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Abstract: This study evaluates the potential of C- and L-band polarimetric SAR data for 

the discrimination of iron-mineralized laterites in the Brazilian Amazon region. The study 

area is the N1 plateau located on the northern border of the Carajás Mineral Province, the 

most important Brazilian mineral province which has numerous mineral deposits, 

particularly the world’s largest iron deposits. The plateau is covered by low-density 

savanna-type vegetation (campus rupestres) which contrasts visibly with the dense 

equatorial forest. The laterites are subdivided into three units: chemical crust, iron-ore 

duricrust, and hematite, of which only the latter two are of economic interest. Full 

polarimetric data from the airborne R99B sensor of the SIVAM/CENSIPAM (L-band) 

system and the RADARSAT-2 satellite (C-band) were evaluated. The study focused on an 

assessment of distinct schemes for digital classification based on decomposition theory and 

hybrid approach, which incorporates statistical analysis as input data derived from the 

target decomposition modeling. The results indicated that the polarimetric classifications 

presented a poor performance, with global Kappa values below 0.20. The accuracy for the 

identification of units of economic interest varied from 55% to 89%, albeit with high 

commission error values. In addition, the results using L-band were considered superior 
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compared to C-band, which suggest that the roughness scale for laterite discrimination in 

the area is nearer to L than to C-band. 

Keywords: polarimetric SAR; digital classification; geology/laterites mapping; 

Carajás Province 

 

1. Introduction 

The use of radar images in geological surveys is a well-established procedure, and has been 

employed in several studies in the moist tropics, such as integrated, multisource data procedures [1–5], 

monoscopic and stereoscopic visual analysis [6], and digital classification based on textural  

attributes [7]. In all these cases, the data were analyzed based on the amplitude or intensity of the 

backscattered signal. These approaches exploit primarily the brightness and texture of the images in 

different configurations of viewing geometry, polarization, and frequencies. However, when using 

intensity, only part of the signal attributes is available for deriving target information. This limitation 

can be overcome through the use of polarimetric data, on which intensity and vector phase 

representing the electromagnetic wave polarization of each pixel are fully measured and recorded.  

Techniques based on the target decomposition theory and statistical properties of the backscattered 

signal constitute the primary approach to the radar polarimetric classifications, which are used mainly 

in environmental applications, particularly for forest type classifications [8]. On the other hand, 

geosciences applications using polarimetric data are still scarce in radar literature, given that this kind 

of data has only become available with the advent of ALOS (2004) and RADARSAT-2 (2007) 

satellites. Trisasongko et al. [9] presented one of the few examples of the application of SAR polarimetry 

in geology using classification techniques for tailing deposits mapping on a mining area in Indonesia. 

Hugenholtz and van der Sanden [10] also used airborne C-band polarimetric images to map different types 

of coastal environments in the intertidal zone of Bay of Fundy, Canada. Ramsey III., et al. [11] applied 

decomposition in L-band polarimetric images acquired by unmanned airborne vehicle to assess 

environmental impacts on coastal marshes of Barataria Bay disaster caused by the oil spill in the Gulf 

of Mexico. This technique was also used by Yonezawa et al. [12] to examine landslides caused by an 

earthquake in northern Japan using L-band images from PALSAR/ALOS. Thus, the objective of the 

present investigation is to evaluate the potential of polarimetric L- and C-bands data for discrimination 

of iron-mineralized laterites in the N1 iron deposit, located in the Carajás Mineral Province, 

easternmost border of the Brazilian Amazon region. This study is an outgrowth of previous researches 

of the authors focusing on the use of orbital SAR data to improve the critical lack of environmental 

and geological information in Carajás Province. Due to the economic importance of this area, there is a 

practical need to provide accurate and up-to-date surface maps to support mineral exploration and 

environmental programs. 
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2. Study Area 

Fully owned by Vale mining company, the world’s biggest producer of iron ore and pellets and the 

world’s second largest miner, Carajás Province contains known reserves of the order of 18 billion tons 

with an average grade of 65.4% Fe content. Following these discoveries, numerous other metalliferous 

deposits have been identified including manganese, alumina, nickel, tin, gold, platinum group elements 

and copper. More recently, the area has been recognized as a major copper-gold province, after the 

discovery of a number of world-class iron oxide, copper-gold deposits, and an emerging nickel laterite 

district, making Carajás an important and under-explored metallogenic province. The N1 deposit is the 

first of a series of similar plateaus located in the northern border of the Carajás Mineral Province 

(CMP), in the central-southern region of Pará state (Figure 1). This deposit is part of a 24 km
2
 plateau 

that contains approximately 854 million tons with 66.4% iron concentration [7]. Since 1967, when the 

deposit was discovered, a remarkable geobotanical control has been characterized, which is expressed 

by the iron-mineralized laterites and low-density savanna-type vegetation (campus rupestres) 

contrasting markedly with the dense rainforest found in the surrounding area [13].  

Figure 1. Location of the study area in the Brazilian state of Pará. 

 

 

The CMP is part of the Archean tectonic domain known as the Itacaiúnas Shear Belt, found in the 

eastern portion of the Amazonian craton, which is composed of high-grade metamorphic complexes, 

volcanic-sedimentary sequences, and granite-greenstone terrains [14]. The Carajás Belt is a highly 

mineralized province, with enormous reserves of iron and manganese, as well as Au-Cu deposits 

encompassing the Carajás gold-copper belt [15]. The N1 area has rocks of the Grão Pará Group, and 

has been subdivided into two units: volcanic rocks of the Parauapebas Formation [16], and the 

ironstones of the Carajás Formation [17]. The volcanic-sedimentary sequences of the Carajás region 

are covered by a thick layer of laterite, which was probably formed during the lower Tertiary. During 
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the upper Tertiary and the Quaternary, the area was subjected to a regional uplifting that  

led to the dissection of the lateritic cover and the formation of the individual plateaus observed in the 

present day [18].  

The ironstones of the Carajás Formation are composed of distinct types of iron ore from oxide 

facies, mainly jaspelite and interlayered hematite and silica types. Due to a deep lateritic weathering 

caused by the humid tropical climate conditions, ferruginous lateritic duricrusts and latosoils are well 

developed in the whole plateau, showing varying degrees of weathering expressed by differences in 

mineral composition, hardness and texture. The lateritic crusts are covered by a specific low-dense 

savanna-type vegetation (―campus rupestres‖), characterized by a dominance of low bushes (mostly 

herbaceous grass-like plants, shrubs and herbs). The presence of arboreal components is restricted [13]. 

The N1 plateau was mapped in the late 1960s (Figure 2(a)) during the economic evaluation of the iron 

reserves in the Province [19] and the ferruginous crusts were classified as: duricrust (in situ duricrusts 

with limonite blocks), chemical crust (hematite fragments with goethitic pisolites), iron-ore duricrusts 

(hematite ore blocks and subordinately specularite, cemented with hydrous ferric oxides) and hematite 

(mainly outcrops). However, for field operational purposes, the laterite crusts are currently classified 

by Vale mining company, in just two classifications: a chemical crust which covers the volcanic rocks, 

and an iron-ore duricrust, consisting of iron mineralization, with a 15–20 m thick layer, and considered 

to be a good indicator for surveying of deposits [20]. For the purpose of this investigation, an 

integrated surficial geological map was produced, which took into account the previous and the current 

information produced by Vale. This map was used as the reference map for the validation of the 

products generated by the digital classification (Figure 2(b)). In this map, the hematite and iron-ore 

duricrust classes were grouped as a single entity—referred to as the economic interest ore class—while 

the remaining classes from the original map were grouped together as the chemical crust class. 

Figure 2. (a) Map of the surface geology of the N1 plateau presented by Resende and 

Barbosa (1974) [19]; (b) Reference map for this study adapted from [19] used for the 

validation of the classifications.  

  

(a) (b) 
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3. Material and Methods 

The present study was based on the analysis of L-band images obtained from the airborne  

SAR-R99B sensor, and C-band images from the orbital RADARSAT-2 sensor. For the acquisition of 

L-band data, the airborne sensor SAR-R99B from the Brazilian SIVAM (Amazon Surveillance 

System) was used. The SAR-R99B was developed by MacDonald Dettwiler and was installed on a 

modified EMBRAER jet (EMB-145) presenting fully polarimetric L-band mapping mode attributes. The 

SAR-R99B images used in the present study were provided through an extensive airborne acquisition 

campaign carried out in 2005, as part of the simulation mission MAPSAR, a German-Brazilian 

feasibility study focusing on an L-band light SAR [21]. The calibration of the airborne images was 

done in three steps, the first one was the antenna pattern correction, the second was the polarimetric 

calibration and the last one was the estimation of the sigma nought based on the response of the 

trihedral corner reflectors deployed in the field during the flight campaign. Details of these procedures 

can be found in [22]. The polarimetric calibration was based on the method of Quegan [23], in which 

the system noise is corrected using the crosstalk and imbalance channel techniques, in addition to 

absolute calibration based on the peak potential technique using the backscattered cross-section of the 

corner reflectors. The values obtained in the calibration of the R99B images were considered to be 

satisfactory by Mura et al. [22] and the quality of the images was reinforced by crosstalk levels of less 

than −30 dB. On the other hand, the quality of the RADARSAT-2 polarimetric images is supported by 

the values of the 0.3 dB imbalance channel and −40 dB crosstalk [24]. The RADARSAT-2 images 

available for the investigation were provided under the Science and Operational Applications Research 

(SOAR) programme, and refer to a Fine Quad Pol mode (FQP) coverage in ascending orbit, acquired 

over the study area in November 2008. It is important to mention that both SAR data can be considered 

as related to the dry season, since no relevant variation of moisture was associated with the 

acquisitions. The main characteristics of the SAR dataset are shown in Table 1.  

Table 1. Characteristics of the SAR images acquired by the R99B and RADARSAT-2 sensors. 

Parameter 
Sensor 

R99B RADARSAT-2 

Frequency GHz (Band) 1.28 (L) 5.40 (C) 

Wave length (cm) 23.9 5.6  

Polarization 

(Acquisition mode) 

HH/HV/VH/VV 

(Quad-Pol) 

HH/HV/VH/VV 

(Fine-Quad-Pol) 

Processing level SLC * SLC * 

Type of data (n. de looks) Polarimetric (8) Polarimetric (1) 

Resolution/m (rg × az.) 6.0 × 0.5 5.2 × 7.6 

Pixel spacing/cm (rg × az.) 2.5 × 1 (slant) 4.73 × 4.98 (slant) 

Orbit Descending Ascending 

Acquisition date 15/June/2005 15/Nov/2008 

Incidence angle interval 53.37°–67.23° 31.297°–32.987° 

* SLC—Single Look Complex.  
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The R99B and RADARSAT-2 images were processed in Single Look Complex (SLC) format. The 

images were converted to scattering matrix [S] and then to covariance [C] and coherence [T] matrices. 

In order to reduce speckle the modified Lee filter (5 × 5 window) was then applied to the data. The 

polarimetric classifiers evaluated here were based on the target decomposition theorem. The principal 

aim of this theorem is to characterize the target polarimetric responses as a combination of polarimetric 

responses to canonical scattering mechanisms, in which the proportional contribution of each 

scattering to the mean response is represented by the scattering coefficient [25]. The techniques 

proposed by Freeman and Durden [26] and Cloude and Pottier [27] were evaluated in this 

investigation. The Freeman-Durden approach decomposes a measured covariance matrix [C] into three 

scattering matrices corresponding to rough surface scatter (first-order Bragg surface scatter), volume 

scatter (canopy scatter from randomly oriented dipole), and a double bounce scatter based on physical 

model. These components are the principal elements in the backscattering from natural terrain [28]. 

The covariance matrix [C] for reciprocal media (or isotropic natural targets) is defined as:  

                 
 
 

            
(1) 

where   and   are a target vector and transpose, respectively, * denote complex conjugate,     denote 

ensemble averaging operation. Sij is the scattering coefficient, transmitted in the j polarization plane, and 

received in the i polarization plane.  

The model estimates the contribution of each of these components to total scattering as:  

                              (2) 

where       is the covariance matrix of the volumetric scattering,       is the covariance matrix of 

surface scattering, and       is the covariance matrix of double-bounce scattering. The terms   ,   , 

and    are the surface, double-bounce, and volume scatter components, respectively, and correspond to 

the individual contribution of each scattering component to the final matrix of covariance.  

The contribution of each scattering mechanism to the total power P is estimated as:  

                       
       

  (3) 

where 

              

              

         

(4) 

α and β are a ratio of hh backscatter to vv backscatter concerning the double bounce and surface 

scattering. 

The technique developed by Cloude and Pottier [27] considers that the information contained in the 

coherence matrix [T] is the result of the contribution of the three types of scattering mechanisms, in 

which each scattering is modeled by a canonical target represented by its scattering matrix     , based 

on the expression:  

             
                  

 

   

 (5) 
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where    are the eigenvalues of       and    its related eigenvector.  

The relative importance of each scattering to the value of       is given by the eigenvalue derived 

from the coherence matrix [27]. 

In order to simplify the analysis of the physical information provided by the eigenvector-eigenvalue 

decomposition procedure, three secondary parameters are defined as a function of the eigenvectors and 

eigenvalues of          

(i) Entropy (H), which measures the degree of randomness or statistical disorder of the scattering 

process (H = 0 indicates the presence of a totally polarized signal, which implies that the 

scattering is controlled by a pure or localized target, whereas H = 1 implies that scattering is 

due to a number of well-distributed targets); 

(ii) Anisotropy (A), defined as a complementary parameter to entropy, which provide information 

on the relative importance of the second and third scattering mechanisms based on the 

relationship between their respective eigenvalues (λ2 and λ3). In practical terms, anisotropy may 

be used as a source of discrimination when H > 0.7. This is because, when entropy is low,    

and    are affected considerably by noise, as is anisotropy [29];  

(iii) Mean alpha angle (  ) stands for the indicator of the mean scattering mechanism. A value close 

to zero relates surface reflection for scattering, from a dipole    equals π/4 and reaches π/2 when 

the target consists in a metallic dihedral scatterer.  

The H and    parameters clearly define the scattering characteristics of a medium, and the plane 

formed by these values is used as a reference for the classification procedures. The H-   is divided into 

nine zones [27]. The limits of each zone are arbitrary and the absolute magnitude of the eigenvalues 

and other angles are not incorporated into the classification scheme [29]. Table 2 shows a nine-zone 

segmentation scheme and represents scattering mechanisms on the H-   plane [12]. 

Table 2. The H-   plane partioned into nine zone (adapted from Cloude and Pottier [27]).  

Zone Entropy, H Alpha,    (°) Scattering Type 

1 0.9–1.0 55–90 High Entropy Multiple Scattering 

2 0.9–1.0 40–45 High Entropy Vegetation Scattering 

3 0.9–1.0 0–40 High Entropy Surface Scattering 

4 0.5–0.9 50–90 Medium Entropy Multiple Scattering 

5 0.5–0.9 40–50 Medium Entropy Vegetation Scattering 

6 0.5–0.9 0–40 Medium Entropy Surface Scattering 

7 0–0.5 47.5–90 Low Entropy Multiple Scattering Events 

8 0–0.5 42.5–47.5 Low Entropy Dipole Scattering 

9 0–0.5 0–42.5 Low Entropy Surface Scattering  

Cloude and Pottier [27] developed an approach derived from the reference system based on the H 

plane by aggregating a new dimension provided by the anisotropy values. Each valid zone on the H 

plane was divided into two, with an anisotropy value of 0.5 being accepted as an arbitrary cutoff point. 

According to the authors, this new 3D reference space permits the resolution of ambiguities in entropy 

which may arise in the scattering mechanisms which have different eigenvalue distributions, but 

similar values of intermediate entropy. 
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A second category of classifiers evaluated in the study, was the hybrid methods that use the results 

derived from the target decomposition methods as input data for a combined classification scheme based 

on statistical properties. The pixels are classified based on the statistical distance derived from the complex 

Wishart multivariate distribution, calculated from the covariance matrix [30]. Lee et al. [31] proposed a 

method that uses the classes resulting from the target decomposition scheme of Cloude and Pottier  

(H-   plane) as input. Pottier and Lee [32] subsequently introduced anisotropy A into the reference 

space and increased the number of initial training classes to 16. In both algorithms, however, the final 

classification may be substantially different from the initial version, which means that pixels originally 

allocated to one zone may migrate to a different one, characterized by distinct mechanisms of 

scattering. According to Lee et al. [33], this is due to the fact that the Wishart interactions are based 

solely on the statistical characteristics of each pixel, without taking its physical scattering 

characteristics during the interactions into account. 

Lee et al. [33] presented a new classification system, in which the decomposition method developed 

by Freeman and Durden [24] is used initially to generate the training classes for the subsequent 

interactions of the Wishart K-mean classifier, grouping the pixels into three classes based on the 

predominant scattering mechanism (volumetric, double-bounce or surface). The advantage of this 

approach is that it preserves the characteristics of the pixel scattering mechanisms. For this, the 

Wishart interactions were restricted to the pixels present in each class, avoiding the possibility that a 

pixel initially allocated to one class, e.g., volumetric, might be classified differently by the end of the 

process. Following the final classification, each class is automatically assigned to a color, according to 

the predominant scattering mechanism—blue (surface), green (volumetric), and red (double-bounce). 

The variation in the brightness of the tone of each color corresponds to the mean potential of the class 

within each category. The error matrices obtained from the cross-referencing of the classified images 

with the reference map were used to analyze the results of the classification quantitatively [34]. The 

processed images were orthorectified to a Universal Transverse Mercator (UTM) Zone-22 projection 

with a WGS84 datum. The images were orthorectified after the polarimetric analysis was completed 

because orthorectification could corrupt the phase information contained in the polarimetric images. 

The orthorectification process was performed with the Rational Function Model function of the 

Orthoengine module of PCI Geomatica. A SRTM DEM and ground control points (GCPs) extracted 

from Landsat-7 ETM+ images were used in the process. The planimetric accuracies expressed by Root 

Mean Square Error (RMSE) were 7.54 m and 7.75 m to R99B and RADARSAT-2, respectively.  

During the validation process, the classes resulting from the classifications were also combined. 

This is allowed for a range of possible combinations, given that it is a subjective procedure, but in 

order to minimize the subjectivity of this procedure, it was based on the arrangement that best 

coincided spatially with the units of the combined geological surface map of Resende and Barbosa 

(Figure 2(b)). Measurements of superficial roughness were taken from 74 sites on the N1 plateau, of 

which 28 coincided with the chemical crust, 28 with the mineral crust, and 18 with hematite. The 

parameter used here was the standard deviation of the vertical height of the terrain profile Hrms [35]. A 

meshboard technique was used that involved placing a thin plastic gridded board (1.2 m long × 20 cm 

height and 2 cm intervals grid) on the surface, taking a picture of the plate, and digitizing the  

picture [36]. Six profile measurements were taken continuously at each site, producing a 7.2 long 

transect (multisite database of 1.2 m profiles). The use of this long length was necessary to avoid 
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profile too short so that the roughness data could be smaller than the intrinsic values. In addition, this 

dimension was also close to the spatial resolution of the orbital and airborne SAR data. 

4. Results and Discussion 

4.1. Polarimetric Decomposition Method 

4.1.1. Cloude-Pottier Method 

The images corresponding to the parameters entropy, anisotropy, and mean alpha angle derived 

from the Cloude-Pottier decomposition method applied to the R99B data are shown in Figure 3. The 

entropy image (Figure 3(a)) indicates that on N1, the targets present a high degree of randomness, 

which suggests that at least two scattering mechanisms make a major contribution to the backscattering 

value, except for the areas adjacent to lakes, where the surface of the rocks is probably smoother. The 

   values are clustered around the 45° mark (37° <    < 54°). However, the asymmetric histogram in 

Figure 3(b), in which the mode is among the larger angles, indicates that the majority of the targets 

present a scattering mechanism resulting from a combination of volumetric with double-bounce (to a 

much lesser extent). The anisotropy values (Figure 3(c)) were mainly low, with a mode of approximately 

0.20. This indicates that the second and third scattering mechanisms have a similar contribution to 

the total backscattering, and are far less important than the first mechanism. According to Lee and 

Pottier [29], this situation may correspond to a simple dominant scattering mechanism or a type of 

random scattering. The total scattering of the areas in which anisotropy values are close to the mean is 

affected by two mechanisms. 

Figure 3. Images resulting from the parameters derived from the eigenvalue-eigenvector 

decomposition model for the R99B image: (a) entropy; (b) mean alpha angle; (c) anisotropy. 

 

The results of the classification based on the H-   reference plane are shown in Figure 4(a). It is 

observed that the majority of the area of N1 is located in zone 2 (blue), characterized by high entropy 

and scattering of the volumetric type, with some double-bounce. Zone 5 was also characterized by 

volumetric component, which can be identified in the image as magenta color, which appears in the 

domain of the smoother surfaces. This class is different from the former one due to its lower entropy 
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values, which indicates reduced randomness of the scattering contained in the resolution cell of the 

image. In addition to these two classes, which predominate over most of the surface of the N1 plateau, 

classes 4 and 8 can be observed in restricted areas. Class 4 is characterized by multiple scattering type 

with medium entropy, while class 8 is characterized by dipole scattering with low entropy. The 

incorporation of anisotropy contributed very little to the results of the final classification. Once again, 

only two classes were predominant, despite the fact that the number of reference zones doubled 

(Figure 4(b)). These classes correspond to classes 2 and 5 in the H-   plane, with anisotropy above 0.5. 

Figure 4. Classification of the R99B image by the decomposition method based. (a) the  

H-   reference plane; (b) the H-  -A reference space. 

 

The maps derived from the RADARSAT-2 images based on entropy (H), the mean alpha angle (   , 

and anisotropy (A), are shown in Figure 5, respectively. These figures show that entropy is high 

throughout most of the N1 plateau, indicating that at least two prominent scattering mechanisms affect 

each cell at the resolution. In contrast with the results obtained for the R99B images, anisotropy has a 

complementary function for the RADARSAT-2 image, and its use is recommended when H > 0.7 [29]. 

The    values are clustered around 25°, that is, within a range which is affected by volumetric and 

surface components. 

Figure 6(a) shows the results of the classification based on the zones defined by the H-   plane. The 

majority of the pixels were assigned to zones 5 and 6, that is, of medium entropy, but with 

predominance of volumetric, and to a lesser extent, surface components. The pixels that correspond to 

lakes were assigned to zone 7, characterized by low entropy and scattering of the double-bounce type. 

The N1 plateau is also characterized by zone 2 pixels, which are dispersed and discontinuous. This 

zone is associated with low entropy and volumetric component. The incorporation of anisotropy into 

the H-   plane classification scheme (Figure 6(b)) did not improve the performance of this algorithm 

for the mapping of the lateritic crusts of the N1 plateau. What can be observed in this image is a 

random distribution of the reference classes, which makes the establishment of a relationship with the 

geological reference map difficult. 
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Figure 5. Images resulting from the parameters derived from the eigenvector-eigenvalue 

decomposition model applied to the RADARSAT-2 image: (a) entropy; (b) mean alpha 

angle; (c) anisotropy. 

 

Figure 6. RADARSAT-2 image classified by the decomposition method: (a) based on the 

H-   reference plane; (b) the H-  -A reference space. 

 

4.1.2. Freeman-Durden Polarimetric Decomposition Method 

The Freeman-Durden polarimetric decomposition method was applied to the analysis of the 

polarimetric R99B image, resulting in the maps in Figure 7(a–c), which show the individual 

contribution of the volumetric, superficial, and double-bounce scattering mechanisms, respectively. 

The color scale in these figures represents the backscattering values, on a linear scale, associated with 

the respective scattering mechanism. The volumetric component presents the highest absolute values, 

followed by surface and double-bounce mechanisms.  

The relative contribution of the different mechanisms to the reflected signal of each pixel can be 

better observed when an RGB combination is applied (Figure 8). The colors resulting from the 

combination of the R (volumetric—Pv), G (superficial—Ps), and B (double-bounce—Pd) mechanisms 

help to understand the relative importance of each mechanism in the backscattered response of the 
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targets. The reddish color indicates the pixels in which volumetric component is predominant. Where 

the double-bounce mechanism also contributes to total response, the pixels present tones towards 

magenta, as can be observed in the northwestern and eastern portions of N1 (indicated by the letter A 

in Figure 8(a)). In the areas in which the color green predominates, scattering component is primarily 

surface, whereas in the darkened areas, scattering is of the speculate type, indicating the presence of 

very smooth surfaces. The rocky outcrops in these areas are associated to a flatter surface showing low 

roughness, and normally represent the chemical duricrust with small lakes. Specular component is 

detected in the north sector of the plateau, where the terrain was compressed for the construction of a 

small aircraft landing strip. 

Figure 7. Images resulting from the Freeman-Durden decomposition method applied to the 

R99B images, showing the intensity of the different mechanisms in the total backscattering: 

(a) volumetric; (b) superficial; (c) double-bounce. 

 

Figure 8. (a) RGB combination of the scattering mechanisms derived from the  

Freeman-Durden for the R99B images. The letters A, B, and C indicate colors associated 

with the relative contribution of the component mechanisms, as described in the text; 

(b) Classes labeled according to the relationship between the types of scattering 

mechanisms derived from the Freeman-Durden decomposition model. 
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There is also a greater contribution of volumetric scattering in the areas where the pixels have been 

assigned an orange-ochre color (indicated by the letter B in Figure 8(a)), although there is a slight 

predominance of the surface scattering component over the double-bounce type (Pv > Ps > Pd). The 

areas around lakes are assigned a bluish color, indicating a greater contribution of double-bounce type 

over other mechanisms (indicated by the letter C in Figure 8(a)). This is due to the presence of aquatic 

vegetation in the lakes and on their margins, which grows above the water line. This favors the  

double-bounce contribution to the backscattered signal, involving the water surface and the plant 

stems. In addition, the presence of lateritic blocks along the margins of the lakes also contributes to the 

double-bounce scattering. 

The reddish color observed in localized areas of the plateau is related to the predominance of 

volumetric scattering over the other types (Pv >> Ps > Pd). Overall, the Freeman-Durden decomposition 

results indicates that in large sectors of N1 plateau the total backscattering is related to a medium degree 

of entropy with effective contribution of at least two types of scattering mechanism. The predominant 

mechanism in most of N1 is volumetric (or multiple) type, which is evident in Figure 8(b), where 

different classes were defined and labeled according to the relative contribution of the Freeman-Durden 

scattering mechanisms to the total backscattering of the resolution element. The relationships that define 

each class are shown in the figure legend, together with the percentage of the area of each class in N1. 

The multi-reflection that characterizes the volumetric scattering mechanism is mainly due to the 

interaction of the microwaves with the highly rough surfaces due to the abundance of rocky blocks 

resulting from the disintegration of laterites, duricrusts, particularly within the spatial domain of the 

mineral duricrusts and hematite, and subordinately with the architecture of the bushes of the 

savanna vegetation. 

The results of the Freeman-Durden decomposition with RADARSAT-2 data are shown in  

Figure 9(a–c). Only volumetric scattering has a direct relationship with the surface roughness, 

providing a reasonable characterization of the smoother areas with lower values of scattering intensity. 

However, in comparison with the results obtained for the R99B images, the classification results 

obtained from RADARSAT-2 data can be considered inferior. It is important to mention that 

RADARSAT-2 images were acquired under wetter conditions and the contribution of moisture and 

vegetation (leaves) in the detected responses are higher. These influences can explain the poor 

performance of the orbital data for the laterite discrimination. 

In Figure 9(d), volumetric, superficial, and double-bounce scattering mechanisms are related to 

RGB colors. Clearly, the volumetric component contributes most here, given that reddish colors 

dominate most of the N1 plateau surface, and is in fact more widespread than in the equivalent color 

composite product derived from the R99B sensor. The areas in cyan indicate an equivalent 

contribution of the superficial and double-bounce mechanisms. Overall, the results of the  

Freeman-Durden decomposition of RADARSAT-2 images presented a lower performance compared 

to R99B data, and suggested that the L band is more sensitive to the variation in the surface roughness 

on the N1 plateau due to its longer wavelength. 
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Figure 9. Intensities corresponding to the Freeman-Durden decomposition derived from 

the RADARSAT-2 image: (a) volumetric scattering Pv; (b) surface scattering Ps; 

(c) double-bounce scattering Pd; (d) the mechanisms are combined through a color 

composite image (R—Pv, G—Ps, B—Pd); (e) Classes labeled according to the relationship 

between the types of scattering mechanism derived from the Freeman-Durden 

decomposition model.  

 

  

4.2. Classification Methods Based on Hybrid Processes 

4.2.1. Wishart-Cloude-Pottier Classification 

The images resulting from the H-   and H-  -A methods were used as input for the algorithm based 

on the Wishart statistical distance as the criterion for the pixels aggregation. The Wishart-H-   

classification is shown in Figure 10(a). In order to validate the classification, classes 1, 3, 5, 6, and 7 

were combined and assigned to the chemical laterite crust unit, while classes 2, 4, and 8 were 

considered to represent the class of economic interest (Figure 10(b)). The cross-referencing of the 

combined classification image with the reference geological map generated an error matrix with a 

general Kappa value of 0.16, and 55.5% accuracy for the class of economic interest, with omission and 

commission errors, respectively, of 44.4% and 57.5% (Table 3). Figure 10(c) shows the classification 

based on the Wishart-H-  -A method. The resulting image has 16 classes due to the input from 

anisotropy. In the color composite product, classes 7, 8, 10, and 16 were considered to represent the 
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economic interest class, while all other classes were defined as chemical crust. For this configuration, 

the general Kappa value was 0.14, accuracy for the economic interest class was 68%, and omission and 

commission errors were 32% and 60%, respectively.  

Figure 10. Classifications of the R99B images using hybrid methods: (a) image 

classified by the Wishart-H-   method; (b) composite image of the classification by the 

Wishart-H-   method; (c) image classified by the Wishart-H-  -A method; (d) composite 

image of the classification by the Wishart-H-  -A method. 

 

 

Table 3. Parameters derived from the error matrix for the evaluation of the performance of 

the hybrid algorithms of polarimetric classification for the R99B and RADARSAT-2 

images: global Kappa, accuracy for the class of economic interest, omission and 

commission errors.  

Sensor Algorithm 
Global 

Kappa 

Accuracy (%)  

for the Class of 

Economic Interest 

Omission 

Error (%) 

Commission Error 

(%) 

R99B 

Wishart-H-   0.16 55 44 58 

Wishart-H-  -A 0.14 68 32 60 

Wishart-Freeman-

Durden 

0.16 69 31 60 
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Table 3. Cont. 

Sensor Algorithm 
Global 

Kappa 

Accuracy (%)  

for the Class of 

Economic Interest 

Omission 

Error (%) 

Commission Error 

(%) 

RADARSAT-2 

Wishart-H-   0.09 38 62 59 

Wishart-H-  -A 0.08 42 58 60 

Wishart-Freeman-

Durden 

0.08 51 50 61 

4.2.2. Wishart-Freeman-Durden Classification  

The classification result by the Wishart-Freeman-Durden algorithm is shown in Figure 11(a). The 

greenish and bluish colors indicate the predominance of volumetric and superficial scattering 

mechanisms. The variation in the brightness of the tone of each color corresponds to the mean 

potential of the class within each category. Combined classes were also used here in order to produce a 

labeled image with only two classes, one corresponding to the substrate of economic interest, and the 

other to country rocks (Figure 11(b)), for comparison with the combined geological reference map. 

The error matrix of the cross-referencing of the two maps had a global Kappa index of 0.16, but 

accuracy of 69% for the economic interest class, omission error of 31%, and commission error of 60%. 

Figure 11. Classification of the R99B images using hybrid methods: (a) image 

classified by the Wishart-Freman-Durden method; (b) composite image classified by the 

Wishart-Freman-Durden method. 

 

The hybrid methods were also applied to the RADARSAT-2 images. The results proved to be 

inferior to those of the images of the R99B sensor, as shown through the statistical parameters derived 

from the error matrix, shown in Table 3. 

4.3. Discussion 

The results of the present study provide a way to evaluate the importance of the phase attribute 

aiming at the discrimination of the lateritic crusts in the study area. In order to address this subject, it is 
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necessary to consider the results of Morais et al. [37] dealing with L-band SAR images for lateritic 

mapping in the same plateau. In this previous study, textural classification attributes were derived from 

first and second order measurements obtained from the matrix of co-occurrence of the gray levels 

(MCGL), using the multipolarized L-band images from the same sensor (R99B). The textural approach 

was based solely on the amplitude attribute of the microwave signal. While the validation procedures 

adopted in this previous study were not strictly the same of the present research, it is possible to make 

some comparisons. In this work the authors obtained an accuracy of 19% for iron-ore crust and 

hematite. The identification rate (Accuracy (%) in Table 2 (column 4)) for the class of economic 

interest clearly indicates that the inclusion of phase attribute had a positive effect, considering that, 

even with the classification that produced the worst result (Wishart-H-   ) has provided an accuracy of 

55% for the unit of economic interest. When the performance of the classifiers for the L and C band 

images is evaluated, the results for the L band are clearly superior. So far, few studies were published 

focusing on the evaluation of polarimetric classifiers for geological mapping, which makes it difficult 

to establish a discussion with our results. Some works have been developed relating polarimetric 

signatures with rock types [38] or with lava flows changes over time, closely related to roughness 

variation [38,39]. One of the conclusions from Evans et al. [38] showed that an extremely rough 

surface would yield similar polarimetric characteristics to those observed in vegetated areas due to 

multiple scatter. This explains the predominance of volume scattering observed in both  

Freeman-Durden and Cloude-Pottier decompositions caused by multiple scattering of rough surfaces 

of duricrusts. A recent article from Shelat et al. [40] assessed the effect of RADARSAT-2 incidence 

angle on polarimetric classifications for mapping surficial materials (bedrock, boulders, organic 

deposits, sand and gravel, thick till with dense vegetation, thick till with sparse vegetation, and thin 

till) in Arctic Canada. Polarimetric analyses included computation of polarimetric signatures, Wishart 

supervised classification, as well as Wishart-H-  , Wishart-H-  -A and Wishart-Freeman-Durden 

unsupervised classifications. One of conclusions of this research is that RADARSAT-2 images with 

medium incidence angle (around 32 degrees) produced the best overall polarimetric classification 

accuracy. This incidence angle was almost the same used in Carajás and it suggests that the low 

RADARSAT-2 performance in our research cannot be attributed to viewing geometry. Given that the 

surface moisture presented small variation between the acquisition dates for RADARSAT-2 and R99B 

imageries, the difference in performance is probably due to way that roughness of the landscape is 

perceived by the sensors.  

The effective classification of roughness surface depends on the sensor wavelength and incidence 

angle. One of the criteria for surface roughness classification was proposed by Peake and Oliver [41], 

which establishes three categories—smooth, intermediate, and rough—based on the limits defined by 

the following expressions: 

Smooth surface Intermediate surface Rough surface 

(6) 
25cos

rms

inc

h



  

25cos 4cos
rms

inc inc

h
 

 
   

4cos
rms

inc

h



  

where λ and θinc are the wavelength and the incidence angle, respectively, and hrms is the standard 

deviation of the surface height variation [35]. Table 4 shows the limits between the roughness 

categories, based on the Peake and Oliver [41] criteria for the SAR configurations in the present study.  
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Table 4. Limits of the roughness categories calculated according to the criterion of Peake 

and Oliver [41] for the RADARSAT-2 and R99B images. The first column shows the 

wavelength (λ) and angle of incidence (θi) values for each type of image. 

 Roughness 

Smooth 

hrms < 

Intermediate 

< hrms < 

Rough 

hrms > 

RADARSAT2 (λ = 5.6 cm, θi = 32°) 0.264 0.264–1.651 1.651 

R99B (λ = 23.9 cm, θi = 55°) 1.667 1.667–10.417  10.417 

A surface roughness measurement campaign was carried out in the N1 plateau and the mean hrms 

values obtained from 74 sites representing the chemical duricrust, iron-ore duricrust, and  

hematite were 1.807 cm, 5.197 cm, and 5.700 cm, respectively [42]. Taking these values into account, 

the limits for RADARSAT-2 data that define roughness classes are lower than those for L-band data. 

This aspect effectively reduces the C-band sensor capacity to discriminate distinct texture classes, 

given that, at hrms values equal to or above 1.651 cm, all the surfaces are considered to be rough, 

implying a high σ
0
 return. 

Similar results were reported by Gaddis [43] when dealing with C-, L-, and P-band images for the 

textural discrimination of volcanic lavas showing that L-HV band was the most effective for the lava 

type discrimination. In addition, the investigation from Dierking [44], which evaluated the sensitivity 

of backscattering as a function of superficial roughness through theoretical models, is also relevant 

here. One of the results demonstrated that the rougher the surface is and/or the steeper the terrain, this 

increases the sensitivity of σ
0
 for terrain roughness when using imaging radar at lower frequency.  

5. Conclusions 

In this research, polarimetric SAR images from two frequencies (L-band from airborne SAR-R99B 

sensor, C-band from Fine Quad RADARSAT-2) were evaluated for mapping iron-mineralized laterites 

in the N1 plateau, Brazilian Amazon region. The datasets were acquired with distinct viewing 

geometry, airborne images simulating a satellite descending orbit (west-looking) and shallow 

incidence range (53.37°–67.23°), RADARSAT-2 images collected under ascending pass (east-looking) 

and steeper incidence (31.29°–32.98°). The polarimetric analysis included target decompositions models 

(Cloude-Pottier, Freeman-Durden) as well as unsupervised classifications (Wishart-Cloude-Pottier, 

Wishart-Freeman-Durden). A detailed geological mapping showing the spatial distribution of laterites 

classes was used for validation. Information of the terrain roughness expressed as the vertical height 

variation (hrms) was available from a large collection of field measurements. In order to distinguish 

types of scattering mechanism decomposition parameters (entropy, anisotropy, mean alpha angle) H-  , 

H-  -A were analyzed. Classification accuracies were assessed based on error matrices with Kappa 

coefficients obtained from the cross-referencing of the classified images with the reference map.  

Conclusions from this investigation can be summarized as follows: 

(1) For both frequencies, Cloude-Pottier and Freeman-Durden decompositions help to understand the 

different scattering mechanisms in relation to the surface covers. However, Freeman-Durden 
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RGB color composite using L-band presented the best result, providing insights concerning 

scattering mechanisms in physical properties of main mineralized laterites. 

(2) Results of the unsupervised classification for both datasets using the H-   plane did not show 

good spatial correspondence with the geological map. The inclusion of anisotropy did not 

improve the classification result.  

(3) The Wishart-H-  -A and Wishart-Freeman-Durden hybrid classifications presented low levels 

of performance with Kappa values lower than 0.20. Accuracy for the identification of units of 

economic interest ranged from 55% to 69%, albeit with high commission error values.  

(4) Comparing both frequencies, the performance of L-band was superior. This was probably due 

to the way that the landscape roughness was perceived by the sensors. Taking the Peake and 

Oliver criterion into account [41], the roughness scale for the discrimination of rock alteration 

products in the area is closer to L than to C-band.  

This study showed that the information derived from both sources of SAR polarimetric data was 

limited for the purposes of rock alteration mapping in the area. However, the combination of surface 

scattering mechanisms through Freeman-Durden color composites using L-band can provide the 

geoscientist with an interesting terrain visualization of the rock alteration products that can be used for 

preliminary mapping (i.e., as a guide for geological field based verification). Since only L-band images 

at shallow incidence angles were available for this investigation, one possibility that deserves further 

analysis is the use of images at steeper incidence angles.  
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