
TerraME Observer: An extensible real-time visualization

pipeline for dynamic spatial models

Antônio José C. Rorigues
1
, Tiago G. S. Carneiro

1
, Pedro R. Andrade

2

1
 TerraLAB – Earth System Modeling and Simulation Laboratory,

Computer Science Department, Federal University of Ouro Preto (UFOP)

Campus Universitário Morro do Cruzeiro – 35400-000

Ouro Preto – MG– Brazil

2
 Earth System Science Center (CCST), National Institute for Space Research (INPE)

Avenida dos Astronautas, 1758, Jardim da Granja – 12227-010

São José dos Campos – SP– Brazil

aj.rodrigues@ymail.com, tiago@iceb.ufop.br, pedro.andrade@inpe.br

Abstract. This paper presents ongoing research results of an extensible

visualization pipeline for real-time exploratory analysis of spatially explicit

simulations. We identify the software requirements and discuss the main

conceptual and design issues. We propose a protocol for data serialization, a

high performance monitoring mechanism, and graphical interfaces for

visualization. Experiments for performance analysis have shown that

combining multithreading and the BlackBoard design pattern reduces the

visualization response time in 50%, with no significant increase in memory

consumption. The components presented in this paper have been integrated in

the TerraME modeling platform for simulation of terrestrial systems.

1. Introduction

Computer modeling of environmental and social processes has been used to carry on

controlled experiments to simulate the effects of human actions on the environment and

their feedbacks (Schreinemachers and Berger, 2011). In these studies, simulated

scenarios analyze issues related to the prognosis of amount and location of changes,

which may support decision-making or public policies. Computer models are in general

dynamic and spatially explicit (Sprugel et al., 2009; Wu and David, 2002), using remote

sensing data and digital maps as inputs.

 Dynamic spatially explicit models to study nature-society interactions,

hereinafter referred as environmental models, are capable of generating a huge amount

of spatiotemporal data in each simulation step. In addition, before any experiment,

models need to be verified in order to fix logic faults. The sooner such errors are found,

the sooner the implementation can be completed. Model verification and interpretation

of simulation results can be more efficiently performed with the support of methods and

tools capable of synthesizing and analyzing simulation outcomes.

 Visualization components of environmental modeling platforms differ in the

way they gather, serialize, and transmit state variable values to graphical interfaces.

Such platforms may provide high-level languages to implement models or may be

delivered as libraries for model development in general purpose programming

languages. In the latter situation, as in Swarm and RePast platforms, state variable

values are available within the same runtime environment of graphical interfaces (Minar

et al., 1996; North et al., 2006), making data gathering easier and faster. In the platforms

that provide embedded languages, as NetLogo and TerraME, state variables are stored

in this language memory space and need to be copied to the memory space where the

graphical interfaces are defined (Tisue and Wilensky, 2004; Carneiro, 2006), i.e., to the

memory space of a simulation core responsible for model interpretation and execution.

This way, once collected, data needs to be serialized and transmitted according to a

protocol that can be decoded by the graphical interfaces. As environmental modelers

use to be specialists in the application domains (biologists, ecologists, etc) and do not

have strong programming skills, this work focuses on modeling platforms that follow

the second architecture.

 As environmental simulations may deal with huge amounts of data, there might

also be a huge amount of data that need to be transferred, which in turn can make the

tasks of gathering, serializing, and transmitting data very time consuming. Land use

change modeling studies discretize space in thousands or millions of regular cells in

different resolutions, whose patterns of change need to be identified, analyzed and

understood (Moreira et al., 2009). In these cases, the simulation could run on dedicated

high-performance hardware, with its results being displayed on remote graphical

workstations. Therefore, it might be necessary to transfer data from one process in this

pipeline to the next through a network.

 The main hypothesis of this work is that combining software design patterns and

multithreading is a good strategy to improve visualization response times of

environmental models, keeping the platform simple, extensible, and modular. This work

presents the architecture of a high performance pipeline for the visualization of

environmental models. It includes high-level language primitives for visualization

definition and updating, a serialization protocol, a monitoring mechanism for data

gathering and transmission, and several graphical interfaces for data visualization. This

architecture has been implemented and integrated within the TerraME modeling and

simulation platform (Carneiro, 2006).

 The remainder of the paper is organized as follows. TerraME modeling

environment is discussed in Section 2. Related works are presented in Section 3. Section

4 describes the architecture and implementation of the system, while experiments

results are presented in Section 5. Finally, in Section 6, we present the final remarks and

future work.

2. TerraME modeling and simulation platform

TerraME is a software platform for the development of multiscale environmental

models, built jointly by the Federal University of Ouro Preto (UFOP) and the National

Institute for Space Research (INPE) (Carneiro, 2006). It uses multiple modeling

paradigms, among them the theory of agents, the discrete-event simulation theory, the

general systems theory, and the theory of cellular automata (Wooldridge and Jennings,

1995; Zeigler et al., 2005; von Bertalanffy, 1968; von Neumann, 1966). Users can

describe TerraME models directly in C++ or in Lua programming language

(Ierusalimschy et al., 1996). TerraME provides several types of objects to describe

temporal, behavioral, and spatial features of models. Cell, CellularSpace, and

Neighborhood types are useful to describe the geographical space. Agent, Automaton

and Trajectories types represent actors and processes that change space properties.

Timer and Event types control the simulation dynamics. During a simulation, the Lua

interpreter embedded within TerraME activates the simulation services from the C++

framework whenever an operation is performed over TerraME objects. The TerraLib

library is used for reading and writing geospatial data to relational database

management systems (Câmara et al., 2000). The traditional way to visualize the

outcomes of a simulation in TerraME is by using the geographical information system

TerraView
1
. However, TerraView cannot monitor the progress of simulations in real-

time.

3. Related Works

This section compares the most popular simulation platforms according to services

related to graphical interfaces to visualize simulation outcomes, including the

extensibility of such interfaces. Major environmental modeling platforms provide

graphical interfaces for visualization. However, their visualization components work as

black boxes and their architectural designs have not been published. Swarm and Repast

are multi-agent modeling platforms delivered as libraries for general purpose

programming languages (Minar et al., 1996; North et al., 2006). They provide specific

objects for monitoring and visualization. New graphical interfaces can be developed by

inheritance. Their monitoring mechanism periodically updates interfaces in an

asynchronous way, i.e., simulation runs in parallel with visualization interfaces; it does

not stop waiting for interface updating.

NetLogo is a framework that provides tools for multi-agent modeling and simulation

(Tisue and Wilensky, 2004). Models are described in a visual environment focused in

building graphical user interfaces by reusing widget components in a drag-and-drop

fashion. Rules are defined in a high-level programming language. Model structure and

rules are translated into a source code in a general purpose programming language,

which is finally compiled. Communication between simulation and graphical interfaces

is also asynchronous. Graphical interfaces can be periodically updated or explicitly

notified by the implementation.

4. Architecture and Implementation

This section describes computer systems and methods employed to achieve our goals.

We identify the main requirements of an environmental model visualization pipeline,

discuss the design of visualization pipeline and graphical interfaces, present the high-

level language primitives used to create visualizations and to associate them to model

state variables, formally define the serialization protocol, and detail the object oriented

structure of the monitoring mechanism.

4.1. Software requirements

Some requirements have been considered essential to a visualization pipeline for real-

time exploratory analysis of spatially explicit dynamic models.

1 http://www.dpi.inpe.br/terraview/

� Functional requirements: graphically present the dynamics of continuous,

discrete and spatial state variables; provide visualizations to temporal, spatial

and behavioral dimensions of an environmental model; graphically exhibit the

co-evolution of continuous, discrete and spatial state variables so that patterns

can be identified and understood.

� Non-functional requirements: present real-time changes in state variables with as

little as possible impact on the simulation performance; enable the monitoring

mechanism to be extensible so that new visualizations can be easily developed

by the user; keep compatibility with models previously written without

visualizations.

4.2. Monitoring mechanism outline

The visualization pipeline designed consists of three main stages: recovery, decoder,

and rendering. Recovery stage gathers the internal state of a subject in the high-level

language and serializes it through the protocol described in section 4.3. Decoder stage

deserializes the data. Finally, rendering stage generates the result image, as shown in

Figure 1.

Figure 1. Visualization pipeline (Adapted from [Wood et al 2005])

 The monitoring mechanism is structured according to the Observer software

design pattern (Gamma et al., 1995). Graphical interfaces for scientific visualization are

called observers and present real-time changes in the internal state of any TerraME

object. Each instance of a model component within an observer is called subject. As

Figure 2 illustrates, several observers can be linked to a single subject, so that its

evolving state can be analyzed simultaneously in many ways. Changes in a subject

need to be explicitly notified to the observers in the source code. This assures that only

consistent states will be rendered by the observers and gives complete control to the

modeler to decide in which changes he is interested. When notified, each observer

updates itself requesting information about the internal state of its subject. Then, the

state is serialized and transferred to the observers to render the graphical interface.

Recovery Decoder

Draw

Rendering

Figure 2. Monitoring mechanism is structured according to the Observer software design
pattern

Graphical interfaces and state variables might potentially exist in the memory

space of different processes. In TerraME, state variables are stored in Lua during the

simulation, with observers being defined in the C++ simulation core, as illustrated in

Figure 3. Each observer is implemented as a light process (thread) avoiding interfaces to

get frozen due to some heavy CPU load. The blackboard software design pattern has

been integrated within the monitoring mechanism to intermediate communication

between subjects and observers (Buschmann, 1996). Blackboard acts as a cache

memory shared by observers in which the state recovered from the subjects are

temporarily stored to be reused by different observers. This way, it is maintained in the

same processes of the observers. This strategy aims to reduce the processing time

involved in gathering and serializing state variable values, as well as the communication

between subjects and observers.

Figure 3. Monitoring mechanism general architecture

4.3. Serialization protocol

Observers are loosely coupled to the subjects. The communication between them is

performed through the serialization protocol whose message format is described using

the Backus-Naur formalism as follows.

<subject> ::= <subject identifier> <subject type> <number of attributes>

<number of internal subjects> [*<attribute>] [*<subject>]

<attribute> ::= <attribute name> <attribute type> <attribute value>

 A subject has a unique I

attribute. It is recursively defined as a container for several optional internal

The protocol allows the serialization of a complete

saving communication and processing time.

requires only decoding thes

subjects have been implemented.

4.4. Monitoring mechanism

Figure 4 shows the class diagram of the monitoring mechanism and Figure 5

shows how the interactions between objects of these

been added to each element in the

the internal state of the associated

need to be updated to reflect

observers about changes in a

When an observer requests

first updates itself, sets its dirty

All others observers that need to be updated will find the data already

and stored in the blackboard

there are many observers linked to it. After rendering the new subject state, an observer

sets it dirty-bit to false to indicate

Figure 4. Class diagram of monitoring
Observer design patterns

unique ID, characterized by its type and an optional

defined as a container for several optional internal

The protocol allows the serialization of a complete subject or only the changed parts,

saving communication and processing time. Extending TerraME with new observers

decoding these messages and rendering their content, no matter how

subjects have been implemented.

mechanism detailed structure

Figure 4 shows the class diagram of the monitoring mechanism and Figure 5

interactions between objects of these classes take place

been added to each element in the blackboard and to each observer. It indicates whether

the internal state of the associated subject has changed, pointing out that such

need to be updated to reflect the new state. Thus, when the modeler notifies the

about changes in a subject, this notification only sets the dirty

requests data about a dirty subject stored in the blackboard

ts dirty-bit to false, and then forwards the data to the

All others observers that need to be updated will find the data already decoded,

blackboard. This way, a subject is serialized only once, even when

linked to it. After rendering the new subject state, an observer

to indicate that the visualization is updated.

Class diagram of monitoring mechanism - integration between Blackboard and

n optional sequence of

defined as a container for several optional internal subjects.

the changed parts,

Extending TerraME with new observers

content, no matter how

Figure 4 shows the class diagram of the monitoring mechanism and Figure 5

place. A dirty-bit has

It indicates whether

, pointing out that such objects

new state. Thus, when the modeler notifies the

, this notification only sets the dirty-bits to true.

blackboard, the latter

bit to false, and then forwards the data to the observer.

decoded, updated,

only once, even when

linked to it. After rendering the new subject state, an observer

Blackboard and

Figure 5. Sequence diagram of monitoring
pattern and BlackBoard design patterns

4.5. TerraME observers

Several types of observers

co-evolution of discrete, continuous

illustrates a dynamic table and a dynamic dispersion chart showing attributes of a single

Cell. An attribute is an internal variable or property of some object, such as the size of a

CellularSpace object and the state of an Agent.

instants of an observer map

soil is drawn from light blue to dark blue over the terrain elevation map drawn

light gray to dark gray. This way, the modeler can intuitively correlate the dynamics of

the water going downhill with the terrain topography.

Figure 6. Different types of TerraME observers: dynamic tables, charts and maps

4.6. Monitoring mechanism programming interface

In order to create an observer

declare an Observer object. The following command creates the “myObs”

monitor the attribute called

Sequence diagram of monitoring mechanism– interaction between Observer
pattern and BlackBoard design patterns

observers have been developed to depict the dynamics and the

evolution of discrete, continuous, and spatial state variables. The left side of Figure

illustrates a dynamic table and a dynamic dispersion chart showing attributes of a single

an internal variable or property of some object, such as the size of a

CellularSpace object and the state of an Agent. The right side shows two different time

instants of an observer map that displays a CellularSpace. The amount of water in the

light blue to dark blue over the terrain elevation map drawn

light gray to dark gray. This way, the modeler can intuitively correlate the dynamics of

the water going downhill with the terrain topography.

Different types of TerraME observers: dynamic tables, charts and maps

. Monitoring mechanism programming interface

observer and attach it to a subject, the modeler must explicitly

object. The following command creates the “myObs”

attribute called soilWater from the subject “myCell”:

interaction between Observer

the dynamics and the

and spatial state variables. The left side of Figure 6

illustrates a dynamic table and a dynamic dispersion chart showing attributes of a single

an internal variable or property of some object, such as the size of a

The right side shows two different time

. The amount of water in the

light blue to dark blue over the terrain elevation map drawn from

light gray to dark gray. This way, the modeler can intuitively correlate the dynamics of

Different types of TerraME observers: dynamic tables, charts and maps

, the modeler must explicitly

object. The following command creates the “myObs” observer to

myObs = Observer{

 type = "chart",

 subject = myCell,

 attributes = {"soilWater"}

}

 The parameter type is a string indicating which observer will be used, while the

parameter subject is a TerraME object. Each type of subject can be visualized by a

predefined set of observer types. The architecture is also flexible enough to allow the

modeler to create new observer types, extending the C++ abstract class named

AbstractObserver. The parameter attributes is a table of subject attributes that will be

observed. Once created, the observer is ready to show the states of its subject. Each time

the modeler wants to visualize the changes in a subject, rendering all observers linked to

it, he must explicitly call the function notify() of this subject.

5. Performance analysis

Experiments were conducted to evaluate the performance of the visualization pipeline.

These experiments measure the memory consumption and the response time involved in

visualization interface updating. They also identify system bottlenecks, depicting the

service time of each stage of visualization pipeline. The response time includes:

(1) Recovery time, which is spent to gather state variables values in the high-level

language memory space, serializes according to the protocol message format

(section 3.6) and transfers serialized data to the blackboard;

(2) Decode time, which is consumed to deserialize the message;

(3) Waiting time, which is the time elapsed between the instant that a subject request

observers update by calling its notification function and the instant that this request

starts to be served by the first observer thread to arrive in the CPU; and

(4) Rendering time, which the period of time consumed to map data in a visual

representation and display it in graphical interfaces.

 As described in Table 1, four experiments were performed, varying the type of

subject, the number of monitored attributes and the number and type of observers. The

experiments use an atomic type (Cell) and a composed type (CellularSpace). In

experiments 1 and 2, a subject Cell with 2 attributes and 12 attributes, respectively, was

visualized by several chart observers. In experiments 3 and 4, a CellularSpace with

10000 cells was visualized by 2 map observers and several map observers, respectively.

This workload evaluates the impact of using blackboard to recover data, reducing the

communication channel by reusing the decoded data.

 Experiments were performed in a single machine, a 64 bits Xeon with 32

GBytes of RAM using Windows 7. Each experiment was repeated 10 times and

averaged by memory consumption and the amount of serialized bytes. In each

experiment, 100 simulation steps were executed and observers were updated at the end

of each step.

Table 1 – Workload of the performance analysis experiments

Experiment Subject Attributes Observer

1 Cell 2 2 charts

2 Cell 12 12 chart

3 100 x 100 CellularSpace 3 2 maps

4 100 x 100 CellularSpace 13 12 maps

Figure 7 presents the results comparing the simulations with and without

blackboard (BB) as cache memory. It shows that the blackboard reduces significantly

the number of serialized bytes, because attributes are serialized in the first data request

and subsequent observers retrieve this data directly from the cached blackboard.

Figure 7. Amount of raw data serialized per notification in each experiment.

Figure 8 shows the average response time of experiments 1 and 2 decomposed in

the times of each stage of the visualization pipeline. We can see that the rendering is

most time consuming component. Comparing results of experiments 1 and 2 is possible

to infer that the number of attributes being observed has a considerable impact on the

average response time. However, there is no advantage in using blackboard with very

small subjects.

121.818
179.636

415.818

992.000

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

with BB without BB

n
u

m
b

e
r

o
f

b
y

te
s

(b
y

te
s)

Exp 1 and 2 - Sum serialized bytes

Test 1 Test 2

1.205
1.785

4.076

9.857

0.000

2.000

4.000

6.000

8.000

10.000

12.000

with BB without BB

n
u

m
b

e
r

o
f

b
y

te
s

(K
B

)

Exp 3 and 4 - Sum serialized bytes

Test 1 Test 2

Figure 8. Average response time of experiments 1 and 2.

Figure 9 shows the average response time of experiments 3 and 4 decomposed in

the service times of each stage of the visualization pipeline. Note that blackboard can

significantly decrease the average response time in the visualization of large objects.

Figure 9. Average response time of experiments 3 and 4.

Figure 10 shows the average memory consumption of each experiment. It is

possible to see that using blackboard does not bring any significant increase in memory

consumption.

Figure 10. Average memory consumption of each experiment.

3.687 3.641

0.625 0.697

4.416 4.432

0.0

1.0

2.0

3.0

4.0

5.0

with BB without BB

ti
m

e
 (

m
s)

Exp 1 - Average response time

Decoder Rendering wait Handle-Draw

Recovery Handle Total

18.740 18.850

2.183 2.276

21.159 21.467

0.0

5.0

10.0

15.0

20.0

25.0

with BB without BB

ti
m

e
 (

m
s)

Exp 2 - Average response time

Decoder Rendering wait Handle-Draw

Recovery Handle Total

48.565 74.757

153.630
152.580

133.392

233.091

337.917

467.659

0.0

100.0

200.0

300.0

400.0

500.0

with BB without BB

ti
m

e
 (

m
s)

Exp 3 - Average response time

Decoder Rendering Wait Handle-Draw

Recovery Handle Total

138.996
408.358

849.503

833.238

284.063

1278.025

1283.341

2558.004

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

with BB without BB

ti
m

e
 (

m
s)

Exp 4 - Average response time

Decoder Rendering Wait Handle-Draw

Recovery Handle Total

156.328

160.701

156.275

160.604

150.0

152.0

154.0

156.0

158.0

160.0

162.0

Exp 1 Exp 2

m
e

m
o

ry
 (

M
B

)

Exp 1 and 2 - Average Memory

Consumption

with BB without BB

234.237

550.510

231.763

536.289

0.0

100.0

200.0

300.0

400.0

500.0

600.0

Exp 1 Exp 2

m
e

m
o

ry
 (

M
B

)

Exp 3 and 4 - Average memory

consumption

with BB without BB

6. Final Remarks

In this work, we describe an extensible visualization component for real-time

monitoring of environmental simulations. We demonstrate that combining

multithreading and blackboard is a good technique to improve visualization

performance, significantly decreasing the visualization response time with no expressive

increase in memory consumption. The developed graphical interfaces are able to render

discrete, continuous and spatial state variables of environmental models written in

TerraME, rendering instances of all TerraME types. Visualizations are also able

to graphically exhibit the co-evolution state variables, allowing the understanding of

how a variable influences other and help identify some logic faults. The monitoring

mechanism can be easily extended by inheritance. New observer types can also be

created using the same mechanism. The new visualization capabilities added to

TerraME do not affect models previously written in this modeling platform, keeping

backward compatibility. Consequently, the proposed visualization mechanism satisfies

all functional requirements stated in section 4.1.

 Future works include adding a synthesis stage to the visualization pipeline. In

this new stage, it will be possible to apply filters and statistical operations to raw data to

make data analysis easier. It is also necessary to implement change control algorithms.

New experiments will be performed to measure performance by transmitting only

objects and attributes that have changed along the simulation. Other experiments will

evaluate the impact of the blackboard and of compression algorithms in a client-server

version of the proposed visualization mechanism. Initial evaluation of the client-server

version has shown that the use of blackboard on the client side reduces the exchange of

messages by half using TCP protocol. Finally, experiments will be conducted to

quantitatively compare the visualization mechanisms of the most relevant modeling

platforms with the one presented in this work.

Acknowledgements

The authors would like to thank the Pos-Graduate Program in Computer Science and the

TerraLAB modeling and simulation laboratory of the Federal University of Ouro Preto

(UFOP), in Brazil. This work was supported by the CNPq/MCT grant 560130/2010-4,

CT-INFO 09/2010.

References

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-

oriented software architecture: a system of patterns. John Wiley & Sons, Inc.

Câmara, G., Souza, R., Pedrosa, B., Vinhas, L., Monteiro, A.M., Paiva, J., Carvalho,

M.T., Gattass, M., (2000). TerraLib: Technology in Support of GIS Innovation, II

Brazilian Symposium on Geoinformatics, GeoInfo2000: São Paulo.

Carneiro, T. G. S. (2006). Nested-CA: a foundation for multiscale modeling of land use

and land change.. Ph.D Thesis, INPE - Instituto Nacional de Pesquisas Espaciais,

Brazil, Computação Aplicada.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements

of reusable object-oriented software. Addison-Wesley Professional.

Ierusalimschy, R., Figueiredo, L.H., Celes, W., (1996). Lua-an extensible extension

language. Software: Practice & Experience 26(6) 635-652.

Minar, N., Burkhart, R., Langton, C., Askenazi, M., (1996). The Swarm Simulation

System: A Toolkit for Building Multi-Agent Simulation. SFI Working Paper 96-06-

042

Moreira, E.; Costa, S.; Aguiar, A. P.; Câmara, G., Carneiro, T. G. S., (2009). Dynamical

coupling of multiscale land change models Landscape Ecology, Springer

Netherlands, 24, 1183-1194

North, M.J., Collier, N.T., Vos, J.R., (2006). Experiences Creating Three

Implementations of the Repast Agent Modeling Toolkit. ACM Transactions on

Modeling and Computer Simulation 16(1) 1-25.

Schreinemachers, P. and Berger, T. (2011). An agent-based simulation model of

human-environment interactions in agricultural systems. Environmental Modelling

& Software, 26(7):845 – 859.

Sprugel, D. G., Rascher, K. G., Gersonde, R., Dovciak, M., Lutz, J. A., and Halpern, C.

B. (2009). Spatially explicit modeling of overstory manipulations in young forests:

Effects on stand structure and light. Ecological Modelling, 220(24):3565 – 3575.

Tisue, S., Wilensky, U., (2004). NetLogo: A Simple Environment for Modeling

Complexity, International Conference on Complex Systems: Boston.

von Neumann, J., (1966). Theory of Self-Reproducing Automata. Edited and completed

by A.W. Burks., Illinois

Wood, J.; Kirschenbauer, S; Döner, J.; Lopes, Adriano and Bodum, L. (2005). Using

3D in Visualization. In: Dykes, J; Maceachren, A. M.; Kraak, J. (Eds.). Exploring

Geovisualization. Elsevier. p. 295-312.

Wooldridge, M.J., Jennings, N.R., (1995). Intelligent agents: Theory and practice.

Knowledge Engineering Review 10(2).

Wu, J. and David, J. L. (2002). A spatially explicit hierarchical approach to modeling

complex ecological systems: theory and applications. Ecological Modelling, 153(1-

2):7 – 26.

Zeigler, B.P., Kim, T.G., Praehofer, H., (2005). Theory of modeling and simulation.

Academic Press, Inc., Orlando, FL, USA.

