
LSQ: an approach for learning software development
with quality

Leandro Guarino de Vasconcelos
Technological College of Guaratinguetá (FATEC)

National Institute For Space Research (INPE)
le.guarino@gmail.com

Luiz Eduardo Guarino de Vasconcelos
Technological College of Guaratinguetá (FATEC)

Flight Test Research Institute (IPEV)
du.guarino@gmail.com

Abstract—Due the quick change of business processes in
organizations, software need to adapt quickly to meet new
requirements by implementing new business rules. For this,
many technologies have been created in the field of software
development, to accelerate the production and maintenance of
software products. However, learning the software development
still carries challenges, especially when there is the concern of
developing software products with high quality. In this paper, we
propose an approach to learning software development with
quality, the LSQ. This approach was motivated by the study of
factors that influence learning software development, considering
how hypotheses interdisciplinarity, Problem Based Learning,
methodologies and technologies of software development. The
LSQ was applied in the case study of a graduate course related to
Web applications. The results were observed from the feedback
of students and they allow us to say that the development of
interdisciplinary projects with PBL impact positively in learning
software development.

Keywords- Agile Methodology, Problem-Based Learning,
Software Development, Test Driven Development,
Interdisciplinarity

I. INTRODUCTION

The desire to perform interdisciplinary practices within the
context of universities and contextualize every topic of the
menus has become a consensus among teachers and
educational researchers. Increasingly, the term
interdisciplinarity is present in the guidelines of the universities
in the official documents and in the vocabulary of the
contemporary university.

However, the development of a truly interdisciplinary
project in the universities and faculties still face barriers such
as: need to reform education [1] [2], lack of experience of
teachers for the subject [3], the difficulty in implementing a
real integration rather than just include specialists in every
subject [4] and overcomes traditional paradigm of discipline-
based theoretical frameworks [5].

Moreover, it is necessary to find a more exciting and
interesting for learning aimed at Generation Y, because,
according to [6, 7, 8], the main feature of this generation that
emerged in a time of great technological and economic
prosperity is the use intensive and the allure that grow in
relation to technology. According to [6], the youth of this
generation "live and breathe innovation, constantly seeking to

improve the way things are done." Accordingly, the use of PBL
(Problem Based Learning) may be appropriate.

The PBL is based on the premise of cognitive psychology,
which says that learning is a process of building new
knowledge, rather than just receiving them [9]. The student,
working with others, analyzes the problem, formulate learning
issues and questions, conducts research and research, create
hypotheses and find a solution to the problem [10].

The advantages of PBL include (i) a better preparation for
solving real problems, (ii) ease of finding information, (iii)
practical application of the knowledge obtained in the theory as
well as their retention and, from a point view more subjective,
(iv) makes the learning process more exciting and interesting.

There are few studies of PBL in IT and software
development reported in the literature. Added to this, the
courses related to software development still have other
challenges, since the technologies, methodologies and software
evolve very quickly [11].

In addition to the technologies used, the software
development methodology also impacts on productivity and
meeting deadlines while developing software. It is known that
traditional methodologies (e.g. waterfall) may lead to the
detection of failures late, increase the time and cost of
development and maintenance of software, once an application
is in the testing stage, it is very difficult to go back and change
something that was not well-thought out in the concept stage,
no working software is produced until late during the life cycle,
high amounts of risk and uncertainty, not suitable for the
projects where requirements are at a moderate to high risk of
changing [12, 13]. On the other hand, agile methodologies are
based on Test-Driven Development (TDD), maintains the
technical debt under control, maximize the Return on
Investment (ROI) and reduce the risks for customers and
companies [14]. According to [15], software applications
developed through the agile methodologies have higher success
rate and lower risk than traditional waterfall methodology.

In this paper, we present the LSQ which is an approach to
the teaching-learning process in software development courses
for Web using PBL in interdisciplinary projects. The LSQ was
empirically developed and applied like a case study in a course
of post-graduation.

2014 11th International Conference on Information Technology: New Generations

978-1-4799-3187-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ITNG.2014.62

249

The LSQ has been validated with the implementation of a
survey to students. The goal was to investigate which factors
impact the learning of new technologies to software
development, considering as main hypotheses PBL and
interdisciplinarity.

This paper is organized as follows: In Theoretical section
are described briefly the Scrum methodology, the concept of
TDD and the relationship between them; following the LSQ
approach is discussed and the scenario in which the survey was
conducted is presented; the fourth Section shows the results
and discussions on the approach, and finally the conclusions
are presented and future work.

II. THEORETICAL

Nowadays, there are dozens of agile software development
methodologies (e.g. Scrum [16], XP [17], Crystal [18]), and all
these methodologies are based on the Agile Manifesto [19].
The Scrum methodology and their variances (e.g. Scrumban,
Scrum with other methodologies) is the agile methodology
most used in software development projects using agile
methodologies [20].

Scrum is used in projects with uncertain requirements and
unpredictable risks resulting from the implementation of new
technologies and strategies [12, 21]. This methodology has
three key roles: Product Owner (PO), Scrum Master (SM) and
team members [12]. Requirements (i.e. user stories) should be
identified, prioritized and documented in product backlog [12].
After identifying the user stories, the development schedule can
be set through the planning poker technique [12]. The
development cycle is iterative and incremental, and based on
sprints. It is recommended that each sprint will not take more
than 30 days [12].

At the beginning of each sprint, the sprint planning should
be made. This is a meeting where everyone involved in the
project should participate. At this meeting, the PO (along with
team) sets which user stories will be developed and delivered.
Usually are chosen user stories that are valuable to the
business. During the sprint, there are short meetings of up to 15
minutes (i.e. daily scrum meeting) that are performed daily so
those involved can follow the development of the project. At
the end of the sprint, the Sprint Review happens, which is a
meeting for the delivery of user stories for PO. After this, there
is another meeting, the sprint retrospective. In this meeting, the
SM and the team can evaluate how the sprint was done and
suggest improvements for the next sprint. The monitoring is
done through of the burndown chart. Figure 1 shows a diagram
representing the stages of Scrum.

Figure 1 - Scrum methodology. Adapted from [16]

Although the success rate of software delivery is greater
with Scrum when compared to the traditional methodologies, it
is necessary to use development techniques that allow
delivering software higher quality.

Currently, there is a recommended technique for increasing
the quality of software that is Test-Driven Development
(TDD), which is based on short cycles repeated. Figure 2
shows the workflow of the TDD. First, the developer writing
an automated test case that defines a desired improvement or a
new functionality. So, it is produced a code that can be
evaluated by the test. After this, the code should be refactored
under acceptable standards [22]. According to [23], TDD
encourages simple designs and inspires confidence code.
Through TDD, programmers can apply the concept to
improving and debugging legacy code developed from ancient
techniques [24].

The design of a testing strategy is, essentially, a process of
identifying and prioritizing project risks and deciding what
actions to take to mitigate them [25]. Software quality has
many dimensions, each requiring a different testing approach.
The identification of the testing strategy and, consequently, the
tests cases for the PBL was based on the agile testing quadrants
[14], presented in Figure 2 and proposed by Brian Marick. The
agile testing quadrants are widely used for modeling various
test types, which are necessary to ensure high quality of
application [22]. In agile methodology, test usually starts in the
second quadrant with the Acceptance Test. Such approach
reduces the number of faults and improves productivity [26].

Quality is not equal to test. Quality is achieved by
appropriately mixing the development and testing activities
until one is indistinguishable from the other [27]. This goes
back to what was proposed by [28] where the topics of
different subjects should be intertwined forming a network
facilitator of learning. Joining different content is important but
not the only factor of success of interdisciplinary practices.
According to [29], the interdisciplinarity stems more from the
encounter among individuals than among subjects. This
statement is consistent with the first value of the Agile
Manifesto [19], which says “Individuals and interactions
should be over processes and tools”. Finally, interdisciplinary
practice requires appropriate pedagogy, integrating process,
institutional change and relationship between disciplinarity and
interdisciplinarity [30].

Figure 2 - Agile Testing Quadrants [14]

250

III. THE LSQ

This section presents the LSQ that is an approach to the use
of interdisciplinary and PBL for learning of the software
development with quality and describes the scenario in which
the LSQ was applied.

A. The Approach

According to [11], technologies evolve quickly. In the
software development theme, especially after the beginning of
the open source, many technologies have emerged (and appear)
for different purposes: accelerate the production of source
code, allow easy accommodation of changes, and allow
collaborative code management, among other. Although
different, these goals are aligned to the continued evolution of
business processes of companies, which must be met quickly
by management systems.

Given this scenario, software development courses also
need to adapt to uniting the fundamental concepts of software
engineering with new technologies of development.

However, the available time for accommodate such changes
in undergraduate and graduate programs are hard. Therefore, it
is necessary to rethink the way software development courses
are taught.

We propose an approach, the LSQ, to the software
development projects in the undergraduate and postgraduate
courses using PBL and interdisciplinarity. The purposes of the
LSQ are: (i) align the concepts taught in the classroom with
practices of the market, (ii) challenge students to solve
problems, (iii) using technologies that support the management
team, (iv) accelerate the learning of new technologies. For
these purposes to be achieved, we propose the following steps:

1) Plan interdisciplinarity: this phase is essential for that
projects developed have satisfactory results. The integration
of the subjects must support the entire lifecycle of software
development in order to help students overcome obstacles.

2) Stimulating the research for solutions for a real
problem: in this step, teachers guide students to pursue a
problem existing in companies active in the market or give
real problems. This forces the integration of theory and
practice. In addition, this phase is crucial for the definition of
the software requirements.

3) Choosing a methodology for software development
sensitive to changes: the projects are developed in a learning
phase, it is common to changing requirements due to the
inexperience of students in software development. Thus, the
use of methodologies sensitive to changes minimizes the
barriers faced during development.

4) Choosing development technologies: in this step should
be defined the development platform which consist:
programming language, database, Integrated Development
Environment, version control software and manage
information about the software.

5) Motivating students to implement quality solutions: in
this step should be chosen techniques and tools for software
testing. This is necessary so that students understand the

difference between a functional software and a prototype, and
advise them to get quality software.

6) Monitoring the project’s development: in this step,
teachers can use management tools to help project teams and
follow of projects. These tools can also be useful for the
continued evaluation of individual or collective.

The next section presents the scenario where the approach
was applied in order to validate it.

B. Scenario

This approach was applied in the post graduation course of
the “Design and Development of Web Applications”, in the
second half of 2013, in a private faculty in the state of São
Paulo, Brazil. This course has four modules and each module
has a set of subjects. All modules are designed so that the
topics of the subjects could be intertwined for applied in
interdisciplinary projects.

The classes were once a week with a workload of eight
hours per day. The Module II had 20 graduates students in
fields related to the Information Technology (e.g. Computer
Science, Computer Engineering). The 85% of the students were
men and 15% were women. The average age of students was
22 years and all worked in the IT field for at least three years.

For this study we used the module II with interdisciplinary
project and the application of PBL (Problem Based Learning)
in a problem defined by the students. The project included the
subjects Agile Methodologies, Web Development II and
Software Testing. In the study scenario, 90% of students were
unaware of the topics covered in the subjects. The subjects and
topics are shown in Table I.

TABLE I. SUBJECTS AND TOPICS

Subject Hours Topics

Agile
Methodologies

24

1. Manifesto for Agile Software Development
2. Agile Methodologies (e.g. Scrum)
3. Monitoring Tasks (e.g. Kanban)
4. Version Control Software (e.g. GitHub)

Web
Programming II

32
1. Framework Grails
2. Framework ZK

Software Testing 24

1. Test-Driven Development (TDD)
2. Agile Testing Quadrants
3. White-box testing techniques
4. Black-box testing techniques

The following topics detail the implementation of the steps
of LSQ.

1) Step 1: Planning interdisciplinarity: In this step, the
professors of the subjects listed in Table 1 have defined the
scope of the projects, the assessment criteria, the limit of
number of students per group and the topics of subjects that
would be intertwined in order to support project activities.

2) Step 2: Stimulating the research for solutions for a real
problem: According the characteristics of PBL, in this step
each team researched, in the first two weeks, a real problem of
some company so they could analyze it and develop a Web-
based solution. Identified problems and proposed solution
were presented at the 3rd week so that professors could
validate the scope of the problem / solution, according to the
criteria defined in Step 1.

251

3) Step 3: Choosing a methodology for software
development sensitive to changes: The Scrum methodology
has been used for the project development. As it is a project
developed in the learning stage, use of the Scrum is feasible
for applying to projects with unpredictable risks resulting from
the implementation of new technologies and strategies [12, 21]
and due to the characteristics of PBL, where the requirements
are not well known.

Due to the holidays in academic calendar, the module was
completed in 12 weeks. This made it possible to split the
module in 3 sprints lasting 4 weeks each. We call a Sprint # 0
for learning the theory / practice three fundamental subjects.
Following two other sprints were performed (i.e. sprint #1 and
sprint #2). In these two sprints, the topics of the subjects
continued to be taught. However, part of the class time was
reserved for Scrum meetings (e.g. weekly scrum, sprint
planning, sprint review and sprint retrospective).

In the week #1 of the module, the students were divided
into teams of development with a maximum of 5 members.
This division occurred without the influence of teachers and
students considered the familiarity and geographical distance
among them. As team members were geographically separated,
were necessary communication tools such as email, Hangout
[31] Google and Skype [32] from Microsoft for virtual
meetings.

Due to the personal and professional commitments of
students, it was decided that each student will devote 1 hour
daily to the project, Monday through Friday. Thus, each student
was committed to the project 5 hours per week or 20 hours per
sprint.

Being an academic environment, within the team there were
changes of Scrum Master. In addition, teachers were
considered shareholders in the project so that they could, as
well as the PO, have influence the drafting of artifacts (e.g.
prioritization of user stories, estimation of user stories) and
meetings (e.g. sprint planning, weekly scrum, sprint review).
Another adaptation of the methodology was the use of weekly
scrum meeting instead of daily scrum meeting, due to the
classes occurs weekly.

In the week #4, the teams presented the prioritized product
backlog and estimated. The prioritization of user stories was
taken by PO of each project. The estimate of each user story
was made by the team, SM and teachers of subjects using the
Planning Poker technique. In the weeks #5 and #9 were made,
respectively, the sprint planning # 1 and # 2. These meetings
were held along with the PO and teachers. The PO selected the
user stories that would be part of each sprint to determine the
sprint backlog of each sprint. In the weeks #8 and #12 were
performed sprints review (i.e. presentation of user stories
developed for the PO and teachers) and sprint retrospectives.

4) Step 4: Choosing development technologies: In order to
analyze the impact of PBL and interdisciplinary in learning of
new technologies, the development of the software was done
using ZK and Grails frameworks, which are recent
technologies and also unknown by students. Grails is an open
source, full stack, web application framework for the Java

Virtual Machine [33]. It takes advantage of the Groovy
programming language and convention over configuration to
provide a productive and stream-lined development
experience. ZK is an event-driven, component-based
framework to enable rich user interfaces for Web applications
[34]. In addition to these frameworks, we used a version
control software (VCS) that enabled collaborative software
development and retention of historical changes in files. For
this, GitHub [35] was the tool selected. Due to the
incremental-iterative software development methodology,
along with the many libraries (e.g. . jar) used during the
development, it was necessary the use of a tool to manage the
software setup and configuration. For this, the software
selected was Maven [36].

5) Step 5: Motivating students to implement quality
solutions: In order to motivate students to develop a quality
software, we chosen the Test-Driven Development (TDD)
technique for software testing throughout the project. TDD
forces the verification and validation of the whole unit of code
and, consequently, increasing the quality of the shippable. The
bugs found during the development cycle of the software were
reported in JIRA [37]. At the end of each sprint, the shippable
software used the agile testing quadrants. The students
performed performance testing and load testing using JMeter
[38], acceptance tests using Selenium WebDriver [39] and
automated unit tests using JUnit 4 [40].

6) Step 6: Monitoring the projects’ development: Each
team has also chosen a tracking tool based on Scrum [16] and
Kanban [41]. This tool allowed the monitoring of the
development of the project by the students, teachers and the
PO. For this, the students used the Pivotal Tracker [42].

This is a learning process, thus, assessment is essential to
correct the route. Therefore, the evaluation criteria were
announced and detailed at 1st meeting. From the week #5, we
evaluated the students through continuous monitoring of the
participation of each one during the project development. This
was done through monitoring tools and Scrum meetings held
weekly in the classroom.

IV. MAIN RESULTS AND DISCUSSION

For validating the LSQ, we developed a quantitative
questionnaire that was answered by students at the end of the
project development (i.e. spring #2), in order to investigate the
integration of subjects and which factors impact the learning of
new technologies for software development.

The survey questions were drawn from four possible impact
factors (hypotheses) on learning new technologies for software
development: development methodology; development
technology; interdisciplinary and PBL.

The questions were classified into issues Yes / No (YNQ)
with answers such as Yes or No; issues Enumeration (EQ) with
responses 1-3; impact issues (IQ) with answers that can be
"highly disruptive", "harms little "," little helps"," helps a lot ";
and issues alternatives (OQ) with selected answers from a list
of items. The categories are Methodology (M),
Interdisciplinarity (I), PBL (P) and Technology (T).

252

The questions included in the survey are shown in Table II.

TABLE II. ISSUES SURVEY

Id Type Cat. Issue

1 YNQ M
Nowadays, would you use an agile methodology in
software development?

2 OQ M
What reasons do you consider the choice of the
methodology in issue #1?

3 IQ M
What is the impact on the use of a new methodology
in the project’s development?

4 YNQ I
Do you agree with the application of the
interdisciplinary approach to learning new
technologies?

5 IQ I
What is the impact on the use of interdisciplinarity for
learning new technologies?

6 EQ I
Enumerate 1-3 the major difficulties in the
development of interdisciplinary projects with 1 being
the most difficult and 3 the least difficulty?

7 EQ I
Enumerate 1-3 most important benefits in the
development of interdisciplinary projects, with 1
being most important and 3 the least important?

8 YNQ P
Do you agree with the use of a company /project real
(PBL) to learn new technologies?

9 IQ P
What is the impact of using a company / project real
(PBL) to learn new technologies?

10 EQ P
Enumerate 1-3 major difficulties in the projects’
development with a real company, with 1 being the
most difficult and 3 the least difficulty?

11 EQ P
Enumerate 1-3 most important benefits in the
projects’ development with a real company, with 1
being the most difficult and 3 the least difficulty?

12 IQ T
What is the impact on the use of a new programming
language in the project development?

13 OQ T
What is the main advantage in learning a new
programming language (e.g. Grails) ?

14 OQ T
What is the main difficulty in learning a new
programming language (e.g. Grails)?

15 IQ T
What is the impact of the collaborative code on the
project?

16 IQ M
How relevant is the use of tests in software
development?

The survey was printed and distributed to students after the
week #12, and it was answered anonymously. In order to clear
doubts, a professor has overseen the implementation of the
survey, by reading each question before being answered by the
students through the Elevator Statement technique [43]. This
technique emphasizes that the answers are given in a short
period of time, because what is more important will be
remembered first. In this case, we use up to 90 seconds for the
answers to each question were made.

The results were classified according to the impact factors
(hypotheses) analyzed.

A. Methodology

For question 1, 100% of students reported that they would
use agile methodology for software development. The main
reasons mentioned (i.e. question 2) for the choice of the
methodology were: customer feedback (89%), delivery time of
features (79%). With the agile methodology, the goal is a
shippable to be delivered as soon as possible, since it is able
and acceptable quality. From this, the customer feedback also
happens earlier and hence the impact of the change will be less.

In question 3, 58% reported that a new methodology assists
in project development (42% reported that helps a lot and 16%

that assists a bit). For tests (i.e. question 16), 100% of students
reported that the use of testing techniques assists in software
development (84% reported that helps a lot).

B. Interdisciplinarity

For question 4, 100% of students agree the interdisciplinary
approach, but that does not mean they did not find difficulties.
The major difficulties (i.e. question 6) identified were: (i)
unavailability of team members, (ii) lack of commitment of the
team members, and (iii) lack of cooperation from team
members. The major benefits (i.e. question 7) indicated were:
(i) better preparation for resolving conflicts and problems, (ii)
perception that solving a problem requires knowledge of many
subjects, and (iii) interdisciplinary practices promote
teamwork. Furthermore, most students (95%) felt that
interdisciplinary practices assist in learning new technologies
(i.e. question 5).

C. Problem-Based Learning

For question 8, 95% of students agree the use of PBL for
learning new technologies. The major difficulties (i.e. question
10) were indicated: (i) difficulty in finding a company / real
project for development, (ii) unavailability of the customer to
answer questions and actively participate in Scrum meetings
and (iii) lack of cooperation from team members. The major
benefits in the use of PBL were also pointed: (i) increased
sense of responsibility (ii) let’s practice what is discussed in the
theory and (iii) best preparation for troubleshooting. Regarding
the impact on learning using PBL (i.e. question 11), 95% of
students reported that the use of PBL assists in learning new
technologies (74% reported that assists a lot and 21% that little
helps).

D. Technologies

About the impact on the use of new technology in the
development project (i.e. question 12), only 21% reported that
helps a lot, the remainder reported that harms. That happened
because of the need to deliver working software to the
customer. Students believe that if we use the language of
module I, more features would be delivered to the customer.
However, for the teachers, the process is valued more than the
amount of functionality delivered in each software project.
Also related to technology, students reported that the greatest
advantages in learning a new language (i.e. question 13) were:
63% to increase the field of knowledge and 37% for greater
productivity. About the difficulties in learning a new language,
the main difficulties were listed: 32% had difficulty finding
support material, 32% indicated a lack of awareness of the
possibilities of language, 26% for the lack of knowledge of
command syntax and 10% for the difficulty to setting up the
environment. For question 15, 79% of students considered that
the practice of collaborative code (i.e. kept in team) assists in
the software development.

The results show that students considered valid the topics
covered by the subjects, and they did agree to the LSQ
approach for interdisciplinary practices and use of PBL.

V. CONCLUSION

Generally, in learning new software technologies, the
students often face difficulties in the integration of theory and

253

practice. Often, examples in the classroom are not interesting
because they don't contain challenges that motivate the
research for answers.

In order to offer a solution to the obstacles encountered
during software projects in the learning stage, we present the
LSQ approach, which assists in learning software development
with quality. The main contribution of this paper is the division
into steps to software development and integration of agile
methodologies and software testing techniques.

The LSQ consists of six steps that include learning based
on PBL, interdisciplinarity and new technologies. The results
obtained through the case study in the course of postgraduate
indicate that PBL and interdisciplinarity are factors that
positively impact the learning of software development. In
contrast, it was observed that students face technical difficulties
when newer technologies are used sometimes by the lack of
detailed documentation.

Developing software with PBL requires dedication and
commitment to overcome the various obstacles presented, both
for students and teachers. The interdisciplinary approach allows
students who do not know each other, exchange knowledge and
different priorities.

In addition to the results discussed in Main Results and
Discussion section, we emphasize that some factors are
essential to the success of interdisciplinary projects with PBL,
such as: analyzing market trends that will be used in the course
and that add value to the experience of students in the short and
medium term; intertwining the topics of the subjects in order to
maximize the benefits; encouraging meetings between teachers
so that they can define and monitor the content of others; and
having the support of the educational institution for the
flexibility of topics of the subjects.

In future work, we intend to apply the approach with
different methodologies and development platforms.
Furthermore, it is suggested research on the behavior of
teachers in interdisciplinary practices and characteristics
necessary for teachers who want to develop interdisciplinary
projects with PBL.

REFERENCES
[1] R. M. FELDER, “American enineering education: current issues and

future directions”, International Journal of Engineering Education, v. 9,
n. 4, p. 266-269, 1993.

[2] J. BORDOGNA, “Systemic change for engineering education:
integrated trends in the United States”, International Journal of
Enginnering Education, v. 9, n. 1, p. 51-55, 1993.

[3] J. RHEM, “Problem-based learning: an introduction”, The National
Teaching and Learning Forum, 1998.

[4] M. HUBY, S. CINDERBY, A. OWEN, “Interdisciplinarity in practice:
challenges for research and policy”, SECRA working paper, 2005.

[5] K. A. HOLLEY, “Understanding Interdisciplinary Challenges and
Opportunities in Higher Education”, ASHE Higher Education Report.
Jossey-Bass, 2009.

[6] D. TAPSCOTT, “Geração digital: a crescente e irreversível ascensão da
geração Net”, São Paulo: Makron Books, 1999.

[7] N. HOWE, W. STRAUSS, “Generations: the history of America’s
future”, 1584 to 2069, New York: Morrow, 1991.

[8] B. TULGAN, “Not everyone gets a trophy: how to manage generation
Y”, San Francisco: Jossey-Bass, 2009.

[9] L. R. C. Ribeiro, “Aprendizagem Baseada em Problemas (PBL): uma
experiência no ensino superior”, São Carlos: EduFUSCAR, 2008.

[10] H. S. Barrows, R. M. Tamblyn, “Problem Based Learning: An Approach
to Medical Education”, New York: Springer Publishing Company, 1980.

[11] Moore’s Law. http://www.mooreslaw.org/. 1970.

[12] T. Stober, U. Hansmann, “Agile Software Development. Best Practices
for Large Software Development Projects,” Springer-Verlag Berlin
Heidelberg, 2010.

[13] T. Gilb, “Evolutionary delivery versus the waterfall model,” ACM
SIGSOFT Software Engineering Notes,vol.10, no.3,pp.49–61,1985.

[14] L. Crispin and J. Gregory, “Agile Testing: A Practical Guide for Testers
and Agile Teams,” Addison-Wesley Professional, 2009.

[15] CHAOS. “The CHAOS Manifesto. Agile Succeeds Three Times More
Often Than Waterfall”, The Standish Group, 2012.

[16] Scrum Alliance. http://www.scrumalliance.org

[17] Extreme Programming: A Gentle Introduction.
http://www.extremeprogramming.org

[18] Crystal Methodologies, http://alistair.cockburn.us/Crystal

[19] Manifesto for Agile Software Development. http://agilemanifesto.org

[20] VersionOne, “Survey: The 7th Annual State of Agile Development
Survey”. http://www.versionone.com/pdf/7th-Annual-State-of-Agile-
Development-Survey.pdf, 2012

[21] M. JAMES, “Scrum Reference Card”, CollabNet Inc., 2010

[22] W. E. Perry, “Effective Methods for Software Testing”, Wiley
Publishing, Inc, 2006

[23] K. Beck. “Test-Driven Development by Example”, Addison Wesley -
Vaseem, 2003

[24] M. Feathers. “Working Effectively with Legacy Code”, Prentice Hall,
2004

[25] J. Humble, D. Farley, “Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation”, Addison-Wesley
Professional, 2010

[26] M. Gärtner, “ATDD by Example: A Practical Guide to Acceptance Test-
Driven Development”, Addison Wesley, 2012

[27] J. A. Whittaker, J. Arbon, J. Carollo, “How Google Tests Software”,
Addison-Wesley Professional, 2012

[28] N. J. MACHADO. “Educação: projetos e valores”, 3. ed, São Paulo:
Escrituras, 2000, 158p

[29] I. V. A. FAZENDA. “Interdisciplinaridade: história, teoria e pesquisa”.
10 ed. Campinas: Papirus, 2002. 143 p

[30] J. T. KLEIN. “Ensino interdisciplinar: didática e teoria. In: I. C. A.
FAZENDA (org.). Didática e interdisciplinaridade”, 6 ed, Campinas:
Papirus, 2001, p.109-132

[31] Hangout. http://www.google.com/intl/pt-BR/+/learnmore/hangouts

[32] Skype. http://www.skype.com/

[33] Grails Framework. http://grails.org

[34] ZK Framework. http://www.zkoss.org/doc/devguide/ch01s03.html

[35] GitHub: build software better, together.. https://github.com

[36] Apache Maven Project. http://maven.apache.org/

[37] JIRA. https://www.atlassian.com/software/jira

[38] Apache JMETER. http://jmeter.apache.org/

[39] SeleniumHQ: browser automation. http://docs.seleniumhq.org

[40] JUnit. http://junit.org

[41] D. J. Anderson, D. G. Reinertsen, “Kanban: Successful Evolutionary
Change for Your Technology Business”, Blue Hole Press, 278 p, 2010

[42] Pivotal Tracker. http://www.pivotaltracker.com

[43] Sutherland, Viktorov, Blount, "Adaptive Engineering of Large Software
Projects with Distributed / Outsourced Teams", in International
Conference on Complex Systems, Boston, MA, USA, 2006

254

