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We present a new framework to the formulation of the problem of isochronal synchronization for

networks of delay-coupled oscillators. Using a linear transformation to change coordinates of the

network state vector, this method allows straightforward definition of the error system, which is a

critical step in the formulation of the synchronization problem. The synchronization problem is then

solved on the basis of Lyapunov-Krasovskii theorem. Following this approach, we show how the

error system can be defined such that its dimension can be the same as (or smaller than) that of the

network state vector. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4753921]

Isochronal synchronization is amongst the most intrigu-

ing collective behaviors observed in coupled chaotic

oscillators and networks. The oscillators’ dynamics

behave identically in time, despite of time-delays in the

coupling signals. Although reported in numerical simu-

lations, experimental setups, and analytical studies,

there are several open problems within the topic. In

particular, there have been several attemps to reduce

the restrictiveness of problem formulations and their

respective solutions, especially those in which feedback

controllers are used. Formulations commonly consider

that the network nodes achieve synchronization by fol-

lowing a target reference signal, which ultimately jeop-

ardizes the applicability of resulting stability criteria to

real-world network problems. Another actual difficulty

is the high-dimensionality of the resulting stability crite-

ria, which makes stability evaluation costly. Towards

the improvement of existing frameworks and the exten-

sion of their practical scope, a new framework is pro-

posed, which allows simple problem formulation and

privileges the study of network synchronization prob-

lems in the case when synchronicity emerges solely as a

result of the interplay among the nodes’ dynamics. As a

complement, a general stability criterion is derived for

isochronal synchronization, based on the Lyapunov-

Krasovskii theorem. Given a network of chaotic oscilla-

tors, it is shown how to check for stability of isochronal

synchronization by simply feeding a matrix inequality

with some accessible parameters of the network. Exam-

ples of application of the criteria, in the form of stability

functions over the network parameter space are pre-

sented for k-cycle networks to illustrate the effectiveness

and feasibility of the analytical results.

I. INTRODUCTION

Isochronal synchronization is a physical phenomenon in

which oscillators coupled with time-delay achieve zero-lag

identical behavior in time, and it has attracted attention in the

last few years.1–12 For example, picture the ensembles of neu-

rons located in different regions of the brain, which fire to-

gether in the performance of cognitive acts and constitute an

actual topic of research of neurology, among others.13–20 As

remotely located, it is natural to imagine that the synchroniza-

tion among such ensembles might be influenced by the cou-

pling delay, i.e., the time of propagation of messages transiting

from one region of the brain to the other. Surprisingly under

some circumstances, the oscillators’ synchronicity establishes

with zero lag even in the presence of coupling delays.7

In general, sources of coupling delay are well-known in

natural and engineering network systems. More importantly,

the distance among the nodes and the speed of propagation

of coupling signals through physical media can be men-

tioned. However, the reasons why isochronal (zero-lag) syn-

chronization establishes in the presence of coupling delays

are still intriguing and subject to controversial debate.21

Recent studies have unveiled some of its subjacent mecha-

nisms, both within the context of pairs of oscillators1–8 and

networks.9–12 In this context, the relation between feedback

and coupling times was shown to have particular influence

upon its emergence and maintenance.6 Meanwhile, other fea-

tures of the coupling setup, such as network topology and

coupling strength were shown to be decisive, as observed

previously for networks with non-delayed couplings.22

Towards the solution of the network synchronization

problem, control techniques are generally used to drive the

oscillators, clusters or networks to different forms of syn-

chrony, including isochronal.7,8,10–12,23–28 In some cases, this

is done by assuming an external input reference signal in the

control loop, such that zero-lag synchronization is achieved

on the basis of a common target trajectory.23–27 Within such

framework, analytic criteria were derived so that parameters

of the network are adjusted (e.g., feedback matrices), the
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network is rendered synchronous and synchronization is ren-

dered stable.

Although very interesting from the theoretical viewpoint,

such frameworks might hold too restrictive requirements for

practical applications. The main reason is that availability of

a common target signal to simultaneously drive all of the net-

work nodes is a stringent requirement which is recognized to

be not achievable in most network configurations. Note that

the physical separation, which is the main cause of delays, is

a natural result of the distributed nature of network systems

and the distance among its nodes, such that transmission

delay is almost surely present in practical applications. Thus,

any target reference signal would be subject to delay as well,

such that simultaneity in the signal reception is lost.

In this context, a more realistic approach would consider

a network setup in which isochronal synchronization is

induced solely by the interplay among the nodes in the feed-

back control loop, as in Refs. 10 and 11. However, there are

difficulties associated with such approach, since the resulting

stability criteria may result in quite high-dimensional matrix

inequalities, which tend to make the stability investigation

harder and its results more conservative. To overcome these

problems, a new framework is proposed to the formulation

of the network synchronization problem. It is aimed at gener-

ating the synchronization error system, whose stability

means that of synchronization of the original network.

Following this approach, the process of definition of the error

equations is revealed straightforward, leading to simpler

problem formulation and to more general results. To illus-

trate the framework, a stability criterion for isochronal net-

work synchronization is developed on its basis, considering

the Lyapunov-Krasovskii theorem.29

As a consequence, analytic stability criteria are derived,

which require a few accessible parameters of the network setup

to be checked and allow the design and test of coupling config-

urations that render the network synchronized. The results are

aimed at providing a general framework to the evaluation of

network synchronization stability and serving as backbone for

upcoming technological applications of isochronal synchroni-

zation, such that ones in communication.1,2 The proposed

problem formulation is argued to open new possibilities for the

derivation of more general and less restrictive stability criteria

in the context of isochronal synchronization of networks of

delay-coupled chaotic oscillators. Numerical results illustrate

the effectiveness of the analytical developments, as networks

with up to a hundred oscillators are systematically checked for

stability of isochronal synchronization.

The paper is organized as follows: Sec. II reviews the

usual problem formulation in the literature and introduce a

new framework; Sec. III uses the new formulation to derive

an isochronal synchronization stability criterion on the basis

of the Lyapunov-Krasovskii theorem; Sec. IV presents

examples of application of the criterion for the evaluation of

stability functions in the parameter spaces of k-cycle net-

works of Lorenz30 and R€ossler31 oscillators; Sec. V discusses

the main results and, finally, Sec. VI brings final remarks.

The assumptions considered in the problem formulation are

that (i) the nodes are all identical and chaotic, such that the

trajectories are trapped into a set X that contains the chaotic

attractor and (ii) the coupling delay is constant and equal for

every link in the network.

II. FORMULATION OF THE NETWORK
SYNCHRONIZATION PROBLEM

As pointed in Refs. 10 and 11, synchronization of delay-

coupled oscillators is more widely studied for the case when

the coupling term appearing between nodes i and j is given

in terms of xiðt� sÞ � xjðt� sÞ, in which both states feature

time-delay. However, such abstraction does not hold in most

practical situations, where self-feedback is not present. Thus,

a more realistic approach would consider the coupling term

of the node i as given by

xiðtÞ � xjðt� sÞ; (1)

in which only the state variable that traveled from node j to

node i is affected by transmission delay.10

The formulation of the synchronization problem under

this latter form of coupling involves a remarkable difference:

the coupling term does not always vanish in the synchroniza-

tion manifold as it is does in the former case. This fact is

explored in Ref. 10, where it is concluded that the existence

of the synchronization manifold in this case depends on sym-

metry conditions of the coupling delays and coupling matri-

ces. Once satisfied, such conditions would guarantee that the

synchronization manifold exists.

Taking into account such and towards the formulation

for the problem of isochronal synchronization, consider the

equations of the ith oscillator as

_xiðtÞ ¼ AxiðtÞ þ gðxiðtÞÞ �
c

Gii

XN

j¼1

GijCxjðt� sijÞ; (2)

where A 2 Rn �Rn is a constant matrix, g : Rn ! Rn is a

Lipschitz continuous vector function, c 2 R is an scalar cou-

pling term, G 2 RN �RN symmetric and with zero row

sum is the Laplacian matrix of the network, which is

assumed connected, and C 2 Rn �Rn is the node inner cou-

pling matrix. For the existence of the synchronization mani-

fold, it is assumed that sij ¼ s for i 6¼ j and, sij ¼ 0 for i ¼ j,
for direct self-coupling. As a result, Eq. (2) can be rewritten

as

_xiðtÞ ¼ A� cCð ÞxiðtÞþ gðxiðtÞÞ�
c

Gii

XN

j¼1
j 6¼i

GijCxjðt� sÞ; (3)

and Gij are entries of the Laplacian matrix G and c
Gii

guaran-

tees the node balance condition, which is also necessary for

the existence of the synchronization manifold. As the state

vectors x1ðtÞ; x2ðtÞ; :::; xNðtÞ are collected into the network

state vector xðtÞ 2 RNn, given by

xðtÞ ¼

x1ðtÞ
x2ðtÞ

�

xNðtÞ

0
BB@

1
CCA; (4)
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the equations of the delay-coupled network can be written in

the compact form

_xðtÞ ¼ IN � A� cCð ÞxðtÞ þ U xðtÞð Þ

� c D�1Ad � C
� �

xðt� sÞ; (5)

where IN is an N-dimensional identity matrix, � is the

Kronecker product,

U xðtÞð Þ ¼
gðx1ðtÞÞ

�

gðxNðtÞÞ

0
@

1
A: (6)

Additionally, Ad is the network adjacency matrix that

assigns Adij
¼ Adji

¼ �1 if nodes i and j are connected,

Adij
¼ Adji

¼ 0 otherwise and, Adii
¼ 0, and G ¼ D� Ad .

Note that, for a connected network, D is nonsingular and

Eq. (5) holds.

At this point, the dynamical equations of the network

are available and the formulation of the synchronization

problem requires the definition of an error vector function

eðtÞ, such that keðtÞk ! 0 as t!1 implies xiðtÞ ¼ xjðtÞ for

every i; j ¼ 1; :::;N. Towards that end, define

eðtÞ ¼ xAðtÞ � xBðtÞ; (7)

where xAðtÞ ¼ TAxðtÞ, xBðtÞ ¼ TBxðtÞ and TA; TB 2 RN�1

�RN are chosen as

TA ¼

1 0 0 � � � 0

0 1 0 � � � 0

� � . .
. . .

.
�

0 0 � � � 1 0

2
66664

3
77775� In;

TB ¼

0 1 0 � � � 0

0 0 1 � � � 0

� � . .
. . .

.
�

0 0 � � � 0 1

2
66664

3
77775� In;

(8)

where In stands for the n-dimensional identity matrix,

TA _xðtÞ ¼ TAIN � A� cCð ÞxðtÞ þ TAUðxðtÞÞ

� cTA D�1Ad � C
� �

xðt� sÞ; (9)

TB _xðtÞ ¼ TBIN � A� cCð ÞxðtÞ þ TBUðxðtÞÞ

� cTB D�1Ad � C
� �

xðt� sÞ; (10)

and _eðtÞ can be written as

_eðtÞ ¼ TA _xðtÞ � TB _xðtÞ
¼ TA � TBð Þ _xðtÞ
¼ TA � TBð ÞIN � A� cCð ÞxðtÞ þ U xAðtÞð Þ
�U xBðtÞð Þ � cðTA � TBÞ D�1Ad � C

� �
xðt� sÞ : (11)

Introducing the state-dependent matrix M xðtÞð ÞeðtÞ ¼
U xAðtÞð Þ � U xBðtÞð Þ, for which it is noticeable that TAU xðtÞð Þ
¼ U TAxðtÞð Þ ¼ U xAðtÞð Þ, TBU xðtÞð Þ ¼ U TBxðtÞð Þ ¼ U xBðtÞð Þ,

the nonlinear part of the individual systems’ dynamics is

written in terms of the error variables eðtÞ. At this point, note

that system (11) depends both on the error states eðtÞ and the

network states xðtÞ, which is undesirable since the synchroni-

zation stability evaluation must be performed in the error

variables alone. Thus, considering Eqs. (7) and (8), one can

rewrite systems (11) in terms of the error variables eðtÞ by

designing an adequate matrix of coefficients E such that

�c TA � TBð Þ D�1Ad � C
� �

xðtÞ ¼ E TA � TBð ÞxðtÞ; (12)

and it follows that E TA � TBð Þ ¼ �c TA � TBð Þ D�1Ad � Cð Þ,
as TA � TBð ÞxðtÞ ¼ eðtÞ. As a result, the error system can be

rewritten as

_eðtÞ ¼ IN�1 � A� cCð ÞeðtÞ þM xðtÞð ÞeðtÞ þ Eeðt� sÞ; (13)

where all state variables are given in terms of eðtÞ. Note that

keðtÞk ¼ 0 implies and is implied by x1ðtÞ ¼ x2ðtÞ
¼ ::: ¼ xNðtÞ, i.e., the stability of network synchronization

requires that the error system asymptotically establishes at

the trivial fixed point of system (13), and vice-versa.

Towards the determination of conditions for synchroni-

zation stability, consider the identity eðt� sÞ ¼ eðtÞ
�
Ð t

t�s _eðhÞdh,32 such that the error equations can be rewritten

as

_eðtÞ ¼ IN�1 � A� cCð ÞeðtÞ þM xðtÞð ÞeðtÞ

þ E eðtÞ �
ðt

t�s

_eðhÞdh

0
@

1
A; (14)

and, one step ahead,

_eðtÞ ¼ ½IN�1 � A� cCð Þ þM xðtÞð Þ þ E�eðtÞ

�E

ðt

t�s

½IN�1 � A� cCð ÞeðhÞ þM xðtÞð ÞeðhÞ

þEeðh� sÞ�dh: (15)

Notice that, according to this formulation, the definition

of the error system dismisses the use of reference signals,

and synchronization, if it establishes, is a result of the inter-

action among the dynamics of the network nodes.

Considering these developments, Sec. III presents a

solution for the synchronization problem under this formula-

tion. A stability criterion for the trivial fixed point of the

error system (15) is derived, by means of the Lyapunov-

Krasovskii stability theorem.29

III. STABILITY CRITERION FOR ISOCHRONAL
SYNCHRONIZATION IN COMPLEX NETWORKS

In the context of delay-coupled complex networks,

isochronal synchronization can be defined as zero-lag syn-

chronization among all the network nodes. In other words,

consider N oscillators, whose states are given by xiðtÞ 2 Rn,

i ¼ 1; 2; :::;N, coupled with time-delay s, in a network con-

figuration. Recall that isochronal synchronization means
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the identity x1ðtÞ ¼ x2ðtÞ ¼ ::: ¼ xNðtÞ despite time-delay is

present in the coupling, such that the oscillators’ dynamics

achieve zero-lag synchronicity.

At this point, the establishment of conditions for stabil-

ity of system (15) about the origin may be investigated using

the Lyapunov-Krasovskii theorem.29 Towards this end, con-

sider a Lyapunov-Krasovskii functional in the form

V eðtÞð Þ ¼ V1 eðtÞð Þ þ V2 eðtÞð Þ; (16)

where

V1 eðtÞð Þ ¼ eTðtÞPeðtÞ; (17)

V2 eðtÞð Þ ¼ 2e
s

ð0

�s

ðt

tþh

eTðsÞ!T!eðsÞds

2
4

þ
ðt

tþh�s

eTðsÞETEeðsÞds

3
5dh: (18)

and

! ¼ IN�1 � A� cCþ Lð Þ (19)

for some matrix P 2 R N�1ð Þn �R N�1ð Þn, P ¼ PT > 0 and

some constant matrix L 2 Rn �Rn satisfying L�M xðtÞð Þ
> 0 for all xðtÞ 2 X. Alternatively, for local stability analy-

sis, one can choose L as an n-dimensional null matrix.

To carry the stability analysis, the time-derivative of the

function (16) has to be evaluated in the trajectories of the

error system (15). As the time-derivative of the function

V eðtÞð Þ is given by

_V eðtÞð Þ ¼ _V1 eðtÞð Þ þ _V2 eðtÞð Þ; (20)

where

_V1 eðtÞð Þ ¼ _eTðtÞPeðtÞ þ eTðtÞP _eðtÞ

¼ eTðtÞ½IN�1 � A� cCð Þ þM xðtÞð Þ þ E�TPeðtÞ

þeTðtÞP½IN�1 � A� cCð Þ þM xðtÞð Þ þ E�eðtÞ

�2eTðtÞPE

ðt

t�s

½IN�1 � A� cCð ÞeðhÞ

þM xðtÞð ÞeðhÞ þ Eeðh� sÞ�dh; (21)

_V2 eðtÞð Þ ¼ 2e
s

ð0

�s

½eTðtÞ!T!eðtÞ þ eTðtÞETEeðtÞ�dh

� 2e
s

ð0

�s

½eTðtþ hÞ!T!eðtþ hÞ

þeTðtþ h� sÞETEeðtþ h� sÞ�dh; (22)

then, by evaluating the first integral in Eq. (22), the equation

can be rewritten as

_V2 eðtÞð Þ ¼ 2e½eTðtÞ!T!eðtÞ þ eTðtÞETEeðtÞ�

� 2e
s

ð0

�s

½eTðtþ hÞ!T!eðtþ hÞ

þ eTðtþ h� sÞETEeðtþ h� sÞ�dh : (23)

Concerning Eq. (21), as one considers ATBþ BTA
� eATAþ e�1BTB, it can be rewritten as

_V1 eðtÞð Þ � �eTðtÞQeðtÞ þ eTðtÞETPTPEeðtÞ þDTD � :::

� �eTðtÞQeðtÞ þ s
e

eTðtÞETPTPEeðtÞ þ e
s
DTD; (24)

where

�Q ¼ ½IN�1 � A� cCþ Lð Þ þ E�TP

þ P½IN�1 � A� cCþ Lð Þ þ E�;
¼ ½!þ E�TPþ P½!þ E�; (25)

and, further,

D¼
ðt

t�s

½IN�1� A�cCð Þe hð ÞþM xðtÞð ÞþEe h� sð Þ�dh: (26)

It follows that

DTD �
ð0

�s

½!e tþ hð Þ þ Ee tþ h� sð Þ�T

� ½!e tþ hð Þ þ Ee tþ h� sð Þ�dh:

� 2

ð0

�s

½eT tþ hð Þ!T!e tþ hð Þ

þ eT tþ h� sð ÞETEe tþ h� sð Þ�dh: (27)

Finally, taking Eqs. (23)–(27) into Eq. (20) yields

_V eðtÞð Þ � � eTðtÞQeðtÞ þ s
e

eTðtÞETP2EeðtÞ

þ 2e
s

ð0

�s

½eT tþ hð Þ!T!e tþ hð Þ

þ eT tþ h� sð ÞETEe tþ h� sð Þ�dh

þ2e½eTðtÞ!T!eðtÞ þ eTðtÞETEeðtÞ�

� 2e
s

ð0

�s

½eT tþ hð Þ!T!e tþ hð Þ

þ eT tþ h� sð ÞETEe tþ h� sð Þ�dh: (28)

Simplifying the latter expression, one obtains

V eðtÞð Þ��eTðtÞ Q�2e!T!�2eETE�s
e

ETP2E
h i

eðtÞ: (29)

Considering the inequality (29), the following result can

be established:
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Theorem (isochronal synchronization of delay-

coupled oscillators in complex networks): If there exists a
constant matrix P ¼ PT > 0 and a positive constant e > 0

such that

W ¼ Q� 2e!T!� 2eETE� s
e

ETP2E > 0 (30)

holds for a matrix Q ¼ QT > 0, where Q is given by Eq. (25)

and ! is given by Eq. (19), then the delay-coupled network
whose error system is given by Eq. (13) achieves isochronal
synchronization for coupling delay s.

To illustrate the effectiveness of the analytical results,

Sec. IV presents the results of computational evaluation of

the synchronization stability criterion for k-cycle networks

of chaotic oscillators. Further, the results show how synchro-

nization stability can be systematically evaluated to a whole

class of networks by using the inequality (30) to define a sta-

bility function over the network parameter space.

IV. EXAMPLES OF APPLICATION

Figures 1–3 present local stability maps for k-cycle

networks, considering the Lorenz equations (Figure 1) and

the R€ossler equations (Figures 2 and 3). Such maps show the

value of the minimum eingenvalue of the matrix �W from

inequality (30). Note that positive values of kminð�WÞ imply

synchronization stability, while nothing concerning stability

can be inferred from null and negative values, according to

the theory of stability of motion by Lyapunov. It is interest-

ing to note that the stability maps allow the visualization of

the direction of loss of stability within the network parameter

space. In the cases plotted below, loss of stability is induced

as (i) number of oscillators increase, (ii) the number of links

decrease, and (iii) as coupling delay increases. Considering

the stability maps, a multidimensional evaluation of stability

within the network parameter space becomes possible by

means of evaluation of the matrix inequality (30).

A similar systematic approach can be used to trace such

map for other kinds of network, as other parameters are cho-

sen. To make the visual analysis simple, it is interesting note

that a 2� dimensional parameter meshgrid is generated such

that the influence of such parameters in the network stability

can be properly evaluated in the resulting graphics. Further

analysis and insights into the nature of network stability are

possible as other parameters are considered in the generation

of the domain for evaluation of other similar stability func-

tions resulting from the analytical stability results presented

in this paper.

V. DISCUSSION

The analytical results allow the evaluation of the stabil-

ity condition for isochronal synchronization in undirected

networks of delay-coupled oscillators with arbitrary topology

by collecting accessible parameters of the network setup. It

is assumed that nodes are all identical and that the coupling

FIG. 1. Evaluation of synchronization stability of k-cycle networks of delay-

coupled Lorenz oscillators,30 over the set N � k of the network parameter

space. In the stable region, kmaxð�WÞ < 0; note that sync stability is lost as

the number of oscillators increases and/or the number of links decreases, as

indicated by arrows.

FIG. 2. Evaluation of synchronization stability of k-cycle networks of delay-

coupled R€ossler oscillators,31 over the set N � k of the network parameter

space. In the stable region, kmaxð�WÞ < 0; note that sync stability is lost as

the number of oscillators increases and/or the number of links decreases, as

indicated by arrows.

FIG. 3. Stability function over the set s� k of the parameter space of a

k-cycle network of 20 R€ossler oscillators.31 Note that sync stability is lost as

the number of links decreases and the time-delay increases.
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delay is constant and equal for every link in the network. In

practical terms, while the assumption on identical nodes can

be relaxed without major trouble, due to inherent robustness

characteristics of isochronal synchronization observed in

numerical and experimental studies,1,6 the assumption that

coupling delays between any two connected nodes are equal

is recognized to be limiting to some extent. Nevertheless, in

some occasions, electronic compensation of time-delays may

be used in practice to artificially equate differences in delay

magnitude arising in practice.

In a broader context, the analytical results are consistent

with known aspects of the physical phenomenon of isochro-

nal synchronization, as described in the literature.1–12 At

first, the form that the delay term appears in the stability

criterion suggests that stability is degraded for larger values

of delay. Although this does not always hold, it is recognized

that the qualitative behavior of Delay Differential Equations

(DDEs) does change as delays increase, generally towards

the loss of stability, due to the occurrence of Hopf bifurca-

tions which induces oscillatory and unstable behavior.33

Besides, as shown in Figures 1 and 2, network are less

likely to achieve isochronal synchronization as the number

of oscillators is increased and the number of links among

oscillators is decreased. This can be inferred from the direc-

tion of the loss of stability within the set N � k. Stability is

weakened in the direction perpendicular to that of the white

dashed line, corresponding to an increasing number of nodes

and a decreasing number of links. This observation agrees

with those concluded for networks without delay which con-

sider the eingenvalue gap of the network Laplacian matrix.22

Further and more general conclusions can be obtained

about more general networks, such as small-world or scale-

free networks using this methodology. Besides, considering

the requirements for its applications, the presented approach

can be used to evaluate the stability of synchronization in

networks of limit-cycle oscillators, including general studies

based on the network parameter space, as the ones presented

in the previous section.

VI. FINAL REMARKS

The major finding of this study is a new framework

under which the problem of isochronal network synchroniza-

tion can be formulated in a simple and physically meaningful

view. In addition, a sufficient stability condition for isochro-

nal synchronization in delay-coupled networks of chaotic

oscillators was derived and presented. From a simple prob-

lem formulation, the mathematical equations of the synchro-

nization error system are obtained; the stability of the trivial

fixed point of the error system is then studied on the basis of

Lyapunov-Krasovskii theorem. Tests considering complex

networks of delay-coupled Lorenz or R€ossler oscillators

illustrate the potential of the analytic results. The stability

problem of isochronal synchronization in delay-coupled net-

works was formulated and solved in the form of a straight-

forward stability criterion that requires at most some

computation to be checked and allows network isochronal

synchronization to be evaluated systematically over the net-

work parameter space.
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APPENDIX: PICKING UP THE PARAMETERS FOR THE
APPLICATION OF THE STABILITY CRITERION

Consider a 2-cycle network of N ¼ 5 oscillators, such

that

G ¼

4 �1 �1 �1 �1

�1 4 �1 �1 �1

�1 �1 4 �1 �1

�1 �1 �1 4 �1

�1 �1 �1 �1 4

2
66664

3
77775

and with coupling constant c, inner coupling matrix C and

coupling delay s, such that the network equations for the ith
node are given by

_xiðtÞ ¼ AxiðtÞ þ g xiðtÞð Þ � c

Gii

XN

j¼1

GijCxjðt� sijÞ;

sij ¼ s for i 6¼ j and sij ¼ 0 otherwise. Suppose that the indi-

vidual dynamics of the network nodes are given by the

R€ossler equations31

_x1

_x2

_x3

2
4

3
5 ¼

0 �1 �1

1 a 0

0 0 �c

2
4

3
5 x1

x2

x3

2
4

3
5þ

0

0

bþ x1x3

2
4

3
5;

such that the matrix of linear terms A and the nonlinear func-

tion gð:Þ appearing in the equation of the ith node are given

by

A ¼
0 �1 �1

1 a 0

0 0 �c

2
4

3
5; g xðtÞð Þ ¼

0

0

bþ x1x3

2
4

3
5:

Further, choose a matrix L such that L�M xðtÞð Þ > 0

for xðtÞ 2 X and choose TA ¼ IN � In and

TB ¼

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

2
66664

3
77775� In;

such that e1 ¼ x1 � x2, e2 ¼ x2 � x3, e3 ¼ x3 � x4, e4 ¼
x4 � x5 and e5 ¼ x5 � x1. As a result, a matrix E can be

obtained such that

�c TA � TBð Þ D�1Ad � C
� �

¼ E TA � TBð Þ

is satisfied. Considering the error variables, E can be chosen

as
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E ¼ c

� 1

4
0 0 0 0

0 � 1

4
0 0 0

0 0 � 1

4
0 0

0 0 0 � 1

4
0

0 0 0 0 � 1

4

2
6666666666664

3
7777777777775

� C:

Finally, choosing some P > 0 and e > 0 with appropri-

ate dimensions, the elements for the evaluation of stability

are available. Further, as one defines a stability function

using the inequality (30), the stability of isochronal synchro-

nization over a chosen subset of the network parameter space

can be evaluated.
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