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Abstract. This paper presents ongoing research results of an extensible 

visualization pipeline for real-time exploratory analysis of spatially explicit 

simulations. We identify the software requirements and discuss the main 

conceptual and design issues. We propose a protocol for data serialization, a 

high performance monitoring mechanism, and graphical interfaces for 

visualization. Experiments for performance analysis have shown that 

combining multithreading and the BlackBoard design pattern reduces the 

visualization response time in 50%, with no significant increase in memory 

consumption. The components presented in this paper have been integrated in 

the TerraME modeling platform for simulation of terrestrial systems. 

1. Introduction 

Computer modeling of environmental and social processes has been used to carry on 

controlled experiments to simulate the effects of human actions on the environment and 

their feedbacks (Schreinemachers and Berger, 2011). In these studies, simulated 

scenarios analyze issues related to the prognosis of amount and location of changes, 

which may support decision-making or public policies. Computer models are in general 

dynamic and spatially explicit (Sprugel et al., 2009; Wu and David, 2002), using remote 

sensing data and digital maps as inputs.  

 Dynamic spatially explicit models to study nature-society interactions, 

hereinafter referred as environmental models, are capable of generating a huge amount 

of spatiotemporal data in each simulation step. In addition, before any experiment, 

models need to be verified in order to fix logic faults. The sooner such errors are found, 

the sooner the implementation can be completed. Model verification and interpretation 

of simulation results can be more efficiently performed with the support of methods and 

tools capable of synthesizing and analyzing simulation outcomes. 

 Visualization components of environmental modeling platforms differ in the 

way they gather, serialize, and transmit state variable values to graphical interfaces. 

Such platforms may provide high-level languages to implement models or may be 



delivered as libraries for model development in general purpose programming 

languages. In the latter situation, as in Swarm and RePast platforms, state variable 

values are available within the same runtime environment of graphical interfaces (Minar 

et al., 1996; North et al., 2006), making data gathering easier and faster. In the platforms 

that provide embedded languages, as NetLogo and TerraME, state variables are stored 

in this language memory space and need to be copied to the memory space where the 

graphical interfaces are defined (Tisue and Wilensky, 2004; Carneiro, 2006), i.e., to the 

memory space of a simulation core responsible for model interpretation and execution. 

This way, once collected, data needs to be serialized and transmitted according to a 

protocol that can be decoded by the graphical interfaces. As environmental modelers 

use to be specialists in the application domains (biologists, ecologists, etc) and do not 

have strong programming skills, this work focuses on modeling platforms that follow 

the second architecture. 

 As environmental simulations may deal with huge amounts of data, there might 

also be a huge amount of data that need to be transferred, which in turn can make the 

tasks of gathering, serializing, and transmitting data very time consuming. Land use 

change modeling studies discretize space in thousands or millions of regular cells in 

different resolutions, whose patterns of change need to be identified, analyzed and 

understood (Moreira et al., 2009). In these cases, the simulation could run on dedicated 

high-performance hardware, with its results being displayed on remote graphical 

workstations. Therefore, it might be necessary to transfer data from one process in this 

pipeline to the next through a network. 

 The main hypothesis of this work is that combining software design patterns and 

multithreading is a good strategy to improve visualization response times of 

environmental models, keeping the platform simple, extensible, and modular. This work 

presents the architecture of a high performance pipeline for the visualization of 

environmental models. It includes high-level language primitives for visualization 

definition and updating, a serialization protocol, a monitoring mechanism for data 

gathering and transmission, and several graphical interfaces for data visualization. This 

architecture has been implemented and integrated within the TerraME modeling and 

simulation platform (Carneiro, 2006). 

 The remainder of the paper is organized as follows. TerraME modeling 

environment is discussed in Section 2. Related works are presented in Section 3. Section 

4 describes the architecture and implementation of the system, while experiments 

results are presented in Section 5. Finally, in Section 6, we present the final remarks and 

future work. 

2. TerraME modeling and simulation platform 

TerraME is a software platform for the development of multiscale environmental 

models, built jointly by the Federal University of Ouro Preto (UFOP) and the National 

Institute for Space Research (INPE) (Carneiro, 2006). It uses multiple modeling 

paradigms, among them the theory of agents, the discrete-event simulation theory, the 

general systems theory, and the theory of cellular automata (Wooldridge and Jennings, 

1995; Zeigler et al., 2005; von Bertalanffy, 1968; von Neumann, 1966). Users can 

describe TerraME models directly in C++ or in Lua programming language 

(Ierusalimschy et al., 1996). TerraME provides several types of objects to describe 



temporal, behavioral, and spatial features of models. Cell, CellularSpace, and 

Neighborhood types are useful to describe the geographical space. Agent, Automaton 

and Trajectories types represent actors and processes that change space properties. 

Timer and Event types control the simulation dynamics. During a simulation, the Lua 

interpreter embedded within TerraME activates the simulation services from the C++ 

framework whenever an operation is performed over TerraME objects. The TerraLib 

library is used for reading and writing geospatial data to relational database 

management systems (Câmara et al., 2000). The traditional way to visualize the 

outcomes of a simulation in TerraME is by using the geographical information system 

TerraView
1
. However, TerraView cannot monitor the progress of simulations in real-

time. 

3. Related Works 

This section compares the most popular simulation platforms according to services 

related to graphical interfaces to visualize simulation outcomes, including the 

extensibility of such interfaces. Major environmental modeling platforms provide 

graphical interfaces for visualization. However, their visualization components work as 

black boxes and their architectural designs have not been published. Swarm and Repast 

are multi-agent modeling platforms delivered as libraries for general purpose 

programming languages (Minar et al., 1996; North et al., 2006). They provide specific 

objects for monitoring and visualization. New graphical interfaces can be developed by 

inheritance. Their monitoring mechanism periodically updates interfaces in an 

asynchronous way, i.e., simulation runs in parallel with visualization interfaces; it does 

not stop waiting for interface updating. 

NetLogo is a framework that provides tools for multi-agent modeling and simulation 

(Tisue and Wilensky, 2004). Models are described in a visual environment focused in 

building graphical user interfaces by reusing widget components in a drag-and-drop 

fashion. Rules are defined in a high-level programming language. Model structure and 

rules are translated into a source code in a general purpose programming language, 

which is finally compiled. Communication between simulation and graphical interfaces 

is also asynchronous. Graphical interfaces can be periodically updated or explicitly 

notified by the implementation. 

4. Architecture and Implementation 

This section describes computer systems and methods employed to achieve our goals. 

We identify the main requirements of an environmental model visualization pipeline, 

discuss the design of visualization pipeline and graphical interfaces, present the high-

level language primitives used to create visualizations and to associate them to model 

state variables, formally define the serialization protocol, and detail the object oriented 

structure of the monitoring mechanism.    

4.1.  Software requirements 

Some requirements have been considered essential to a visualization pipeline for real-

time exploratory analysis of spatially explicit dynamic models. 

                                                 
1  http://www.dpi.inpe.br/terraview/ 



� Functional requirements: graphically present the dynamics of continuous, 

discrete and spatial state variables; provide visualizations to temporal, spatial 

and behavioral dimensions of an environmental model; graphically exhibit the 

co-evolution of continuous, discrete and spatial state variables so that patterns 

can be identified and understood. 

� Non-functional requirements: present real-time changes in state variables with as 

little as possible impact on the simulation performance; enable the monitoring 

mechanism to be extensible so that new visualizations can be easily developed 

by the user; keep compatibility with models previously written without 

visualizations. 

4.2. Monitoring mechanism outline 

The visualization pipeline designed consists of three main stages: recovery, decoder, 

and rendering. Recovery stage gathers the internal state of a subject in the high-level 

language and serializes it through the protocol described in section 4.3. Decoder stage 

deserializes the data. Finally, rendering stage generates the result image, as shown in 

Figure 1. 

 

Figure 1. Visualization pipeline (Adapted from [Wood et al 2005]) 

 The monitoring mechanism is structured according to the Observer software 

design pattern (Gamma et al., 1995). Graphical interfaces for scientific visualization are 

called observers and present real-time changes in the internal state of any TerraME 

object. Each instance of a model component within an observer is called subject. As 

Figure 2 illustrates, several observers can be linked to a single subject, so that its 

evolving state can be analyzed simultaneously in many ways.  Changes in a subject 

need to be explicitly notified to the observers in the source code. This assures that only 

consistent states will be rendered by the observers and gives complete control to the 

modeler to decide in which changes he is interested. When notified, each observer 

updates itself requesting information about the internal state of its subject. Then, the 

state is serialized and transferred to the observers to render the graphical interface. 
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Figure 2. Monitoring mechanism is structured according to the Observer software design 
pattern 

Graphical interfaces and state variables might potentially exist in the memory 

space of different processes. In TerraME, state variables are stored in Lua during the 

simulation, with observers being defined in the C++ simulation core, as illustrated in 

Figure 3. Each observer is implemented as a light process (thread) avoiding interfaces to 

get frozen due to some heavy CPU load. The blackboard software design pattern has 

been integrated within the monitoring mechanism to intermediate communication 

between subjects and observers (Buschmann, 1996). Blackboard acts as a cache 

memory shared by observers in which the state recovered from the subjects are 

temporarily stored to be reused by different observers. This way, it is maintained in the 

same processes of the observers. This strategy aims to reduce the processing time 

involved in gathering and serializing state variable values, as well as the communication 

between subjects and observers. 

 

 

Figure 3. Monitoring mechanism general architecture   

4.3. Serialization protocol 

Observers are loosely coupled to the subjects. The communication between them is 

performed through the serialization protocol whose message format is described using 

the Backus-Naur formalism as follows.  

 
<subject> ::= <subject identifier> <subject type> <number of attributes> 

<number of internal subjects> [*<attribute>] [*<subject>] 

<attribute> ::= <attribute name> <attribute type> <attribute value>  



 

 A subject has a unique I

attribute. It is recursively defined as a container for several optional internal

The protocol allows the serialization of a complete 

saving communication and processing time.

requires only decoding thes

subjects have been implemented.

4.4. Monitoring mechanism

Figure 4 shows the class diagram of the monitoring mechanism and Figure 5 

shows how the interactions between objects of these

been added to each element in the 

the internal state of the associated 
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Figure 4. Class diagram of monitoring 
Observer design patterns 
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Figure 5. Sequence diagram of monitoring 
pattern and BlackBoard design patterns

 

4.5. TerraME observers 

Several types of observers

co-evolution of discrete, continuous

illustrates a dynamic table and a dynamic dispersion chart showing attributes of a single 

Cell. An attribute is an internal variable or property of some object, such as the size of a 

CellularSpace object and the state of an Agent. 

instants of an observer map 

soil is drawn from light blue to dark blue over the terrain elevation map drawn 

light gray to dark gray. This way, the modeler can intuitively correlate the dynamics of 

the water going downhill with the terrain topography.

 

Figure 6. Different types of TerraME observers: dynamic tables, charts and maps

 

4.6. Monitoring mechanism programming interface

In order to create an observer

declare an Observer object. The following command creates the “myObs” 

monitor the attribute called

Sequence diagram of monitoring mechanism– interaction between Observer 
pattern and BlackBoard design patterns 

observers have been developed to depict the dynamics and the 

evolution of discrete, continuous, and spatial state variables. The left side of Figure 

illustrates a dynamic table and a dynamic dispersion chart showing attributes of a single 

an internal variable or property of some object, such as the size of a 

CellularSpace object and the state of an Agent. The right side shows two different time 

instants of an observer map that displays a CellularSpace. The amount of water in the 

light blue to dark blue over the terrain elevation map drawn 

light gray to dark gray. This way, the modeler can intuitively correlate the dynamics of 

the water going downhill with the terrain topography. 

Different types of TerraME observers: dynamic tables, charts and maps

. Monitoring mechanism programming interface 

observer and attach it to a subject, the modeler must explicitly 

object. The following command creates the “myObs” 

attribute called soilWater from the subject “myCell”:  
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Different types of TerraME observers: dynamic tables, charts and maps 

, the modeler must explicitly 

object. The following command creates the “myObs” observer to 



 

myObs = Observer{ 

    type = "chart", 

    subject = myCell, 

    attributes = {"soilWater"} 

} 

 The parameter type is a string indicating which observer will be used, while the 

parameter subject is a TerraME object. Each type of subject can be visualized by a 

predefined set of observer types. The architecture is also flexible enough to allow the 

modeler to create new observer types, extending the C++ abstract class named 

AbstractObserver. The parameter attributes is a table of subject attributes that will be 

observed. Once created, the observer is ready to show the states of its subject. Each time 

the modeler wants to visualize the changes in a subject, rendering all observers linked to 

it, he must explicitly call the function notify() of this subject. 

5. Performance analysis 

Experiments were conducted to evaluate the performance of the visualization pipeline. 

These experiments measure the memory consumption and the response time involved in 

visualization interface updating. They also identify system bottlenecks, depicting the 

service time of each stage of visualization pipeline. The response time includes: 

(1) Recovery time, which is spent to gather state variables values in the high-level 

language memory space, serializes according to the protocol message format 

(section 3.6) and transfers serialized data to the blackboard; 

(2) Decode time, which is consumed to deserialize the message; 

(3) Waiting time, which is the time elapsed between the instant that a subject request 

observers update by calling its notification function and the instant that this request 

starts to be served by the first observer thread to arrive in the CPU; and 

(4) Rendering time, which the period of time consumed to map data in a visual 

representation and display it in graphical interfaces.  

 As described in Table 1, four experiments were performed, varying the type of 

subject, the number of monitored attributes and the number and type of observers. The 

experiments use an atomic type (Cell) and a composed type (CellularSpace). In 

experiments 1 and 2, a subject Cell with 2 attributes and 12 attributes, respectively, was 

visualized by several chart observers. In experiments 3 and 4, a CellularSpace with 

10000 cells was visualized by 2 map observers and several map observers, respectively. 

This workload evaluates the impact of using blackboard to recover data, reducing the 

communication channel by reusing the decoded data. 

 Experiments were performed in a single machine, a 64 bits Xeon with 32 

GBytes of RAM using Windows 7.  Each experiment was repeated 10 times and 

averaged by memory consumption and the amount of serialized bytes. In each 

experiment, 100 simulation steps were executed and observers were updated at the end 

of each step. 

 



 

 

Table 1 – Workload of the performance analysis experiments 

Experiment Subject Attributes Observer 

1 Cell 2  2 charts 

2 Cell  12  12 chart 

3 100 x 100 CellularSpace  3  2 maps 

4 100 x 100 CellularSpace 13  12 maps 

 

Figure 7 presents the results comparing the simulations with and without 

blackboard (BB) as cache memory. It shows that the blackboard reduces significantly 

the number of serialized bytes, because attributes are serialized in the first data request 

and subsequent observers retrieve this data directly from the cached blackboard. 

 

  

Figure 7. Amount of raw data serialized per notification in each experiment. 

  

Figure 8 shows the average response time of experiments 1 and 2 decomposed in 

the times of each stage of the visualization pipeline. We can see that the rendering is 

most time consuming component. Comparing results of experiments 1 and 2 is possible 

to infer that the number of attributes being observed has a considerable impact on the 

average response time. However, there is no advantage in using blackboard with very 

small subjects.  
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Figure 8. Average response time of experiments 1 and 2. 

  

Figure 9 shows the average response time of experiments 3 and 4 decomposed in 

the service times of each stage of the visualization pipeline. Note that blackboard can 

significantly decrease the average response time in the visualization of large objects. 

  

Figure 9. Average response time of experiments 3 and 4. 

Figure 10 shows the average memory consumption of each experiment. It is 

possible to see that using blackboard does not bring any significant increase in memory 

consumption. 

  

Figure 10. Average memory consumption of each experiment. 
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6. Final Remarks 

In this work, we describe an extensible visualization component for real-time 

monitoring of environmental simulations. We demonstrate that combining 

multithreading and blackboard is a good technique to improve visualization 

performance, significantly decreasing the visualization response time with no expressive 

increase in memory consumption. The developed graphical interfaces are able to render 

discrete, continuous and spatial state variables of environmental models written in 

TerraME, rendering instances of all TerraME types. Visualizations are also able 

to graphically exhibit the co-evolution state variables, allowing the understanding of 

how a variable influences other and help identify some logic faults. The monitoring 

mechanism can be easily extended by inheritance. New observer types can also be 

created using the same mechanism. The new visualization capabilities added to 

TerraME do not affect models previously written in this modeling platform, keeping 

backward compatibility. Consequently, the proposed visualization mechanism satisfies 

all functional requirements stated in section 4.1. 

 Future works include adding a synthesis stage to the visualization pipeline. In 

this new stage, it will be possible to apply filters and statistical operations to raw data to 

make data analysis easier. It is also necessary to implement change control algorithms. 

New experiments will be performed to measure performance by transmitting only 

objects and attributes that have changed along the simulation. Other experiments will 

evaluate the impact of the blackboard and of compression algorithms in a client-server 

version of the proposed visualization mechanism. Initial evaluation of the client-server 

version has shown that the use of blackboard on the client side reduces the exchange of 

messages by half using TCP protocol. Finally, experiments will be conducted to 

quantitatively compare the visualization mechanisms of the most relevant modeling 

platforms with the one presented in this work. 
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