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EVALUATING ORBITS WITH POTENTIAL TO USE SOLAR SAIL 
FOR STATION-KEEPING MANEUVERS 

Thais C. Oliveira,*and Antonio F. B. A. Prado† 

The purpose of this paper is to find the necessary and the sufficient conditions to 

use solar sails in order to compensate or to reduce the perturbation effects due to 

external forces received by a satellite. The study considers a satellite with the 

following disturbing forces: the solar radiation pressure, the zonal harmonic per-

turbation J2 to J4 and the third body perturbation due to the Sun and the Moon. 

The necessary and the sufficient conditions are, for a given orbit, the area and 

the attitude that the solar sail must have in order to compensate or to reduce the 

effects of the other perturbation forces. In this way, the cost of the station keep-

ing maneuver can be reduced in terms of the fuel consumption, since there is 

less perturbation acting on the satellite. Consequently, the lifetime of the satel-

lite can be extended, since it is dependent from the fuel left to perform orbital 

maneuvers. The use of the integrals over the time is a new approach that pro-

vides the accumulated effects of the perturbation forces. In this way, it is also 

possible to evaluate the magnitude of each perturbation force acting separately 

or all added together and also the evaluation of the magnitude of the reduction of 

the disturbing forces with the solar sail usage. The result of this integral is also 

the total velocity variation that the satellite suffers from the perturbation forces. 

In addition, the evaluation of the direction of the perturbation forces can guaran-

tee the use of the solar sail to reduce the shifts caused by the external forces act-

ing on the satellite by applying a disturbing force from the solar sail in the oppo-

site direction of the other perturbations. 

INTRODUCTION 

This paper aims to find the optimal direction and the value of the projected area illuminated by 

the Sun that a solar sail must have in order to use the solar radiation pressure as a disturbing force 

that reduces or eliminate the other perturbation forces. The perturbation forces considered are: 

solar radiation pressure, third body perturbation of the Sun and the Moon and the Jn perturbation 

from J2 to J4. The idea is to use a propulsion system to compensate the perturbations that the solar 

radiation pressure is not able to do, in order to keep the orbit of the spacecraft keplerian all the 

time. This approach is used in order to map orbits that have a good potential to use this concept 

and not to estimate the fuel consumption to realize those maneuvers, because the exact fuel re-

quired depends on the control strategy used and the constraints of the mission. 
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For the optimal solution of the solar sail, it is considered that the size of the solar sail can vary 

along the orbit. Although the solution might look not practical, since it is very hard to build solar 

sail that can vary its size, it can be convenient for a first analysis of the mission to guarantee that 

the magnitude of the disturbing forces has the same magnitude provided by the solar sail. 

Also, two sub-optimal analyses are considered: one is obtained by choosing a fixed area of the 

solar sail and the other one is obtained using a fixed area for the solar sail and some limitations on 

the degrees of freedom for the solar sail attitude. The time integral of the magnitude of the dis-

turbing forces is a technique used is this paper to guarantee that the use of the solar sail is valid 

and to reduce the other perturbation forces along the orbit.
1,2,3

 

The Solar Radiation Pressure 

The solar radiation pressure is one of the perturbation forces that act on the satellite, deviating 

the orbit of the spacecraft to a non-Keplerian orbit. The solar radiation pressure occurs when the 

radiation emitted by the Sun collides with the surface of the satellite, resulting in a force acting on 

that surface. The solar radiation pressure can not only change the orbital motion of the satellite, 

but it can also change the attitude of the satellite, if the solar radiation pressure force is not di-

rected to the center of mass of the satellite.
4
 

Although the solar radiation pressure is a disturbing force, there are some cases where it can 

be used for the attitude control to help the maintenance of the orientation of the satellite
5
 or even 

for orbital maintenance.
6,7,8,12

 

This paper is concerned with the use of the solar radiation pressure in order to reduce the shifts 

caused by the other perturbation forces. The solar sail is used here to expand the effects of the 

solar radiation pressure and to create a perturbation in the opposite direction of the other disturb-

ing forces. To achieve this purpose, the attitude of the solar sail is an important key to guarantee 

that the disturbing forces of the solar sail and the external forces acting on the satellite are oppo-

site. 

The magnitude of the solar radiation pressure acceleration applied to a spacecraft or a solar 

sail is given by:
9
 

                 
  

 
      ̂  (1) 

where   is the reflectivity of the surface, assuming values from 0 to 1;    is the ratio of the solar 

constant, 1360 W/m
2
 at one A.U., to the speed of the light;    is the projected area of the satellite 

or the solar sail that is illuminated by the Sun;   is mass of the satellite;   is the angle between 

the direction of the light flux and the normal of the satellite and   determines the Earth’s shadow 

region. The unit vector  ̂ represents the direction of the force applied to the surface of the body 

and it is given by:
10
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where  ̂ is the unit vector with the opposite direction to the light flux and  ̂ is the unit vector 

pointing to the normal of the surface. 

Figure 1 shows the light interaction with a smooth surface of the body with the unit vectors  ̂, 

 ̂,  ̂ and the angles   and  .
10 
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Figure 1. The light interaction with a smooth surface. 

The angle   provides the direction of the solar radiation pressure force and it is the angle be-

tween the unit vectors  ̂ and   ̂. In the way shown in Eq. (2) and Figure 1, the direction of the 

force caused by the solar radiation pressure is related to the reflectivity of the surface   and the 

angle between the direction of the light flux   with the normal of the surface. If the value of the 

reflectivity of the surface is different from one, some of the energy of the light flux is absorbed by 

the surface and then the direction of the solar radiation force is not the opposite to the normal unit 

vector  ̂. Nevertheless, if the angle   is zero, then, even though the coefficient of reflectivity 

might be different from one, the direction of the solar radiation pressure force is opposite to the 

normal unit vector. 

The shadow regions given by   is determined by conical projections of the umbra and penum-

bra shadows, given the position and the shape of the Earth, the Sun and the distance between 

those celestial bodies.
11 

The coefficient     occurs when the satellite is in the illuminated re-

gion. If      , then the satellite is located at the penumbra region and, if      it is at the um-

bra region. A schematic figure illustrating this configuration is given in Figure 2.
11 

For practical reasons, since this paper is concerned with a conceptual design and analysis of 

spacecraft’s orbits, the shape of the satellite was considered to be very simple. The satellite has a 

square shape with area of 4 m
2
 for each side. The surface of the satellite is smooth and the reflec-

tivity parameter   is considered to be 0.8. For the attitude of the satellite, it is considered that one 

of the sides is always pointing to the center of the Earth. 

For the solar sail, the shape considered was a smooth surface with negligible base area   , as 

shown in Figure 1. Once the solar sail has a smooth surface, there is no need to define the shape 

of the solar sail surface. It is only necessary to define the area of the smooth surface    and the 

normal unit vector of the solar sail for its attitude. The reflectivity parameter of the solar sail was 

considered to be        . This value is realistic although it is not the ideal one, that should have 

100% of reflectivity.
12 

The solar sail is used to compensate the other perturbation forces that deviates the orbit of the 

satellite. Therefore, it is considered that the satellite is able to change the attitude of the solar sail 

at every instant of time, compensating the torques and other perturbations that the attitude motion 

suffers and also to change the         to the optimal case. 
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Figure 2. The illustration of the umbra, penumbra and illuminated areas. 

The first sub-optimal case considers that the area    is fixed, but the attitude of the solar sail is 

optimal. The second sub-optimal case considers that the solar sail attitude has some constraints in 

the degrees of freedom.  

For the constrained solar sail attitude, it is important to explain the reference system fixed on 

the satellite, in order to have a better understanding of the attitude constraint. The non-inertial 

reference system fixed in the satellite has the   axis in the radial direction directed to the centre of 

the Earth, the   axis is perpendicular to the   axis and it lies in the orbital plane; and the   axis is 

normal to the orbital plane and its direction is given by the cross product of the   and   axes. The 

solar sail can rotate freely on the   axis, but for the rotation of the   axis, the solar sail can only 

rotate from -30 to 30 degrees. The rotation on the   axis does not matter for this geometry, since 

it does not influence the results obtained. Figure 3 is the geometric illustration for the restricted 

degrees of freedom for the second sub-optimal case. 

As shown in Figure 3, one of the sides of the satellite is always pointing to the radial direction 

 ̂ or to the   axis of the reference frame of the satellite. This attitude of the satellite is also con-

sidered for the optimal and the first sub-optimal case. It is assumed that the satellite is capable of 

controlling the attitude of the satellite at every instant of time and that its attitude is given by the 

normal vector  ̂ (see Figure 1).  

Nevertheless, there are some parts of the orbit where the solar radiation pressure cannot con-

trol the other perturbation forces, whether because the satellite is on the shadow of the Earth or 

because the optimal angle of the incidence of the flux of the Sun radiation   is larger than π/2 rad. 

Whenever the solar radiation cannot control the other perturbation forces, the solar sail becomes 

inactive by rotating the panels and creating a perpendicular direction of the normal of the surface 

of the solar sail with the direction of the light flux. In this way, the light flux collides with the 

neglected base area of the solar sail and it becomes inactive. 

 

 



 5 

 
Figure 3. The degrees of freedom for the second case of the sub-optimal approach. 

 
 

Note that all the computations and results are performed and presented in a inertial coordinate 

system known as the "vernal coordinate system," where the   axis is pointed to the vernal point 

and the centre of the Earth is the origin of the coordinate system.  

The Third Body Perturbation 

The third-body perturbation in this paper includes the perturbations of the Sun and the Moon. 

The position of the Sun and the Moon are given by the ephemeris models presented in several 

references.
13,14,15

 The potential of the gravitational force due to the Sun and the Moon is given by 

Equation (3): 
1,2 
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where the coordinates of the Sun are   ,    and   ; the coordinates of the Moon are   ,    and 

  ; the coordinates of the spacecraft are  ,   and  ;   is the gravitational constant;    is the 

mass of the Sun;    is the mass of the Moon and    ,    ,    and    are the distances from the 

Moon to the Earth; from the Sun to the Earth; from the spacecraft to the Moon and from the 

spacecraft to the Sun, respectively. The reference system considered in this paper is the inertial 

one with the   axis pointed to the vernal point, the    plane is the equatorial plane of the Earth 

and the centre of the reference system is the Earth.  

Concerning the disturbing force of the third body, the gradient of the potential, that gives the 

perturbing force, is given by: 
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where   ,    and    are:
1,16 
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The J2, J3 and J4 Perturbations 

The Earth is not perfectly symmetric and it does not have a homogeneous distribution of mass. 

This non-symmetry and this mass displacement can be considered as a disturbing force that acts 

on the satellite. The oblatness of the Earth has the greatest influence on this disturbing force and it 

is usually described with the help of the J2 coefficient of the zonal harmonic. This paper considers 

the J2 to J4 coefficients as the disturbing forces related to the non-symmetry of the Earth. The J2, 

J3 and J4 are dimensionless constants and their values considered here are J2 = 1.08263x10
-3

, J3 = -

2.54 x10
-6

 and J4 = -1.61 x10
-6

.
17

 Before describing the gravitational potential and the disturbing 

force due to the non-spherical Earth, it is necessary to define the position vector used in this paper 

and it is given by Equation (8):
17

 

             (8) 

where the unit vector    denotes the radial direction and the unit vector    denotes the southward 

direction in the local horizontal frame. The angle   is actually the co-latitude of the position of 

the sub-satellite point. This angle is determined in this paper by the initial parameter of the initial 

time, date and year of the begging of the simulation. 

Subsequently, the gravitational potential of the perturbation of this paper is described with the 

help of the position vector, as follows:
17
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where    is the equatorial radius of the Earth,    is the mass of the Earth,    is the Legendre 

polynomial of    degree, Jn is the spherical harmonic coefficient of     degree. 

The gravity is a conservative force, therefore it can be expressed by the gradient of the poten-

tial given in Equation (9). This gradient in Equation (10), with respect to the position vector in 

Equation (8), is:
17
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The Integral Approach 

The integral approach is based on the integral of the magnitude of the disturbing forces along 

the orbit for one orbital period. This integral is called PI in this paper and it is given by Equation 

(13):
1
 

    ∫ | |
 

 
    (13) 

where   is the disturbing force or forces per unit of mass of the satellite,   is the time and   is the 

period of the orbit. 

The integral approach, given by Equation (13), considers a Keplerian orbit for the satellite, 

even though there are disturbing forces acting on the satellite. Therefore, it is assumed that the 

variations of the orbital elements during one orbital period, the time of integration, is not too 

large. At first glance, this approach is not practical, since the fuel consumption for this type of 

station-keeping maneuver can be very demanding. Nevertheless, this approach can be useful to 

map orbits that are less perturbed and so have a good potential for requiring less fuel for station-

keeping, independent of the constraints imposed and the control strategy adopted. The PI value 

indicates the velocity change that the satellite suffers from the disturbing forces and this value is 

also associated with the deviation of the Keplerian elements of the orbit. 
19

 

In this way, the integral approach is used to test the optimal and sub-optimal solutions of the 

solar sail used to analyze the magnitude of the disturbing forces with and without the solar sail for 

a complete orbit of the satellite. 

RESULTS 

The results of this paper are based on the geostationary orbit. The initial parameters used are 

given in Table 1. The initial Keplerian elements of the orbit are: semi-major axis = 42164000 m; 

eccentricity = 0; inclination = 0 ; argument of perigee = 0 ; right ascension of the ascending node 

= 0 ; true anomaly = 0 . 

 Table 1. Initial parameters for the solar radiation pressure 

Reflectivity of the satellite 0.8 

Area of the square side of the 

satellite (m
2
) 

4 

Reflectivity of the solar sail 0.9 

Maximum area of the solar sail 

(for the optimal case) (m
2
) 

500 

The Optimal Case 

The first analysis for the optimal case begins the simulation in January 01, 2014 at 5:30 GMT. 

The results are shown in Figures 4 to 6. 

Figure 4 shows the magnitude of the acceleration of the disturbing forces as a function of the 

eccentric anomaly of the spacecraft. The blue line is the magnitude of the perturbation that acts 

on the satellite and the red one represents the magnitude of the solar sail. From the eccentric 
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anomaly 70 to 140 degrees, approximately, the magnitude of the solar sail perturbation is the 

same as all perturbations, therefore, for this range, the solar sail can compensate fully the other 

perturbation forces. Nevertheless, for different values of the eccentric anomaly of the spacecraft, 

the solar sail magnitude force is not able to compensate the other perturbation forces fully, it is 

just able to reduce their effects. For these initial parameters of the simulation, the satellite is al-

ways illuminated by the Sun. Figure 5 shows the incident angle   as a function of the eccentric 

anomaly. According to Equation 1, the magnitude of the solar sail force is related to this inci-

dence angle, and, as this incidence angle approaches zero, the magnitude of the solar radiation 

pressure increases and it decreases when the angle of incidence increases. 

The optimal case considers a variable area for the solar sail with the maximum value of 500 

m
2
, as shown in Figure 6. Using Figures 4, 5 and 6, it is clear that, as the incident angle decreases, 

the value of the area of the solar sail required to compensate the other perturbations decrease, 

since the magnitude of the solar sail is related to the incident angle. Nevertheless, the incident 

angle also determines the direction of the perturbation of the solar sail and, therefore, since the 

direction of the solar sail perturbation must be opposite to the direction of all perturbations, the 

incident angle cannot be controlled. The maximum area of the solar sail imposed were 500 m
2
, 

but if this area could vary freely, the solar sail would be able to control all the perturbations for 

this case, since the incident angle is not larger than 90 degrees and there is no passage by the 

shadow of the Earth.  

Figures 7 to 9 show the unit vector of the direction of the perturbations forces for the sum of 

the perturbations that act on the satellite and the direction of the solar radiation pressure caused 

by the solar sail. 

 

Figure 4. The magnitude of the acceleration VS. the eccentric anomaly of the spacecraft. 
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Figure 5. The incidence angle   VS. the eccentric anomaly of the spacecraft. 

 

Figure 6. Maximum area of the solar sail VS. the eccentric anomaly of the spacecraft. 
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Figure 7. Unit vector for the X axis at the inertial frame VS. the eccentric anomaly of the spacecraft. 

 

Figure 8. Unit vector for the Y axis at the inertial frame VS. the eccentric anomaly of the spacecraft. 
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Figure 9. Unit vector for the Z axis at the inertial frame VS. the eccentric anomaly of the spacecraft. 

 From Figures 7 to 9, it is clear that the direction of the perturbations forces that act on the 

satellite is opposite to the direction of the solar radiation pressure caused by the solar sail. The 

opposite direction is required in order to guarantee that the perturbation forces are compensated 

or reduced. 

As mentioned before, the solar sail is not always able to control or compensate totally the per-

turbation forces. If the incident angle is larger than 90 degrees, the solar sail perturbation caused 

by the solar radiation pressure is not able to compensate the perturbation forces or if the satellite 

has a passage through the shadow of the Earth. The second case for the optimal solution has those 

two different reasons for the inability of the solar sail to control or reduce the effects of the other 

perturbation effects and it is presented in Figures 10 to 12. 

The second analysis for the optimal case begins the simulation in September 1, 2014 at 5:30 

GMT. The results related to this case are shown in Figures 10 to 12. 
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Figure 10. The PI value VS. the eccentric anomaly of the spacecraft. 

 

Figure 11. The incidence angle   VS. the eccentric anomaly of the spacecraft. 
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Figure 12. Maximum area of the solar sail VS. the eccentric anomaly of the spacecraft. 

For this second case of the optimal solution for the solar sail, the range of the eccentric 

anomaly that the solar sail can control the other perturbation forces is different from the first case, 

shown in Figure 4. 

From 338 to 345 degrees for the eccentric anomaly, the satellite passes through the shadow 

and the penumbra of the Earth.  

Figure 11 provides the optimal incidence angle that the flux of the light of the Sun must have 

with the normal of the solar sail. From 140 to 210 degrees for the eccentric anomaly, the inci-

dence angle is larger than 90 degrees, therefore, the default value of 90 degrees is considered for 

this range. If the incidence angle is larger than or equal 90 degrees, the solar sail cannot compen-

sate the other perturbation forces since, for this geometry, it is not possible to obtain an opposite 

direction of the solar radiation pressure with the perturbation forces. Figure 11 does not consider 

the satellite passage through the shadow of the Earth, just the optimal angle of incidence. 

In Figure 12 there is the optimal area of the solar sail with the maximum value restricted to 

500 m
2
. The area of the solar sail reduces to zero when the incidence angle is larger or equal 90 

degrees or when the satellite passes thought the shadow of the Earth. The solar sail becomes inac-

tive by rotating the panel of the solar sail in a way that the solar radiation pressure has no effect 

on the solar sail. 

Sub-optimal Case with Fixed Area and Optimal Attitude for the Solar Sail 

This sub-optimal approach considers now a fixed area for the solar sail, although the solar sail 

can have the optimal attitude to guarantee that the direction of the solar sail perturbation is oppo-

site to the sum of all perturbations. 

For the Figure 13, the area of the solar sail is now fixed and it is clear that the behavior for the 

magnitude of the acceleration is different from Figure 4. Now, the patterns of the magnitude of 
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the acceleration of the solar sail do not follow the patterns for all perturbations when they have 

the same magnitude and it occurs because the size of the solar sail is now fixed. Figures 8 to 10 

are related to the direction of the solar sail perturbation in the optimal case is the same for this 

one, since the orbit and the initial conditions are the same, as well as Figure 5, with the optimal 

incidence angle for this case. 

Sub-optimal case with Fixed Area and Constrained Attitude of the Solar Sail 

This last sub-optimal case, with constraints not only in the fixed area of the solar sail, but also 

with constraints in the attitude of the solar sail, is exemplified in Figure 3. The analysis for this 

sub-optimal case begins the simulation in January 01, 2014 at 5:30 GMT (the same initial param-

eters for the first optimal case and for the first sub-optimal case). 

For this case, some considerations must be explained before the results. Since the attitude of 

the solar sail is now constrained, the optimal direction of the attitude of the solar sail cannot be 

used in this case. Whenever the constrains do not allow the attitude of the satellite to be optimal, 

the attitude of the solar sail is given by the minimum deviation of the perturbation force caused 

by the solar sail constrained and the optimum solar sail. The constraint deviates the optimal direc-

tion of the solar sail, and when the angle between the optimal solution and the constrained solu-

tion for the solar sail force is larger than π/2, the solar sail constrained is disregarded and it be-

comes inactive. 

Figure 14 shows the magnitude of the perturbations and the magnitude of the solar sail with 

the attitude constraint. This result is different from the one shown in Figure 13. The attitude con-

straints keep the satellite in a different attitude from the optimal result, and, by that, the incidence 

angle   of the flux of energy of the Sun with the normal of the solar sail also changes. Figure 15 

shows the incidence angle for the solar sail with attitude constraint. 

 

Figure 13. The magnitude of the acceleration VS. the eccentric anomaly of the spacecraft. 
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Figure 14. The magnitude of acceleration VS. the eccentric anomaly of the spacecraft. 

 

Figure 15. The incidence angle   VS. the eccentric anomaly of the spacecraft. 

 

The initial conditions of this case are the same ones of the first optimal result and of the first 

sub-optimal result. Figures 16 to 18 are related to the optimal and sub-optimal (constrained atti-
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tude) direction of the normal of the satellite in the inertial frame. Those figures show the direction 

that the normal of the solar sail or the attitude that solar sail have for those three cases. 

The blue line in Figures 16 to 18 represents the unit vector directions of the normal of the so-

lar sail for the optimal direction with no constraint imposed for the attitude. The red line is related 

to the normal solar sail with the attitude constraint. The results are given in the inertial reference 

system fixed on the centre of the Earth and with the X axis pointed to the vernal point.  

The results show the directions that the solar sail must have in order to compensate the other 

perturbation effects for the cases considered by creating a solar sail perturbation direction oppo-

site or almost opposite to the other perturbations directions. 

The Perturbation Integral Values 

This section is related to the values of the perturbation integrals. As mentioned in the previous 

sections, the perturbation integral is used to evaluate the magnitude of the perturbations with and 

without the use of the solar sail. The results of this integral are important to evaluate how much 

the solar sail can compensate the magnitude of the perturbation forces. As shown in Table 2, there 

is a PI value for each different cases of the solar sail. The results are based on simulations that 

begin in January 01, 2014 at 5:30 GMT. 

 

Figure 16. The normal unit vector direction for the X axis in the inertial frame VS. the eccentric 

anomaly of the spacecraft. 
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Figure 17. The normal unit vector direction for the Y axis in the inertial frame VS. the eccentric 

anomaly of the spacecraft. 

 

Figure 18. The normal unit vector direction for the Z axis in the inertial frame VS. the eccentric 

anomaly of the spacecraft. 
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Table 2. The PI values for the Geostationary Orbit based in Tables I and II. 

 Solar Sail 

optimal with 

no area  or 

attitude con-

straints 

Solar sail sub-

optimal with fixed 

area and no con-

straints for the atti-

tude (100 m
2
) 

Solar sail sub-

optimal with fixed 

area and no con-

straints for the 

attitude (200 m
2
) 

Solar sail sub-

optimal with 

fixed area and 

attitude con-

straints 

Jn Perturbation 0.5935 m/s 0.5935 m/s 0.5935 m/s 0.5935 m/s 

Third-Body 

perturbation of the 

Moon 

0.5993 m/s 0.5993 m/s 0.5993 m/s 0.5993 m/s 

Third-body per-

turbation of the 

Sun 

0.2236 m/s 0.2236 m/s 0.2236 m/s 0.2236 m/s 

Solar radiation 

pressure of the 

satellite shape 

0.0116 m/s 0.0116 m/s 0.0116 m/s 0.0116 m/s 

Sum of all per-

turbations 

0.8816 m/s 0.8816 m/s 0.8816 m/s 0.8816 m/s 

Solar sail per-

turbation 

0.2515 m/s 0.0699 m/s 0.1398 m/s 0.0588 m/s 

All perturba-

tions with the solar 

sail 

0.6301 m/s 0.8117 m/s 0.7418 m/s 0.8228 m/s 

 

From Table 2 it is possible to see that, for the optimal case, there is a reduction of 28,52% on the 

magnitude of the disturbing forces. For the sub-optimal solar sail with optimal attitude and fixed 

area of 100 m
2
 the reduction is 7.63 % and for the fixed area of 200 m

2
 the reduction is 15.85 %. 

The worst scenario, with fixed area and attitude constraints for the solar sail, the reduction on the 

magnitude of the disturbing forces is around 6.67%. For the optimal attitude of the solar sail, the 

PI value of all perturbations with the solar sail usage is actually the subtraction of the PI value of 

the sum of all perturbations with the PI value of the solar sail perturbation. This result occurs 

because the optimal attitude for the solar sail guarantees that the disturbing forces acting on the 

satellite and acting on the solar sail are opposite. Therefore, the constrained attitude of the solar 

sail does not have this result, since the direction of those forces are not opposite. 

The other approach used in this paper was to keep the same initial parameters of the simula-

tions of Table 2, but now varying the eccentricity of the orbit in Table 3 and the inclination in 

Table 4. Similar studies are made in the literature
1,2,3,19

. For the next Tables, only the sub-optimal 

case with area of the satellite fixed in 100 m
2
 and the optimal attitude for the solar sail was con-

sidered. 
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Table 3. The Average Value of PI as the Eccentricity changes 

 
Sum of all perturba-

tions 

All perturbations 

with the solar sail 

usage 

Percentage of 

reduction of the 

PI  value with 

the solar sail 

Eccentricity = 0 0.6370 m/s 0.5625 m/s 11.70% 

Eccentricity = 0.2 0.7417 m/s 0.6545 m/s 11.76% 

Eccentricity = 0.4 1.1226 m/s 1.0310 m/s 8.16% 

Eccentricity = 0.6 2.2489 m/s 2.1644 m/s 3.76% 

Table 4. The Average Value of PI as the Inclination changes 

 
Sum of all perturba-

tions 

All perturbations 

with the solar sail 

usage 

Percentage of 

reduction of the 

PI  value with 

the solar sail 

Inclination = 0 grad 0.6370 m/s 0.5625 m/s 11.70% 

Inclination = 20 grad 0.6516 m/s 0.5806 m/s 10.90% 

Inclination = 40 grad 0.8143 m/s 0.7328 m/s 10.00% 

Inclination = 60 grad 0.9256 m/s 0.8451 m/s 8.70% 

Inclination = 80 grad 0.9257 m/s 0.8474 m/s 8.45% 

 

From Tables 3 and 4, it is clear that when using the solar sail with fixed area but optimal attitude, 

the reduction of the PI value is almost the same, in absolute values, as the Keplerian elements 

vary, since the area of the solar sail is fixed. Nevertheless, the percentage of this reduction de-

creases as the sum of all perturbation increases. For all perturbations, as shown in some refer-

ences, the sum of all perturbations increases as the inclination and eccentricity of the orbit in-

crease (in the range shown), therefore these results were expected.
1,2,3

 

CONCLUSION 

This paper is concerned with the use of the solar radiation pressure perturbation of a solar sail 

to reduce the effects of the other perturbation forces along the orbit. The method used a given 

absorption factor for the solar sail material. The incidence angle that the flux of energy from the 

Sun makes with the normal of the satellite must be found to guarantee that the direction of the 

solar sail force is opposite to the sum of the other perturbations.  

The solutions presented in this paper are optimal and sub-optimal in terms of the attitude of 

the solar sail. In particular, if the orbit must be keplerian all the time or if the tolerance of devia-

tions parameters from the keplerian elements is small, the results are close to the PI values pre-

sented in this paper. 

It is also important to point out that, if the tolerance deviation of the Keplerian elements of the 

orbit is high, the results showed here may have larger deviations from the fuel consumed, since 
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the proposed usage of the solar sail in this paper is to correct the deviations of the perturbation 

forces all the time. 

The results have shown that the solar sail can be used to reduce the other disturbing forces 

and, therefore, decrease the fuel costs of the station keeping maneuvers.  
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