requirement for
a tool that aims to help processes such as software testing which relates to software
Verification and Validation (V&V).

In this paper we present version 2.0 of the Geragdo Automdtica de Casos de Teste
Baseada em Statecharts (GTSC - Automated Test Case Generation based on Statecharts)
environment!, a tool that allows test designers to model software behavior by means of

'A very preliminary version (1.0) of GTSC was presented in [Santiago et al. 2008b]. Version 2.0 of
GTSC, described in this work, has several significant improvements if compared to version 1.0.

Statecharts or Finite State Machines (FSMs) in order to automatically generate test cases
based on some test criteria for FSM and some for Statecharts. Three test criteria for FSM
models, Distinguishing Sequence (DS), Unique Input/Output (UIO), and H-switch cover
[Souza 2010] are implemented in GTSC as well as there are four test criteria from the
Statechart Coverage Criteria Family (SCCF) [Souza 2000] targeting Statechart models
implemented within the tool. GTSC has been successful in generating test cases for re-
search and development projects in the space domain, and the seven different choices of
test criteria provide flexibility for the test designer to choose the one that best suits his/her
application.

This paper is organized as follows. Section 2 describes GTSC’s architecture and
main functionalities. Section 3 presents aspects related to the usability of the GTSC tool.
Section 4 presents conclusions and future directions to follow.

2. GTSC’s architecture and main functionalities

Figure 1 shows the architecture of version 2.0 of GTSC. The Graphical Editor GTSC
component has all the features that allow the test designer to model software behavior
using Statecharts or FSM. It has been implemented using as a basis ArgoUML, an open
source Unified Modeling Language (UML) modeling tool. One feature of ArgoUML is
to support eXtensible Markup Language (XML) Metadata Interchange (XMI) allowing
the exchange of data models in different languages and modeling tools. Thus, we did this
graphical editor taking ArgoUML as a basis, focusing on the characteristics of ArgoUML
for modeling in UML state machines (variant of Harel’s Statecharts), and removing func-
tionalities that were not relevant to the GTSC environment.

GTSC's Architecture

Graphical Editor GTSC FSM Generation

Statechart Diagram Statecharts Flattenin | _ = TestCriteria Selection
Flat FSM

.
T — |
i Conmguration Reachahiliy Tree Generation i

Generate Xml | \
1 1
1 T 1
1

R

W : -7 W
Specification Statecharts Criteria Generation FSM Ctitetia Generation
Eehil (Trans|ate XMIPChiL: | All Transitions H-Suitch Cover
SCHML (Translate PcML/SCHML | All Bimple Paths j¥][s}

‘ All Paths kK CO Configuration |

All Paths K- Configuration T

1

1

1

1

1

1

|
’

Figure 1. Architecture of version 2.0 of GTSC

The Specification component is responsible for converting the behavioral model
from XMI into PerformCharts Markup Language (PcML) [Santiago et al. 2008b] and

State Chart eXtensible Markup Language (SCXML). The Configuration component han-
dles input data necessary for generating a flat FSM, a model where all hierarchical and or-
thogonal features of a Statechart model were removed, from a PcML specification which
represents the Statechart behavioral model. This component receives the names and loca-
tions of important files that are necessary for the operation of GTSC.

The FSM Generation component generates a flat FSM from a PcML specifica-
tion. PerformCharts [Vijaykumar et al. 2006], a tool originally designed for performance
evaluation and which it is currently incorporated into the Statecharts Flattening compo-
nent, is responsible for such a translation. This flat FSM is indeed the basis for test case
generation. The Reachability Tree Generation component of FSM Generation creates a
reachability tree [Masiero et al. 1994] necessary for the generation of test cases based on
SCCF’s test criteria.

Test Criteria Selection is a component that allows the test designer to choose be-
tween the two options for generating test cases: based on test criteria from SCCE, in
order to generate test cases via Statecharts, and based on test criteria for FSM mod-
els. Within the Statecharts Criteria Generation component four SCCF’s [Souza 2000]
test criteria, all-transitions, all-simple-paths, all-paths-k-CO-configuration, and all-paths-
k-configurations, are implemented. This is the main component of GTSC’s architecture
that supports the generation of test cases via Statechart models.

Within the FSM Criteria Generation component, the traditional DS, UIO and a
new test criterion that we designed, H-switch cover [Souza 2010], are implemented. The
Test Cases component handles the test cases created in accordance with the model and the
selected test criterion. In summary, after creating the flat FSM, there are two approaches
to generate test cases. If an SCCEF test criterion is selected to derive test cases, GTSC
adapts the flat FSM to resemble a reachability tree [Masiero et al. 1994]. Thus, based on
the selected SCCEF’s test criterion and on this tree, test cases are created. On the other
hand, if an FSM test criterion is the option then GTSC simply generates test cases based
on the flat FSM and on the selected test criterion.

The main functionalities of GTSC are: (i) it allows test designers to model soft-
ware behavior using Statecharts or FSMs in order to automatically generate test cases
based on three test criteria for FSM, DS, UIO, and H-switch cover, and four SCCF’s
test criteria, all-transitions, all-simple-paths, all-paths-k-CO-configuration, and all-paths-
k-configurations, for Statechart models; (i1) it allows the user to make the models, Stat-
echarts or FSM, according to their notations by means of its Graphical User Interface
(GUI) that allows easy of use of the tool hiding the complexity related to the test criteria
implemented; (iii) it allows test designers to generate test cases according to a certain
SCCF’s test criterion from n flat FSMs at once, avoiding the need to generate test cases
considering one FSM at a time. This functionality is very interesting if we consider sys-
tem and acceptance testing based on scenarios where each scenario can be represented
by a Statechart model. In complex systems, the number of scenarios can be extremely
large and this feature comes into picture to reduce the cost (time in this case) related to
model-based test case generation for real systems.

3. Usability

Usability of version 2.0 of GTSC is briefly described in this section. Figure 2 shows the
main GTSC’s interface with a Statechart model. Note that this interface is basically the
same that exists in version 0.28 of ArgoUML with two important differences. First, in
the menu bar there is an additional menu, GTSC, which precisely incorporates the main
features of the tool. Second, in addition to the Diagram tab there is the GTSC tab which
also lets the test designer use the main functions of GTSC. Observe that it is perfectly
possible, by using GTSC, to draw an FSM and use it as a basis for generating test cases
instead of using Statecharts as a modeling technique.

¥ Cenario.zargo - untitledModel 0 - GTSC 2.0

file Edit View Create Arrange Generation Critique lool elp
[al]e[s]a] & a[¥|x) (aa-] B 1

o [-[x[4][o||-|e[i|e| o/@]c|0/+[+[60]@ [#-[u]<-] [o-
[~

Order By Type, Name

o [Profile C: Stenario 1
& B scenariot Iniatilization

PDCOff switchPDCON 1 startBis IniM_POST POSTOk SafeM_Entered tsinc SafeM_Verop

’W switchP DCOff SafeM_EPPsOf

)

VER_OF_MODE f INFO_OF_MODE

Timing

Idle tr (IndiniM_POST)) Counting Time
endiime (In(SafeM_Entered)) / tsinc

il | >

I Diagram | GTSC I2

Figure 2. Main GTSC'’s interface

When changing from the Diagram tab to the GTSC tab, the XMI which represents
the model drawn in the Diagram tab (Figure 2), the PcML specification, and the SCXML
specification are automatically generated.

The steps to generate test cases via GTSC are basically four. In the first step
(S1), the user draws the model (Statecharts or FSM) in the Diagram tab (Figure 2). In
the second step, the user changes from the Diagram tab to the GTSC tab® and selects
the generation of the flat FSM from the model (S2). In the third step, the user has two
options. If the option is to generate test cases according to test criteria for FSM, then the
user selects a specific option for this purpose in the GTSC tab (S3.1). If the option is to
generate according to SCCF’s test criteria for Statecharts, then the user selects a different
option in the GTSC tab (S3.2). Once decided which type of test case generation (FSM or
Statecharts), the fourth and final step (S4) is to simply select the test criterion and generate
test cases. Figure 3 shows an example of a test suite generated for the model shown in
Figure 2 and according to the all-transitions test criterion (SCCF family). The user can
then save the test suite in a file for later use in the V&V process (test case execution).

’Due to space limitation, the interface related to this tab is not shown. The reader may refer to the
GTSC User’s Manual [INPE 2012] for more details about the interfaces of GTSC, installation instructions,
and how to use the tool.

["]Batch command

FSM: ‘FSM Scenario xml \ Choose FSM...

Criteria (switchPDCOnistantB0s) (switchPDCOnistartB0s, POSTOkstartB0) {switchPDCOnfstartB0s POS
OkistartBls endlimelstantB0s) (switchPDC OnistartBls POSTOK starté0s endtimelstantis VER_
@ ANl Transitions OF_MODEINFO_OP_MODE)(switthPDCOnstani0s, POSTOR stane s, endtimelstartéos VER_Q
. P_MODE/ANFO_OP_MODE switchPDCOfINFO_OP_MODE)}
' All Simple Paths
) All Paths K-C0 Configuration

_ All Paths K-Configurations

Figure 3. Piece of the interface to generate test cases via SCCF’s test criteria:
test suite for the model shown in Figure 2

However, the process of generation of test cases can even be more simplified.
If, for example, there is a previously generated PcML specification available, it is not
necessary to draw the model and the user should simply follow the second, third, and
fourth steps described above. On the other hand if a flat FSM is available, only the third
and fourth steps are required.

One last interesting feature is very attractive for complex software projects. In a
strategy for system and acceptance testing, a common approach is to divide the interaction
with the Implementation Under Test (IUT) based on scenarios. Then, for each scenario, a
model (Statecharts or FSM in this context) is prepared and test cases are generated from
this model. Hovewer, complex software projects usually have lots of different scenarios.

Thus, if there are n scenarios and if for each scenario a Statechart model is gen-
erated then the sequence of steps S1, S2, S3.2, and S4 must be repeated n times, and the
user must manually save n files representing the n created test suites. With the Batch
command option (Figure 3), it is possible to generate test cases according to a certain
SCCF’s test criterion from n flat FSMs at once and hence only the first two steps, S1 and
S2, needs to be repeated n times. After generating the n flat FSMs related to the scenarios,
the user can simply place them in a directory, select the Batch command option, inform
the GTSC the directory where the FSMs are, and select the SCCF’s test criterion to gen-
erate test cases. Thus, n files representing the n test suites will be created automatically
and therefore steps 3.2 and 4 are repeated only once. This may significantly reduce the
cost (time) required to generate test cases in complex projects with the support of GTSC.

4. Conclusions

This paper presented version 2.0 of GTSC, a tool that allows test designers to model
software behavior using Statecharts or FSMs in order to automatically generate test cases
based on some test criteria for FSM and some for Statecharts. In total, seven test criteria
are implemented within GTSC: three for FSM models and four for Statechart models.

One of the strengths of GTSC is the ease of use. The test designer may generate
test cases in a few steps (at most 4 steps), and the use of the tool is very simple by means
of its intuitive GUI. Furthermore, the ability to generate several test suites at once is
remarkable because this may reduce the effort related to test case generation in complex
software projects. GTSC has been successful in generating test cases for research and
development projects in the space domain, and the seven different choices of test criteria

provide flexibility for the test designer to choose the one that best suits his/her application.
All these points are important so that there is an increased use of the theory proposed by
the academic community in real projects in the industry and in institutes of research and
development.

Future directions include improving GTSC to allow interoperability with other
tool we have already developed [Santiago et al. 2008a], which allows both the automated
execution of test cases and the automated generation of documentation related to the V&V
process. Thus, it would be possible not only to automatically generate test cases via
GTSC but also to automatically execute them immediately afterwards, without the need
of manual steps. Moreover, it will be increased the compatibility with SCXML since the
current version of GTSC can not still do the translation from the model drawn by the user
to all syntactic aspects of SCXML.

References

Harel, D., Pnueli, A., Schmidt, J. P., and Sherman, R. (1987). On the formal semantics
of Statecharts (extended abstract). In Proceedings of the 2nd IEEE Symposium LICS,
pages 54—64.

INPE (2012). GTSC-180000-S1S-003: GTSC — Manual do Usudrio. INPE.

Lee, D. and Yannakakis, M. (1996). Principles and methods of testing finite state ma-
chines: a survey. Proceedings of the IEEE, 84(8):1090-1123.

Masiero, P. C., Maldonado, J. C., and Boaventura, I. G. (1994). A reachability tree for
Statecharts and analysis of some properties. Information and Software Technology,
36(10):615-624.

Santiago, V., Silva, W. P., and Vijaykumar, N. L. (2008a). Shortening test case execution
time for embedded software. In Proceedings of the 2nd IEEE International Conference
SSIRI, pages 81-88.

Santiago, V., Vijaykumar, N. L., Guimaraes, D., Amaral, A. S., and Ferreira, E. (2008b).
An environment for automated test case generation from Statechart-based and Finite
State Machine-based behavioral models. In Proceedings of the 1st ICST, 4th Workshop
A-MOST, pages 63-72.

Souza, E. F. (2010). Geracdo de casos de teste para sistemas da drea espacial usando
critérios de teste para maquinas de estados finitos. Dissertation (Master in Applied
Computing), INPE, 133 p.

Souza, S. R. S. (2000). Validacdo de especificacOes de sistemas reativos: defini¢do e
andlise de critérios de teste. Thesis (PhD in Applied Physics), USP-Sao Carlos, 264 p.

Vijaykumar, N. L., Carvalho, S. V., Francés, C. R. L., Abdurahiman, V., and Amaral,
A. S. M. (2006). Performance evaluation from Statecharts representation of complex
systems: Markov approach. In Proceedings of the 26th CSBC, 5th WPerformance,
pages 183-202.

Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. (2009). Formal methods:
Practice and experience. ACM Computing Surveys, 41(4):19:1-19:36.

