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ABSTRACT 

 
This paper describes TerraHidro that is a distributed hydrologic 
modeling platform. TerraHidro is general purpose water resources 
system that presents a new concept to represent water flows based 
on graph structure, in the geographic information system (GIS) 
context. The drainage extractions and Amazonian basin 
delimitations using TerraHidro have been compared with ArcGis 
Hydro Tools regarding to drainage extractions and to show the 
TerraHidro availability the drainage of Amazonian sub basins, 
called Xingu, Purus and Tapajos are presented. 
 

Index Terms— Local flow, water flow, large basin, drainage 
network 
 

1. INTRODUCTION 
 
The local flow distribution in a water basin is the most important 
item to develop distributed hydrologic modeling oriented to 
hydrological resources. The underlying premise is that terrain is 
the main landscape contributor in settling these local flows [9], 
[11]. The basis for terrain representation in GIS is to partition the 
entire region. A Cell is the unit of this partition set and the local 
flow is the water flow for each cell according to its neighboring 
cells status following a particular neighborhood rule. 
The most common data structures found in GIS libraries and 
systems for terrain representation dedicated to hydrologic 
modeling are the Digital Elevation Models- DEM [1] with regular 
grids, Irregular Triangular Networks – TIN [3], representation 
based on Contour Lines [5] and Irregular Polygons Tessellations 
[10]. The selected representation carries its own functions for flow 
extraction and its own local flow data structure attached to it. The 
local flow representation depends on the data structure that has 
been used to represent the terrain topography. For instance, the 
extraction of local flow from DEM uses the 8-neighbor idea, 
creating a local flow representation, called Local Drain Direction -
LDD [1]. 
This condition leads the hydrologic modeling concept to have a 
strong coupling between the quality of the local flow 
representation and the parameters for the terrain data structure 
used, particularly regarding to its spatial resolution with direct 
implication on the modeling outcomes [6]. This paper presents 
TerraHydro, a Distributed Hydrological System created to develop 
hydrographic basin water flow GIS applications used to extract 
drainage network from large basin. Amazoina basins were used to 
show the TreaHidro results. 
 

 
2. PREVIOUS WORKS 

 
Several methods have been applied, by different authors to extract 
local water flow from the surface representation structures using 
DEM, TIN and Contour Lines. Those methods were developed to 
DEM structure, as the D8 unidirectional algorithm where the flow 
froma a grid cell follows to the steepest descent path among the 8-
neighbour [11]. The Rho8 is a stochastic version algorithm of the 
D8 algorithm [12]. The FD8 and FRho8 are the changes of the 
previous algorithms and they allow dispersion flowing [15], [16]. 
Some improvement has been proposed with methods that remove 
false pits and plane areas [9], [15]. 
Several hydrological models using these methods of local flow 
extraction have been embedded in GIS systems as a computer adds 
for GIS hydrological modelling. The ArcGis Hydro Module [17], 
The Grass GIS [18], the Topographic Parameterization (TOPAZ) 
[19], the Topography based on Hydrological Model (TopModel), 
the MIKE SHE [20] and the PCRaster [21] are examples of 
systems that make use of DEM terrain representation based on a 
regular grid data structure for hydrologic modelling. The 
Watershed Modelling System (WMS) [16] uses DEM and TIN 
data structures. TIN-based Real-Time Integrated Basin Simulator 
(tRIBS) uses TIN data structure and the TOPOG [5] e SASHI [8] 
that use Contour Lines based on those representations. 
Most of the toolkits use the DEM data structure because it 
demands simple algorithms and it has been adopted by several data 
producers institutions [22], [23]. Some authors have presented that 
each surface representation structure has its own advantages and 
disadvantages [24], [6]. 
 

3. DRAINAGE EXTRACTION AND BASIN 
DELIMITATION 

 
Drainage has been used by several applications involving water 
resources. To extract the drainage, first of all, the local flow and 
the accumulation area must be determined. Local flow is a flow 
between two neighbor cells considering the steepest downstream 
path from the cell X and the eight neighbor cells. Figure 1 shows 
this concept. 
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Fig. 1: Local flow extraction to X cell. 
After that, the accumulation areas are calculated from the local 
flows. Each Y cell receives a value that is the amount of the area of 
all cells that participate of a path arriving in the Y cell. Next step 
requires to define the accumulation area subset called drainage 
network. The user must define a threshold value. All grid cells with 
value equal or greater than the threshold are drainage cells. At this 
point, TerraHidro determines the river reaches that define drainage 
segments, between water springs and junctions, between junctions, 
or between junctions and mouth of the drainage. The Basin 
delimitations can be done by selecting one or more points over the 
drainage. TerraHidro finds the basin for each given point or for 
each river reach basin. At the end, the basins can be used as grid 
cell, or in vector forms. Figure 2a, 2b, 2c and 2d presents this 
concept. Figure 2a shows a geographic region with the 
corresponding drainage. Figure 2b presents the basin delimitation 
identified by a red point on the top of the image. All points of this 
geographic region contribute with water flow by that point. Figure 
2c shows the river segments. Each segment is represented by a 
different color. Figure 2d shows the watershed by each river 
segment. 

 

Fig. 2a. Geographic region drainages. 

 

Fig. 2b. Basin delimitation for the red point. 

 
 

Fig. 2c. River segment definitions. 
 

 
 

Fig. 2d: Watersheds delimitations. Each watershed corresponds 
one river segment. 

 
4. DRAIANGE RESULTS AND COMPARISON 

 
To show the TerraHidro functionalities some results have been 
extracted from TerraHidro and they are presented regarding to 
Amazonian sub basins. SRTM surface model, with 90m of 
resolution, have been used to extract hydrographic information. 
SRTM has many spurious local depressions that prevent local flow 
continuity that need to be eliminated allowing, then, the flow 
continuity. TerraHidro eliminates all local depressions lying in the 
geographical region, ensuring the drainages are totally linked. The 
basins used here are Xingu, Purus and Tapajos Rivers that are 
important Amazonian rivers. Figures 3, 4 and 5 present, 
respectively for each of these rivers, the drainage extracted, and 
zooms of the same regions showing the quality of the drainage, 
regarding to the SRTM data set. 
 
The implementation here uses data stored in TerraLib [2] open 
source geographical library implemented in C++ language. 
Terraview, a TerraLib based software, is used to visualize and to 
manipulate vector and raster data stored in geodatabases to read, 
write and visualize the grids. The grids used in this application are 
in TerraLib format and they can’t be directly read in Haskell, so a 
binding in C language called Terra-HS [4] was used to access the 
TerraLib grids. 
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Fig. 3: Xingu River drainages. (a) Geographical region; (b) 
Drainage in red; (c) Drainage shows a zoom of the yellow 

rectangle. 
 

 
 
Fig. 4: Purus River Drainages. (a) General drainages; (b) Zooms of 

two particular regions (yellow rectangles). 
 

 
 

Fig. 5: Tapajos River drainages. (a) Geographical region; (b) 
Drainage in red; (c) Drainage shows a zoom of the yellow 

rectangle. 
 
TerraHidro processed these jobs in a personal computer with 3GB 
of RAM memory. This low amount of memory required 
improvement of the source code to execute the TerraHidro 
functions using large data sets. Table I shows same values relating 
the processing of each river. 
 

TABLE I.   

 Xingu Tapajos Purus 

Rows 15.962 19.201 12.000 

Columns 7.202 9.601 15.600 

Pits 6.472.113 8.647.984 13.279.394 

Processing Time - 
LDD 3:20:04 h 5:33:38 h 5:40:31 h 

Processing Time – 
Accumulated Area 2:48 min 10:58 min 12:07 min 

 
Table I shows that SRTM produces a large amount of spurious 
local minima data or polygons. TerraHidro eliminates all local 
minima and generates the flow completely connected. 
Some tests have been performed comparing the drainage extracted 
from TerraHidro and the ArcGIS Hydro Tools that is the ArcGIS 
hydrological model. This choice is because of the significant 
ArcGIS as the most widely used GIS in the world. Figure X 
presents two cases where TerraHidro shows better results than 
ArcGis Hydro Tools. Probably, it succeeds because ArcGis Hydro 
Tools uses a local flow method that eliminates local minima 
creating flat areas. The algorithm used to extract the local flows 
generates straight and parallel lines into the flat areas. A version, of 
the Priority First Search – PFS algorithm [25] doesn’t present this 
problem. The proposed algorithm searches and finds the path 
between local minima neighbors. TerraHidro ensures a better 
drainage extraction regarding to topographical aspects. 
As drainage is the base for applications in water resources it is 
important to get realistic drainages, and TerraHidro produces best 
results relating ArcGIS Hydro Tools as showed at the Figure 5. 
TerraHidro drainages flows along the rivers while AcGIS Hydro 
Tools presents straight lines that don’t exist in the real world. This 
happens because ArcGIS creates flat areas to eliminate depressions 
areas and the drainages extracted in the flat areas products straight 
lines. 
 
 

5. CONCLUSIONS 
 
TerraHidro presents a different approach to operate local flows 
using a graph unifying structured called G-GCS. This approach 
allows using only one operator set to develop applications 
involving local flows and earth resources located within a 
hydrographic basin. An example of application was implemented 
in Amazonian basin. The comparison between TerraHidro and 
ArcGis Hydro Tools has showed that TerraHidro results are better 
than ArcGis Hydro Tools results and the significant of TerraHidro 
system in adopting a small computational power computer without 
crash the program. Figure 6 shows these comparisons. 
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Fig. 6. Comparison between drainage extraction from TerraHidro 
represented by red lines and ArcGIS Hydro Tools with (a) blue 

lines and (b) yellow lines. 
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