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Abstract—Automatic object recognition in digital satellite
images is not a simple task due to several variations present in the
capture process and object appearance and pose, consequently,
different general purpose techniques have been proposed. In
this paper, an approach with LBP boosted cascade classifier for
automatic runway detection in high resolution satellite imagery
is analyzed. Promising results are obtained with the methodology
presented in this work, considering objects with variations of
scale, rotation and images obtained by different sensors.
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I. INTRODUCTION

In satellite imagery with high spatial resolution, most
objects can be recognized by experts. Some objects are easy
to be visually recognized, others only with a high level of ex-
pertise. However, today, several applications require automatic
detection or identification of objects present in those images.

One example of that system use is in UAV (Unmanned
Aerial Vehicle) platforms that are currently having a boom,
principally due to the growing use by military, police and
civilian applications [1]. Runway recognition is an important
task particularly for UAVs that can use it for landing, combat
or even in self-localization procedures [2]. Generally, big and
medium cities and air force bases have its runway made of
concrete or asphalt. This approach can be useful to both
autonomous and hybrid systems. The use of hybrid systems
is also relevant because human-based recognition system is
highly susceptible to errors due to the fact that recognition
processes generally require a huge amount of data processing
and it is a tedious task. Furthermore, in some cases the operator
must be previously trained.

This paper analyzes the applicability of LBP (Linear Binary
Patterns) cascade classifier [3] to concrete and asphalt runway
detection. Despite this method has been used more frequently
in other application areas, as seen in Section II, the choice
of using LBP cascade classifier was made because its high
“benefit-cost” ratio, that is, good accuracy and low compu-
tational cost. These characteristics are desirable particularly
by autonomous systems that need to take real-time decisions
[4][5].

II. RELATED WORKS

Since its creation, the LBP cascade classifier, has shown to
be a robust classifier. It is considered to be a general purpose

although most uses are for human feature recognition. One of
the first works to employ the LBP with the cascade classifier
concept for object recognition was in [3], where it proposed a
face recognition approach.

As presented before, most applications of LBP have been
for human feature recognition. Some works perform face
recognition, as [6], [7], [8], [9] that also implements gender
recognition and [10] that also proposes a LBP multi-block
approach. Some other works perform pedestrian detection, as
[11] that uses optical and thermal imagery, [12] that also
performs tracking, and [13] that also performs face and head
detection. As a biometric identification solution, [14] proposes
a palmprint identification. There are also works that seek
general object recognition, as [15].

There are papers that propose runway recognition, but none
of them employs the use of LBP cascade classifier. Due to
the fact that a runway is an exact straight line, some works
employ Canny operator with Hough transform for such task
[16][5][17].

III. LBP CASCADE CLASSIFIER

Texture is defined as a function of spatial variations in the
pixel intensity of an image, and it has being used in a wide
variety of applications [18].

The Local Binary Pattern operator, also known as LBP, was
first introduced in [19] through the adaptation of the work [20]
and has shown to be a powerful texture descriptor. The idea
behind this operator is that common features such as edges,
lines, point, among others, can be represented by a value in a
particular numerical scale. Therefore, using a set of extracted
values a priori it is possible to recognize objects in an image.

The original LBP labels the pixels by thresholding the
3x3 neighborhood in relation to the central pixel value, as
seen in Figure 1, but there are recent studies that extend this
version [21][15][10]. The “bit” obtained for each neighboring
pixel is used through a pre-defined order to form a final value,
using 8 neighboring pixels that have value between 0 and 255,
as can be seen in Equation 1.

LBP (xp, yp) =
7∑

n=0

s(in − ip)2
n (1)

where (xp, yp) is the pixel of an image, n represents the
neighboring pixel, in and ip the respective gray level of
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neighboring and central pixel, and s(x) can be described by
the Equation 2.

s(x) =

{
1, x ≥ 0

0, x < 0
(2)

An extension to LBP was proposed by [10] and is called
multi-block LBP, or simply MB-LBP. Instead of using single
pixels, MB-LBP applies the LBP operator to pixel blocks. All
blocks must have the same size and must respect the 3x3
formation, as seen in Fig. 1. Then, what LBP operator uses for
its computation is the pixel block mean value. The advantage
of MB-LBP is to have a faster and more precise classifier [10].

Fig. 1. LBP extraction process, where (a) is the image fragment to
be processed, (b) shows gray levels, (c) shows subtraction results among
periphery pixels and the central one, in (d) it is assigned 0 to subtraction results
less than 0 and 1 to subtraction results greater or equal 0, in (e) are shown
the binary matrix values and in the final step, it is summed the correspondent
cell values in binary matrix that in (d) are 1.

MB-LBP binary patterns can be used to detect diverse
image structures such as edges, lines, spots, flat areas and
corners at different scale and location. Since MB-LBP features
are non-metric values, therefore it is not possible to use a
threshold-based function as weak classifier. Thus, a decision
tree is used as weak classifier. These weak classifiers are
classifiers that are slightly better than a random guess, but
when set in cascade, they become a strong classifier (Fig. 3)
with a high discrimination power, capable of detecting struc-
tures despite of illumination, color or scale variation [22]. It
combines successively weak classifiers, starting with simple
ones and ending with the most complex ones. In spite of the
fact that it seems to be an exhaustive search, the classifier
building characteristic allows an early rejection with a mini-
mum evaluation and consequently, it has a low computational
cost. It lies in the fact that the majority of detection windows
are negative and there are ’few’ windows that go through all
stages. Therefore, the computational power will be focused in
the windows that have higher probability to be positive, once
they already passed through the initial stages [23][4].

In any window inside a image, a huge amount of MB-LBP
features can be found. It is necessary then, during the training
stage, to focus on a small set of critical features, discarding
most of non-critical ones, in order to increase significantly

(a)

(b)

Fig. 2. (a) Original image and (b) resultant image after applying LBP
operator.

classification speed without affecting accuracy. Boosting [24],
an effective learning algorithm and has strong bounds on
generalization performance, is then, responsible to solve that
problem [4].

Objects can appear in different regions of the image and
in different scales. In order to solve this problem, the sliding
window method is used [25]. It consists of a detection window
that slides over an image extracting regions and classifying
them. A Gaussian pyramid [26] is also applied to the image
during the classification stage in order to perform a scale
search. It is important to highlight that before the training
stage is performed, the training samples must be resized to
the detection window size.

Due to the fact that detection windows overlap, the same
object can be count as various instead of just one. Then, it
is employed what is called as non-maximum suppression, that
is, windows with a local maximum of the classifier response
suppress nearby windows [25].
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Fig. 3. Cascade classifier concept.

IV. METHODOLOGY

Due to the fact that there is not a common use runway
dataset available and the previous works [16][5][17] proposing
runway detection did not make their own dataset available , it
was necessary then, to create our own.

The training dataset utilized is a high spatial resolution
image set composed of 2040 positive (Fig. 4) and 1600
negative samples. All images were obtained from Google Maps
application [27] where the positive samples are runway images
from different parts of the world. It is important to highlight
that Google Maps images have watermarks with Google logo
and year of capture scattered throughout the image. In order to
give certain rotation invariance, the positive set were built by
rotating the original images forty times, 9 degrees each time.
Due to memory limitations, the detection window size and
consequently the size of positive set images during the training
procedure should be, at maximum, 50x50 pixels. Two sizes
have been used, the maximum one (50x50) and a 32x32 one,
but negative samples have not been resized, because during
the training stage, fragments with the same size as the positive
samples are systematically extracted from the negative training
set images.

Fig. 4. Positive data set samples from the high resolution image set [27].

The LBP cascade classifier configuration for training was
set with 5 different stage sets (20, 25, 30, 35 and 40 stages),
0.999 for minimum hit rate per stage and Gentle Adboost as
boost algorithm [28].

V. RESULTS

Objects detected by this approach are possible to be cat-
egorized in three classes: True Positives(TP), Fig. 5, that are
runways correctly recognized, False Positives(FP), Fig. 6 and
Fig. 7, that are regions of the image that were erroneously

classified as runway and False Negatives(FN) that are non-
recognized runways. In this work, True Negatives, that are
non-runway regions correctly classified, were not used due to
the fact that they appear in a huge number and do not add any
substantial information besides the ones already gotten with
TP, FP and FN.

Two metrics [29] were utilized in order to measure classi-
fication accuracy performance of an image set obtained from
different sensors. The metrics are: True Positive Rate (Eq. 3),
also known as Hit Rate and Precision (Eq. 4).

TPR =
TP

Total Positives
× 100 (3)

Precision =
TP

TP+FP
× 100 (4)

where Total Positives are the total amount of runways
contained in the test dataset, that is, TP + FN .

In order to measure processing speed performance there
were utilized two metrics: Average Time per Image (ATI),
Eq. 5, and Average Time per Pixel (ATpx), Eq. 6.

ATI =
Total Processing Time

Total Image Amount
(5)

ATpx =
Total Processing Time

Total Pixel Amount
(6)

In the classification test, 50 images, that were not present
in the training dataset, were processed. They are not synthetic
images, therefore they were processed just the way they appear
in Google Maps. Each image contains a runway, where the
image size average are 1200x600 pixels and the runway length
varies from 200 pixels to 400 pixels. The classification process
was not parallelized and it was executed in a 2.40Ghz Intel i7-
3630QM processor with 8GB RAM. The classification results,
the performance indexes and the average time measures are
shown in Table I and the II.

Stages TP TPR FP FN Prec. ATI ATpx
20 39 78% 11 11 78% 367.66 ms 5·10−4 ms

25 39 78% 11 11 78% 209.65 ms 2.85·10−4 ms

30 39 78% 11 11 78% 124.57 ms 1.69·10−4 ms

35 40 80% 11 10 78.4% 81.75 ms 1.11·10−4 ms

40 38 76% 24 10 61.3% 57.15 ms 0.78·10−4 ms

TABLE I. CLASSIFICATION RESULTS WITH A 32PX DETECTION

WINDOW.

Stages TP TPR FP FN Prec. ATI ATpx
20 39 78% 11 11 78% 3002 ms 40.8·10−4 ms

25 39 78% 11 11 78% 1945.7 ms 26.4·10−4 ms

30 40 80% 10 10 80% 1124.4 ms 15.3·10−4 ms

35 40 80% 10 10 80% 649.24 ms 8.82·10−4 ms

40 40 80% 10 10 80% 393.55 ms 5.35·10−4 ms

TABLE II. CLASSIFICATION RESULTS WITH A 50PX DETECTION

WINDOW.
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Fig. 5. Cropped region showing a true positive example.

Fig. 6. Cropped region showing a false positive example.

VI. CONCLUSION

In this paper, it is proposed an approach for concrete and
asphalt runway recognition with LBP cascade classifier in high
resolution satellite images. It has shown a high performance
with object recognition in the previous works and this work
confirms its applicability for runway detection in satellite
imagery and also, its applicability in real-time decision making
systems.

The classifier parameters have been set in order to check
the variations in the classification accuracy and speed perfor-

Fig. 7. Cropped region showing a false positive example.

mance. All of the classifiers had somehow a similar classifica-
tion accuracy performance, the outlier is the classifier with 40
stages and 32 pixel size (TPR=76% and Precision=61.3%).
The possible explanation is classifier overfitting due to the
parameters combination. It was not possible to identify whether
false positives follow a pattern or not, but what is possible to
say is that most of false positives occur in the same region
in almost all classifiers and that some false positives are
composed by strong lines however they are not necessarily
straight.

Regarding the processing speed performance, it can be
clearly seen that the more stages a classifier has, more faster
it is, and also, the smaller its descriptor is, the faster it gets.

Analyzing only the classification accuracy, TPR and Preci-
sion of 80%, it is possible to affirm that the results got a good
performance but for some applications they still need improve-
ments. But when one looks the relation between classification
accuracy and processing speed, it turns to be a promising
result. The best classifier, considering this ratio, is the clas-
sifier with 35 stages and 32 pixel descriptor size(TPR=80%,
Precision=78.4% and ATI=81.75ms).

Another interesting point to note is that the watermarks
present in the high resolution training images had none or
little impact on the classifier performance, due mainly to the
classifier internal architecture.

The three previous works [16][5][17] about runway detec-
tion did not make their own image dataset available, conse-
quently it was not possible to make comparisons about the
classification accuracy. Most of them also, did not report the
processing speed performance of their approach either. The
only one [5] that made it, processed a 256x256 pixel image in
27ms, that is, it has ATpx=4.12·10−4 ms. The approach used
in this work showed a much better performance. Using a 32px
detection window and a 25, 30, 35 or 40 stage cascade, it
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showed to be at least 1.45 time faster and at most 5.28 times
faster.
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