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This paper studies maneuvers for a spacecraft that combines an impulse with a Swing-By 

performed with a celestial body that is traveling in an elliptical orbit around the primary 

body of the system. The objective is to measure the variations of the velocity, energy and 

angular momentum of the spacecraft due to this maneuver. An algorithm is developed to 

obtain the energy and the angular momentum variation for this particular type of powered 

Swing-By. In this way, it is possible to find the best direction and instant to apply the 

impulse in order to maximize the energy variation. The results show that applying the 

impulse in the direction of the motion of the spacecraft is generally not the optimal solution 

and the results depends on the position of the secondary body in its orbit around the main 

body and the eccentricity of the orbits of the primaries. Compared to the circular case, 

several situations where the impulse is retrograde appears when the secondary body is at the 

periapsis of its orbit, due to the larger gains that can be obtained from the new geometry of 

the Swing-By. 

Nomenclature 

α = angle that defines the impulse direction 

ΔE = variation of energy 

ΔEmax = maximum variation of energy  

δV = magnitude of the impulse 

δV = impulse vector 

e = eccentricity of the orbits of M1 and M2 

f = generic function 

M1 = primary body 

M2 =    secondary body 

M3 = spacecraft with negligible mass 

μ =    mass of the secondary body 

m1 = actual mass of M1 

m2 = actual mass of M2 

ν  =    true anomaly of M2 relative M1 

P = periapsis of the orbit 

ψ = approach angle 

Q = point of application of the impulse 

r = magnitude of the position vector 

r = position vector 

rp = magnitude of the radius of the periapsis 

rp = periapsis vector radius 
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θ = true anomaly of M3 relative to M2 

Vp- = velocity of the spacecraft in the first orbit at the point where the impulse is applied 

Vp+ = velocity of the spacecraft in the second orbit at the point where the impulse is applied 

Vinf- = magnitude of the velocity when the spacecraft approaches M2  

Vinf+ = magnitude of the velocity when the spacecraft leaves M2  

V2 = linear velocity of M2 with respect to M1 

Vp = magnitude of the velocity of the spacecraft at the periapsis  

I. Introduction 

HE powered Swing-By occurs when a satellite makes a close approach maneuver with a celestial body and uses 

the gravity of this body, combined with the application of an impulse, to gain or lose energy. The usual 

objective of this type of maneuver is the fuel economy on space missions, but other possibilities also exist, like 

adjusting the timing of a more complex maneuver. 

 The dynamics used in the present research is the elliptical restricted three body problem, which means that the 

system is assumed to be formed by two massive bodies, called M1 and M2, in elliptical orbits around their center of 

mass and a third body M3, with negligible mass, which has its motion restricted to the orbital plane of the primaries. 

 The objective is to measure the behavior of the energy of the spacecraft as a function of the three parameters of 

the standard Swing-By: Vinf-, the velocity of approach of the spacecraft; rp, the periapsis distance of the orbit of the 

spacecraft around the secondary body; and ψ, the angle of approach, which specifies the geometry of the 

approximation; the two parameters that defines the format of the orbit of the primaries: the eccentricity of the orbits 

(e) and the true anomaly (ν) of the secondary body at the moment of the close encounter with the spacecraft; and the 

three parameters that specify the impulse applied (δV, the magnitude of the impulse; θ, the position that specifies the 

point of application of the impulse; and α, the direction of the application of the impulse in the orbit of the spacecraft 

around the secondary body). Our study makes a mapping of those orbits, identifying the ones that can be more 

interesting for space missions. 

 Starting from given initial conditions, the algorithm makes numerical integrations of the equations of motion 

forward in time (with the application of the impulse) from the periapsis until the spacecraft reaches a region far from 

the secondary body, to get the information about the energy and angular momentum after the close approach. After 

that the numerical integration is performed backwards in time, again starting at the periapsis, but now without the 

impulse, to get the values of the energy and angular momentum before the powered swing-by. The integrations in 

both senses of time are made until the spacecraft reaches a distance from M2 that is half of the distance M1-M2, to 

ensure that the distance between the spacecraft and M2 is large enough such that the effects of this secondary body 

can be neglected. 

 Applications of this type of research are general and can be applied to any system of primaries that has an 

eccentricity. A very good example in the Solar System in the dwarf planet Haumea, which has one of its moons with 

eccentricity in the order of 0.25. A mission to this planet may use a propelled Swing-By, like the one proposed here, 

in that moon, to help the capture of the spacecraft by the system or in maneuvers during the mission, to make the 

spacecraft to go from one body to the other of this triple system. Other potential applications are in one of the many 

systems with larger eccentricities that are being discovered outside the Solar System lately. In all those cases the 

eccentricity of the orbits must be taken into consideration, since its effects are strong. This research is a continuation 

of two previous publications: Prado
1
, which studied the effect of the propelled Swing-By, but restricted to the case 

of circular orbits; and Prado
2
, who studied Swing-By maneuvers using the elliptic restricted three-body problem, but 

without the application of an impulse. Another application would be, for example, in the Aster mission, a project 

that consists of sending a spacecraft to a triple asteroid
3,4

. Regarding the elliptical restricted three-body problem, in 

the literature, it is also available the work by Broucke
5
, where a systematic study is made to verify the main 

differences in the stability properties of periodic orbits in the circular and elliptical problems. 

 

II. Powered Swing-By 

 The Powered Swing-By is the maneuver that combines the standard Swing-By
6,7,8

, where the spacecraft makes 

an unpowered close approach with a celestial body, with the application of an impulse to the spacecraft during this 

passage. The impulse can have any magnitude and any direction in space. The literature has many papers related to 

the Swing-By maneuver, like in McConaghy, Debban, Petropoulos, Longuski
9 

and Okutsu, Yam, Longuski
10

, which 

presents Swing-By maneuvers combined with low thrust.  
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Figure 1. Geometry of the Powered Swing-By. 

 

Figure 1 shows the geometry of the maneuver studied here. The variables shown are: M1 and M2, the primary 

and the secondary body of the system, respectively; V2, the velocity vector of M2 around the center of mass of the 

system M1-M2; ψ, the angle of approach; P, the periapsis, which is the point of the shortest distance between M2 and 

M3; rp, the vector radius of the periapsis; Vp-, the velocity vector of the spacecraft at the periapsis of the first orbit 

before the impulse is applied; Vp+, the same velocity vector of the spacecraft, but now after the impulse is applied; 

δV, vector that represents the impulse applied; α, the angle between Vp and δV, which defines the direction of the 

impulse (clockwise is positive); θ, the angle that defines the point where the impulse is applied (counterclockwise is 

positive). The step-by-step powered Swing-By maneuver algorithm is now described: 

a) We started the study with the spacecraft placed at the point P. This was done by specifying values for the three 

variables that uniquely define a Swing-By trajectory: Vp , rp , and ψ; 

b) From the point P, it was performed a numerical integration in reverse time
11

, until the spacecraft reaches half 

of the distance M1-M2. At this point the energy, velocity and angular momentum before the maneuver are calculated; 

c) After that it is applied the impulse δV at the point P, forming an angle α with the direction of the motion of the 

spacecraft. The magnitude and direction of the impulse were varied to search for the values that maximize the 

energy variation; 

d) After the application of this impulse, the orbit was integrated forward in time, again until a point distant from 

M2 is reached (defined as half of the M1-M2 distance, as done before), so giving the values for the energy, velocity 

and angular momentum after the maneuver is completed; 

e) Finally, the variations of energy, as a function of the magnitude of the impulse, the angle that defines the 

position of the point where the impulse is applied and the angle that defines the direction of the impulse, were 

calculated. This magnitude can be written as: 

 

                                                                ),,( αθδVfE =∆                                                                              (1) 

 

III. Elliptic Restricted Three Body Problem  

The maneuvers shown here are studied using the elliptic restricted three body problem. The system is assumed to 

be formed by two massive bodies, M1 called primary, and M2 called secondary, in elliptical trajectories around their 

center of mass and a third body M3, with negligible mass and which motion is restricted to the orbital plane of the 

primaries. 

The canonical system of units is used, so the unit of distances become the semi-major axis of the orbit of M1 and 

M2, the mass of the secondary body (M2) is � =
��

���  � ��	
, the mass of the primary M1 is 1-μ, m1 and m2 being the 

actual masses of the bodies M1 and M2, respectively. The time unit is chosen such that the period of the motion of 

the two primaries is 2π. In this system the gravitational constant becomes one.  
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There are several systems of reference that can be used to study this problem
12

. The most used ones are the fixed 

and the rotating systems. The fixed reference system (inertial) was used for the numerical integrations. In this 

system the origin is located in the center of mass of the primaries and the horizontal axis is the line connecting both 

primaries at the beginning of the study. In the rotating system the horizontal axis follows the motion of the two 

primaries. Figure 2 shows both systems. 

 
Figure 2. Fixed and rotational reference systems. 

      

Since in the fixed system both primaries follow elliptical orbits, the equations for 
̅�, �� and 
̅�, �� are given by 

(the angle ν is the true anomaly of M2):  

 

                                                                νµ cos1 rx −=  (2) 

                                                                νµrseny −=1  (3) 

                                                                νµ cos)1(2 rx −=  (4) 

                                                                νµ cos)1(2 ry −=  (5) 

 

The equations of motion for the elliptic restricted three body problem are given by: 
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The two dots over 
̅ and � represent the second derivative with respect to time, r1 is the distance between M1 and 

M3 and r2 is the distance between M2 and M3. They are given by: 
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IV. Results 

The goal of the present paper is to understand the effects that the eccentricity of the primaries and the position of 

M2 relative to the position of M1 cause in the trajectory of a spacecraft that makes a powered Swing-By with the 

secondary body. 

We considered cases with ψ = 270° (the geometry that gives the largest increase of energy) and eccentricity zero 

(to serve as a comparison), 0.1, 0.2, 0.3, 0.4 and 0.5. For each value of the eccentricity (except e = 0) orbits where 

the true anomaly of M2 at the moment of the close approach equals to 0°, 90°, 180° and 270° were used. The 

impulse ranged from 1.0 to 4.0 canonical units, with α and θ varying from -180 ° to 180 °, both of them with a step 

of 1.0 degree. For the first set of simulations, which considered a generalized Earth-Moon system, that is a system 

that has the same mass parameter of the Earth and the Moon, but has different values for the eccentricity we used rp 

= 0.00495 canonical units and μ = 0.01214, that is the mass parameter of the Earth-Moon system.  

Figures 3 and 4 show the results for the cases with e = 0.0 and Figs. 5 and 6 show the results for e = 0.2, both 

cases using a magnitude for the impulse of 1.0 and 2.0 canonical units. Other cases have been studied, but are not 

shown here due to the similarities of the results. In the graphs, the contour lines represents the variation of the 

energy (in canonical units) as a function of α and θ. The horizontal axis represents the angle that defines the 

direction of the impulse (α) and the vertical axis shows the angle that defines where the impulse is applied, θ, which 

is the angle that the point where the impulse is applied, measured in the inertial system of reference, makes with the 

periapsis of the incoming orbit. It is defined such that it is positive in the counterclockwise direction.  

 
Figure 3. Variation of energy (in canonical units) as a function α and θ, for e = 0 and δV = 1.0 C.U. 

 

 When e = 0 and δV = 1.0 C.U., the maximum variation of energy is 2.49337 canonical units. In the graph this 

value is at the top right side. The empty regions of the curves represent trajectories ending in captures or collisions. 

The value of α in the region shown indicates a retrograde impulse, which reduces the velocity of the spacecraft in 

order to make a large curvature in the trajectory of the spacecraft around the secondary body, so gaining more 

energy from the gravitational part of the maneuver, which compensates the loss of energy due to the retrograde 

impulse. For e = 0 and δV = 2.0 C.U., it is possible to note that the maximum variation of energy increases 

significantly. It is 8.34465 canonical units and it is located in the point where α = -19º and θ = 1.000491º. This fact 

happens because the magnitude of the impulse is twice the previous one and this fact influences the results. The 

impulse is no longer retrograde, because with this higher magnitude the impulse has an important component in the 

maneuver and now, instead of retrograde, the impulse only deviates the spacecraft in the direction of the secondary 

body, to increase the gains of the gravitational part of the maneuver, but still using a direction that increases the 

energy of the spacecraft due to the impulse itself. The same occurs for values of the magnitude of the impulse 

greater than 2.0 C.U. 

D
ow

nl
oa

de
d 

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S 

E
SP

A
C

IA
SI

 o
n 

Se
pt

em
be

r 
16

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

18
15

 



 

American Institute of Aeronautics and Astronautics 
 

 

 
 

Figure 4. Variation of energy (in canonical units) as a function α and θ, for e = 0 and δV = 2.0 C.U. 

 

 Figure 5 presents the variation of energy for the cases e = 0.2, δV = 1.0 C.U., ν = 0º, 90º, 180º  and 270º, being ν 

the true anomaly of the secondary body at the moment of the close encounter with the spacecraft. 

Once again, the empty regions represent conditions that resulted in captures or collisions. Figure 6 presents the 

variation of energy for the cases e = 0.2, δV = 2.0 C.U., ν = 0º, 90º, 180º  and 270º. The empty regions are again 

trajectories that resulted in captures or collisions. 

 

 
 

(a)                       (b)  

  

Figure 5. Variation of energy (in canonical units) as a function α and θ, for e = 0.2, δV = 1.0 C.U., (a) ν = 0º, 

(b) ν = 90º, (c) ν = 180º and (d) ν = 270º. 
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(c)                                                                                         (d) 

 

Figure 5 (cont). Variation of energy (in canonical units) as a function α and θ, for e = 0.2, δV = 1.0 C.U., (a) ν 

= 0º, (b) ν = 90º, (c) ν = 180º and (d) ν = 270º. 

 

 

 

 
(a)                                                                                       (b) 

     

Figure 6. Variation of energy (in canonical units) as a function α and θ, for e = 0.2, δV = 2.0 C.U., (a) ν = 0º, 

(b) ν = 90º, (c) ν = 180º and (d) ν = 270º. 
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          (c)                                                                                          (d)        

 

Figure 6 (cont). Variation of energy (in canonical units) as a function α and θ, for e = 0.2, δV = 2.0 C.U., (a) ν 

= 0º, (b) ν = 90º, (c) ν = 180º and (d) ν = 270º. 

 

  The next figures makes an overview of the results. They show the maximum variation of energy and their 

respective values of α and θ, for δV = 1.0 C.U., δV = 2.0 C.U., ν = 0º, 90º, 180º and 270º for all the eccentricities 

studied. In all the figures the eccentricities are represented by colors, as follow: e = 0 is gray; e = 0.1 is black; e = 

0.2 is blue; e = 0.3 is pink; e = 0.4 is red; and e = 0.5 is green. The symbol "o" represents the cases with δV = 1.0 

C.U. and "*" the cases with δV = 2.0 C.U..  

 For example, in Fig. 7, the case with larger variation of energy is the "*" green, that represents the case where e 

= 0.5, δV = 2.0 C.U., ν = 0º. In this figure it is possible to see that ΔEmax is approximately 50 canonical units, with θ 

approximately -35º and α is -180º. This is in agreement with the results expected from the physical analyses of the 

system. The larger eccentricity, when the secondary body is at the periapsis, gives the largest variation of energy, 

due to the larger velocity of M2 around M1. The propulsion is retrograde, because it is better to increase the gains of 

the gravitational part of the maneuver than using the impulse to increase the energy of the spacecraft. The larger the 

value of the magnitude of the impulse, the more efficient is the maneuver. Note that, when δV = 4.0 C.U., the values 

of the direction of the impulse tends to zero, because the impulse increases in importance when compared to the 

gravitational part of the maneuver. 

 To understand the figure it is necessary to observe it in parts. The horizontal axis represents the maximum 

energy variation. The lower rectangle in the figure has θ in the vertical axis, and the upper rectangle has α in the 

vertical axis, both for the maximum energy variation. It is possible to observe values of α and θ which resulted in the 

largest value for the energy variation for each eccentricity and different magnitudes of the impulse. 
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Figure 7. Graph of α vs. ΔEmax and θ vs. ΔEmax, for  ν = 0º, δV = 1.0 C.U. and δV = 2.0 C.U (left), δV = 4.0 C.U 

(right) and the eccentricity given by colors: gray – e = 0; black - e = 0.1; blue - e = 0.2; pink - e = 0.3; red - e = 

0.4; and green - e = 0.5. 

 

 
 

Figure 8. Graph of α vs. ΔEmax and θ vs. ΔEmax, for  ν = 180º, δV = 1.0 C.U., δV = 2.0 C.U. (left), δV = 4.0 C.U. 

(right) and the eccentricity given by colors: gray – e = 0; black - e = 0.1; blue - e = 0.2; pink - e = 0.3; red - e = 

0.4; and green - e = 0.5.  

 

In the configuration shown in Fig. 8, in the moment of the close encounter of the spacecraft with M2, M2 is at the 

apoapsis of the orbit around M1. From this figure we observe that, in several cases, the directions of the impulse are 

near the direction of motion of the spacecraft, because it is no more interesting to spend the fuel to change the 

geometry of the system to increase the gains from the gravitational part of the maneuver, since it is weaker now. 

This fact occurs because the eccentricity decreases the velocity of M2 with respect to M1.  

 After that, it was also studied maneuvers in the system of Haumea and its moons. Haumea is a dwarf planet, 

localized in the Kuiper Belt, at a distance of 45 astronomical units from the Sun. Haumea has two natural satellites, 

Hi’iaka and Namaka. Hi’iaka is the larger one, discovered in January 2005, and the eccentricity of its orbit is 

0.0513, and its mass is estimated to be 1.79 x 10
19

 kg. Namaka was discovered in June 2005, it is the inner moon of 

Haumea. Its eccentricity is 0.249 and its estimated mass is 1.79 x 10
18

 kg.  The interesting point in studying this 

system, in particular Haumea-Namaka is due to the large eccentricity of this system. It is excellent to study under the 

elliptic restricted problem. The next figures show the variation of the energy for different values of true anomaly 

and the impulse for Haumea-Namaka system. From there, it is possible to obtain the maximum variations of energy 

in each situation. 
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(a)                                                                            (b) 

 
(c)                                                                            (d) 

 

Figure 9. Variation of energy (in canonical units) as a function α and θ, for the Haumea-Namaka system, with 

ψ = 270°, (a) δV = 1.0 C.U , (b) δV = 2.0 C.U, (c) δV = 3.0 C.U, (d) δV = 4.0 C.U  and ν = 0º. 
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(a)                                                                            (b) 

 

            
(c)                                                                             (d) 

 

Figure 10. Variation of energy (in canonical units) as a function α and θ, for the Haumea-Namaka system, for 

ψ = 270°, (a) δV = 1.0 C.U , (b) δV = 2.0 C.U, (c) δV = 3.0 C.U, (d) δV = 4.0 C.U  and ν = 90º. 
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(a)                                                                             (b) 

 

 
(c)                                                                             (d) 

 

Figure 11. Variation of energy (in canonical units) as a function α and θ, for the Haumea-Namaka system, for 

ψ = 270°, (a) δV = 1.0 C.U , (b) δV = 2.0 C.U, (c) δV = 3.0 C.U, (d) δV = 4.0 C.U  and ν = 180º. 
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(a)                                                                       (b) 

 

 
(c)                                                                       (d) 

 

 

Figure 12. Variation of energy (in canonical units) as a function α and θ, for the Haumea-Namaka system, for 

ψ = 270°, (a) δV = 1.0 C.U , (b) δV = 2.0 C.U, (c) δV = 3.0 C.U, (d) δV = 4.0 C.U  and ν = 270º. 

 

The next figure show the trajectories of the spacecraft for the cases that resulted in maximum energy variations 

for ν = 180°. The black line is the curve before the impulse and the blue line is the trajectory after the impulse. The 

black dot represents Haumea. It is shown that the increase of the magnitude of the impulse increases the curvature of 

the trajectory, so giving more gains in the energy variations due to the gravity part of the maneuver.  
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Figure 13. Trajectories of the spacecraft in the Haumea-Namaka system, for ψ = 270°, δV = 1.0 C.U , δV = 2.0 

C.U, δV = 3.0 C.U, δV = 4.0 C.U and ν = 180º. 

 

 The results confirm and quantify some expected results. For a fixed value of the true anomaly of the body M2 the 

energy variations increase with the magnitude of the impulse, in all cases. As an example, for ν = 0º, the values of 

the variations of energy are: 1.812736, 6.5542055, 12.4799939 and 19.2376467 C.U. for values of the magnitude of 

the impulse of 1.0, 2.0, 3.0 and 4.0 C.U., respectively. Fixing the magnitude of the impulse, the maximum variations 

of energy are larger when the body M2 passes by the periapsis and smaller when it is passing by the apoapsis. Again 

as an example, since the total data can be read for the figures, when the largest value for the variation of energy 

comes from the situation where the magnitude of the impulse is 4.0 C.U. and ν = 0º. For the same magnitude of the 

impulse, the smallest variation of energy occurs for ν = 180º, with a numerical value of 12.9868443 C.U. The 

directions of the impulses is never in the direction of the motion of the spacecraft, and it alternates from prograde 

(using the impulse to give energy for the spacecraft) and retrograde directions (searching for increases in the gains 

from the gravity part of the maneuver). The details can be seen direct from the results shown.  

V. Conclusion 

The propelled Swing-By maneuver is studied in the situation where M2 is in an elliptic orbit around M1. 

Since the goal of the maneuver is to gain energy, only situations where the angle of approach is 270º is 

considered, because this is the region that provides the maximum energy gain. In this way, the maneuver 

depends on the eccentricity of the primaries, as well as on the true anomaly of M2 at the moment of the closest 

approach. In general, the physical effects of including the eccentricity of the primaries is that the velocity of M2 

is no longer constant. The variations of energy is directly proportional to this velocity so, when comparing the 

Swing-By in the circular problem with the elliptic version, the variation of energy will increase when performed 

with the secondary body at the periapsis and decrease when performed when the secondary body is at the 

apoapsis. When considering the propelled Swing-By, the consequence of those facts is that, for some 

combinations of the eccentricity and magnitude of the impulse and when the passage occurs with M2 at the 

periapsis, an impulse in the retrograde direction is more efficient, because it generates a Swing-By with larger 

gains, which compensates the losses due to the retrograde impulse. These effects increase with the eccentricity. 

So, when compared with the circular case, the impulses changed from prograde to retrograde, to use the larger 

effects offered by the close approach in the elliptic case. In the opposite direction, when M2 is at the apoapsis, 

the opposite occurs, and the energy variations are smaller when compared to the circular case, so the impulses 

are always prograde. In general, even with the effect of the eccentricity and the true anomaly of M2, it was found 

that the best conditions for optimal energy variation is when the impulse is not applied in the tangential direction 

(α ≠ 0º). The optimal solutions are shown in several circumstances 
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