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“It is not a man’s duty, as a matter of course, to devote himself to
the eradication of any, even the most enormous wrong; he may still
properly have other concerns to engage him; but it is his duty, at
least, to wash his hands of it, and, if he gives it no thought longer,

not to give it practically his support”.

Henry David Thoreau
in “Civil Disobedience”, 1849
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ABSTRACT

The notion of a hybrid system is centered around a composition of discrete and continuous behav-
iors. Although the difficulty in modeling hybrid systems comes from the diversity of these systems,
the most promising approach to mitigate this issue is developing expressive and precise modeling
languages. Nevertheless, developing expressive and precise modeling languages does not necessarily
mean the emergence of a new language, on the contrary, this thesis proposes precise semantics for
subsets of existent languages. Subsets of existent languages are defined since expressivity and preci-
sion usually conflict, e.g., the size and complexity of a language (related to expressivity) may have
direct consequences on the size and complexity of its semantics (related to precision). Precision
means a semantics defined according to a well established formal method, furthermore, recogniz-
ing the real-time nature of hybrid systems, the modeling language have to enable determinism,
predictability and straightforward composition. In this thesis, two complementary languages are
formally defined by abstract state machines (ASMs). The first one is called synchronous fUML
and it blends synchronous features for control into the standardized fUML (foundational subset
for executable UML models). The second one, hybrid fUML, is a conservative extension of syn-
chronous fUML in which differential algebraic equations (DAEs) are described using a subset of
Modelica concrete syntax. The subset of Modelica concrete syntax is selected in such a way that
its semantics is defined by the standard mathematical semantics. Hybrid fUML is a modeling lan-
guage defined to enable description and analysis of system views from hybrid systems. The main
innovative contribution lies in the novel model of computation for hybrid extensions of synchronous
languages, which is formally defined for hybrid fUML. The novel model of computation is based
on the concept of enichrony, a property of models that allows the synchronization of physical time
at the environment and at the models. The novel model of computation enables determinism,
predictability and straightforward composition of hybrid systems.
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HYBRID FUML: UMA LINGUAGEM SÍNCRONA HÍBRIDA

RESUMO

A noção de um sistema híbrido é centrada em torno de uma composição de comportamentos dis-
cretos e contínuos. Enquanto a dificuldade na modelagem de sistemas híbridos vem da diversidade
destes sistemas, a mais promissora abordagem para mitigar este problema é desenvolver linguagens
de modelagem expressivas e precisas. No entanto, desenvolver linguagens de modelagem expres-
sivas e precisas não significa a necessidade de novas linguagens, pelo contrário, esta tese propõe
semânticas precisas para subconjuntos de liguagens existentes. Subconjuntos são definidos porque
expressividade e precisão geralmente conflitam, por exemplo, o tamanho e a complexidade de uma
linguagem (relacionados à expressividade) podem ter consequências diretas no tamanho e comple-
xidade de sua semântica (relacionados à precisão). Precisão significa uma semântica definida de
acordo com um método formal estabelecido, além disso, reconhecendo a natureza de tempo real
dos sistemas híbridos, a linguagem de modelagem deve permitir determinismo, previsibilidade e
composição simples. Nesta tese, duas linguagens complementares são formalmente definidas por
máquinas de estado abstrato (ASMs). A primeira delas é chamada synchronous fUML e ela com-
bina recursos síncronos para controle na fUML (foundational subset for executable UML models)
padronizada. A segunda delas, hybrid fUML, é uma extensão conservativa da synchronous fUML,
na qual equações algébrico-diferenciais (DAEs) são descritas usando-se um subconjunto da sintaxe
concreta da Modelica. O subconjunto da Modelica é selecionado de tal forma que sua semântica é
definida pela semântica matemática padrão. Hybrid fUML é uma linguagem de modelagem definida
para permitir descrição e análise de visões sistêmicas de sistemas híbridos. A principal contribuição
inovadora é o novo modelo de computação para extensões híbridas de linguagens síncronas, que
é formalmente definido para hybrid fUML. O novo modelo de computação é baseado no conceito
enichrony, uma propriedade de modelos que permite a sincronização do tempo físico no ambiente
e nos modelos. O novo modelo da computação permite determinismo, previsibilidade e composição
simples de sistemas híbridos.
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1 INTRODUCTION

In this chapter, the motivation of the thesis is explored and the problem is stated. Subsequently, the
assumptions, aim and hypotheses are described, which support the presentation of contributions.
Finally, the method and the outline of this thesis are presented.

1.1 Motivation

The notion of a hybrid system is centered around a composition of continuous and discrete
dynamics. In particular, the system has a continuous evolution, usually described by ordinary
differential equations (ODEs), and occasional jumps. The jumps correspond to a change of state in
an automaton whose transitions are caused either by controllable or uncontrollable external events,
or by the continuous evolution. The continuous evolution and these jumps in control loops are the
origins from the most stringent temporal demands, moreover, hybrid system usually requires a
high level of safety.

Nowadays, only a minority of controllers is implemented using continuous techniques (ALBERT,
2004; OGATA, 2009; ÅSTRÖM; WITTENMARK, 2011), therefore, a classical hybrid system is com-
posed of continuous plants and discrete controllers. Furthermore, it is common to find plants that
have discontinuities that lead to a more general scenario in which a hybrid system is composed
of hybrid plants and discrete controllers.

Those hybrid systems composed of continuous plants and discrete controllers have been modeled
and analyzed decoupling to some extend the control viewpoint from the hardware/software
viewpoint (BORDIN et al., 2012; LEE; SESHIA, 2011). Roughly, control engineers model and ana-
lyze continuous plants and then they define the requirements for discrete controllers. Using these
requirements, the hardware/software engineers model and analyze the discrete controllers in order
to fulfill the previously defined requirements. Finally, a third viewpoint, the system viewpoint,
is aimed to provide system models and to ensure consistency between all views through the life
cycle of the project and product.

To help cope with the increasing complexity in each of these multiple viewpoints, engineers are
using domain-specific models. The relatively isolated development of these models has created an
explosion of disconnected models (BORDIN et al., 2012). The problems created by this situation are
often not manifest until the system is integrated across the domains. The discovery of design errors
late in the development life cycle during system integration testing often results in large budget and
schedule overruns (REDMAN et al., 2010). Concurrently, new standards and regulations are pushing
up dependability requirements whereas accepting the use of model-based engineering. For example:
DO-178C, a regulation for safety requirements in airborne systems, retains the core process rigor
from DO-178B, however, it adds four supplements: formal methods, model-based development,
object-oriented technologies and tools. Finally, hybrid systems should be modeled and analyzed in
such a way that the intersection of the views are also object of analysis, in other words, it is not
sufficient to separately model and analyze each view. On the contrary, it is the interaction of
the views that determines the systems’ characteristics (LEE; SESHIA, 2011).

The difficulty in modeling and analyzing those system’s characteristics of hybrid systems comes

1



from the diversity of these systems, and one promising approach to mitigate this issue is developing
expressive and precise modeling languages (CARTWRIGHT et al., 2006), on which precision enables
analysis. Nevertheless, developing expressive and precise modeling languages does not necessarily
mean the emergence of a new language, on the contrary, there are research projects either
working on the integration of existent languages (FRITZSON, 2010) or defining subset of the existent
languages supplemented with a precise semantics (BORDIN et al., 2012).

Taking into account existent modeling languages, there are no modeling languages with
widespread use in systems engineering and software engineering communities that have the at-
traction of UML (BORDIN et al., 2012; GRAVES, 2012), standardized by the Object Management
Group (OMG) ((OMG), 2011b). However, UML as a big general-purpose language lacks of precise
semantics ((OMG), 2011b). Besides, the size and complexity of a language may have direct conse-
quences on the size and complexity of its semantics. Aware of this, OMG defines a semantics for
a foundational subset of UML (fUML), as an attempt to answer the need for a precise seman-
tics for UML ((OMG), 2012a). Finally, UML has a basic premise declaring that UML behavioral
semantics deals with discrete behaviors ((OMG), 2011b), therefore, UML allows discrete modeling.

Despite the same limitation of UML, i.e., synchronous languages only allow discrete modeling, they
have been established as a technology of choice for specifying, modeling and verifying real-time
systems since they can provide determinism using the fundamental model of time as a sequence of
discrete instants and parallel composition as a conjunction of behaviors (BENVENISTE et al., 2003).
Moreover, the focus of synchronous languages is to allow modeling of discrete systems for which
cycle precision is a requirement (POTOP-BUTUCARU et al., 2005), among other reasons, due to the
fact that their semantics provide cycle-accurate simulation. Cycle accuracy is an intermediary
abstraction level of time (at highest level, there is no time and at the lowest level, it is the usual
physical time), which is fundamental for synchronous discrete modeling.

Existent synchronous languages have been extended with ODEs in order to support continuous
modeling (BAUER, 2012; BENVENISTE et al., 2014), however, these hybrid extensions of synchronous
languages lose cycle accuracy among other key properties (see Chapter Hybrid fUML - An In-
troduction 6). Furthermore, although ODEs support continuous modeling, differential algebraic
equations (DAEs) have shown to be more adequate for continuous modeling allowing composi-
tion (ZIMMER, 2013). Declarative languages based on DAEs has as the most prominent represen-
tation Modelica (ZIMMER, 2013), a vendor-independent language standardized by the Modelica
Association (MODELICA, 2012). Nonetheless, there have been works pointing out that the Model-
ica’s semantics for discrete behaviors is imprecise (CARLONI et al., 2004; BENVENISTE et al., 2012;
BAUER, 2012; ZIMMER, 2013), in addition, the Modelica’s semantics does not have the concept of
reaction well-known in synchronous languages.

Problem statement: The reviewed existent languages do not support modeling and
deterministic cycle-accurate simulation of hybrid systems composed of hybrid plants
and discrete controllers. Additionally, the emergence of a language with precise
semantics that allows modeling and deterministic cycle-accurate simulation is
enforced by the system viewpoint.
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For the National Institute of Space Research in Brazil (INPE), the capability to model and to
analyze through simulation a system’s model before the legal agreements with suppliers or as soon
as possible has a strategical relevance. The system’s model may support suppliers, integration
and possibly contractual contends having a profound impact in the product lifecycle management
(PLM) processes and activities. Moreover, two examples related to space engineering are explored.

The SatelliteTrackingAndControl (ROMERO, 2014a) uses the unified profile for DoDAF and
MODAF (UPDM; ((OMG), 2013c)) and the proposed synchronous language, synchronous fUML,
to define a discrete synchronous model of a simplified operational view of the satellite tracking and
control from INPE (see Example 32).

The InvertedPendulum (OGATA, 2009; ROMERO et al., 2012; ROMERO; SOUZA, 2012; ROMERO;

FERREIRA, 2012a) is a model of the attitude control for satellite launch vehicles at their departure.
In this thesis, its model, described using the proposed hybrid synchronous language, hybrid fUML
(see Example 30), is composed of a hybrid plant and a discrete controller with two states (fine and
coarse control modes).
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1.2 Assumptions, Aim and Hypotheses

Assumptions

• There are no modeling languages with widespread use in systems engineering and soft-
ware engineering communities that have the attraction of UML.

See Subsection Support for Discrete Modeling 3.1.

• Synchronous languages have been established as a technology of choice for specifying,
modeling and verifying real-time systems.

See Subsection The Synchronous Hypothesis and Synchronous Languages 2.2.2.

• The model of computation provided by the synchronous languages is sufficiently pow-
erful to encode continuous-time.

See Subsection Hybrid Extensions of Synchronous Languages 3.2.2.

Aim
To define a hybrid synchronous extension of fUML with formal semantics allowing modeling and de-
terministic cycle-accurate simulation of hybrid systems based on subsets of standardized modeling
languages, namely UML and Modelica.

Main Research Hypothesis
A hybrid synchronous extension of fUML with formal semantics allows modeling and
deterministic cycle-accurate simulation of hybrid systems composed of hybrid plants
and discrete controllers.

Secondary Research Hypotheses

a) It is possible to use the unconstrained semantics areas from fUML, namely time and
concurrency, to define a synchronous extension of fUML with formal semantics described
by Abstract State Machines.

See Chapter Synchronous fUML - An Introduction 4.

See Subsection Abstract State Machine 2.2.4 for the applied formal method.

b) It is possible to formally prove that the extended fUML is in compliance with fUML.

See Chapter Synchronous fUML - The Description of the Language 5.

c) Once there exists a formal synchronous extension of fUML, it is possible to extend it in
order to enable modeling and deterministic cycle-accurate simulation of hybrid systems.

See Chapter Hybrid fUML - An Introduction 6.

d) It is possible to reuse Modelica concrete syntax for the description of DAEs for hybrid
plants.

See Section Hybrid fUML - Language’s Decisions and Requirements 6.1.

e) It is possible to define and to evaluate the proposed extensions using free software.

See Section Evaluation concerning the Usage of Free Software 8.2.
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1.3 Contribution

In this thesis, subsets of existent languages, namely UML and Modelica, are defined and their formal
operational semantics are presented. Indeed, two languages are defined: (1) synchronous fUML -
it enables discrete modeling regarding the synchronous hypothesis and constructive semantics so
it inherits their formal properties and (2) hybrid fUML - it uses synchronous fUML as a basis
extending its syntax and semantics in order to support hybrid modeling.

The objective of the hybrid fUML is neither to replace Modelica nor synchronous languages but
instead to enable modeling and deterministic cycle-accurate simulation of hybrid systems at the
system level. In particular, Modelica models (without discrete behaviors) may be completely reused
for the definition of hybrid plants (see Chapter Hybrid fUML - An Introduction 6). Furthermore,
imperative synchronous languages may be responsible for the synthesis of discrete controllers (al-
ways defined as pure discrete modules exactly to enable code synthesis for computers). Therefore,
the purpose of the language is to enable modeling and simulation of system views, which in turn
enables analysis of the interaction between abstractions of the other views.

The results of the first secondary hypothesis “it is possible to use the unconstrained semantics
areas from fUML, namely time and concurrency, to define a synchronous extension of fUML with
formal semantics described by Abstract State Machines” present three novelties of this thesis
achieved by the formal definition of synchronous fUML (see Chapter Synchronous fUML
- An Introduction 4).

a) Synchronous fUML is a fUML extension that strictly concentrates on base UML (bUML)
given by fUML (see Section 2.2.3.3 for an introduction to fUML) for its definition of
syntax and semantics through ultra deep embedding. Moreover, the semantics is defined
using the formal method Abstract State Machine (ASM).

The strict use of bUML revealed issues in the specification published by OMG,
specifically the issues 18797 and 18798 (see Appendix B ).

As defined by OMG, bUML is expressive enough to define functional behavior, e.g.,
algorithms. Therefore, an action language is formally defined.

b) Synchronous fUML is a fUML extension that replaces the nondeterministic model of
computation (MoC) of fUML by a deterministic one defined by the synchronous-reactive
MoC (see Chapter Synchronous fUML - An Introduction 4).

The nondeterminism often observed in fUML was recognized by (BENYAHIA et al.,
2010) as an impediment to the use of fUML for real-time systems. Synchronous fUML
as a synchronous language lends itself to the modeling of real-time systems providing
determinism and cycle accuracy.

c) Synchronous fUML uses part of the MARTE time domain (see Section 2.2.3.5) in its
semantic domain.

The use of MARTE means the use of the standardized semantic domain for the
synchronous extension of fUML.

The results of the second secondary hypothesis “it is possible to prove formally that the extended
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fUML is in compliance with fUML” present another novelty of this thesis achieved by the
possibility of a formal conservativeness proof regarding bUML (see Synchronous fUML
- The Description of the Language 5). Synchronous fUML is strictly defined considering bUML
and using a formal method, hence, it should be possible to prove formally that the synchronous
fUML respects the axioms and inference rules defined in first-order logic by the base semantics
covering bUML. However, due to the lack of maturity of the base semantics the secondary
hypothesis is not valid. Although this proof is not achievable because the base semantics given
by fUML revealed as inconsistent (ROMERO et al., 2014b), the formal treatment pursued in this
thesis revealed such inconsistencies likewise other issues in the specification published by OMG,
specifically, the issues 18794, 18795 and 18796 (see Appendix B ).

The results of the third secondary hypothesis “once there exists a formal synchronous extension
of fUML, it is possible to extend it in order to enable modeling and deterministic cycle-accurate
simulation of hybrid systems” present the main two novelties of this thesis achieved by the
definition of hybrid fUML (see Chapter Hybrid fUML - An Introduction 6).

a) The concept of hybrid synchronous languages is defined in such a way that the formal
properties of synchronous languages are not lost, nevertheless, only a subset of models
has semantics, which led to the definition of enichronous systems that characterizes
this subset.

b) The formal semantics of hybrid fUML provides a deterministic cycle-accurate sim-
ulation even for hybrid systems due to the combination of enichronous systems,
differentiation of computation and communication, and a novel approach for the model
of computation of hybrid extensions of synchronous languages. This novel approach
deals with macro-step as a micro-step, which led to the definition of macro2-step
concept.

One final minor novelty of hybrid fUML is the encapsulation of DAEs in synchronous
processes, which simplifies the interaction of continuous and discrete behaviors likewise the static
semantics because it is not possible to mix these different kind of behaviors. It is a combined
result from the third and the fourth secondary hypotheses. The last secondary hypothesis does not
present any novelty.

At this point, important aspects related to precise subsets of existent languages but beyond the
scope of the present thesis are listed: (1) the static semantics, (2) further investigation of the
properties of the resultant languages and (3) formal analysis of user-defined models (ROMERO et

al., 2014b). Analysis through simulation is a consequence of the operational approach applied for
the definition of the semantics.

1.4 Method and Outline

Regarding the method, there are no empirical experiments in this thesis so the secondary hypothe-
ses are accepted as valid based on the evidences presented in each chapter or section of the thesis.
Furthermore, the main hypothesis is accepted as valid based on the validity of the secondary hy-
potheses and on the evidences presented by the examples modeled and simulated. Note there is
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no hypothesis related to the use of the language, indeed, Section 8.1 initially evaluates the use of
hybrid fUML comparing with Modelica and a hybrid extension of synchronous languages, however,
this evaluation is not based on empirical experiments.

Table 1.1 shows the examples modeled and simulated in this thesis. The examples range from pure
discrete event-triggered systems (SatelliteTrackingAndControl - see Example 32) through systems
composed of hybrid plants and discrete controllers with two discrete states (InvertedPendulum -
see Example 30).

Table 1.1 - Examples’ coverage considering significative characteristics of hybrid systems
for this thesis.

Example System Plant Controller
Event-triggered Time-triggered Continuous Hybrid One Two

Mono- Multi- State States
Periodic Periodic

VendingMachine 23 X
BouncingBall 25 X X
BasketBall 26 X X X
BasketBall 27 X X X
SpringMassDamper 28 X X X
SpringMassDamper 29 X X X
InvertedPendulum 30 X X X
Timepiece 31 X X
SatelliteTrackingAndControl 32 X

This thesis is organized as follows. Chapter 2 presents the preliminaries to enable the understanding
of formalisms and languages which support discrete and hybrid modeling in this thesis. Note the
synchronous paradigm is a particular approach for discrete modeling. In Chapter 3, the related
works are reviewed, which support the statements about the contribution as well as the discussion.

Concerning the defined language synchronous fUML, Chapter 4 explores the language providing
main rationales, language’s decisions and requirements likewise a brief introduction to the syntax,
semantics and pragmatics. Chapter 5 contains technical results that provide evidences for the
hypotheses, specifically, it shows the main excerpts of the formal definition and discusses the
possibility of a proof of conservativeness of synchronous fUML regarding of bUML.

Regarding the language hybrid fUML, Chapter 6 presents the introduction to the language pro-
viding main rationales, the language’s decisions and requirements as well as a brief introduction
to the syntax, semantics and pragmatics. Chapter 7 is a technical chapter that shows the main
extracts of the formal definition of hybrid fUML.

Chapter 8 presents an initial evaluation of the pragmatics of hybrid fUML, the hypothesis testing
for free software and the final discussion. Finally, Chapter 9 shares the conclusions and future
works of the thesis. In addition, the Appendix A lists the publications produced by this thesis, and
the Appendix B lists the issues identified and submitted to OMG regarding fUML.
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2 PRELIMINARIES ABOUT DISCRETE AND HYBRID MODELING

This chapter begins reviewing how languages can be described. Afterwards, languages and for-
malism are explored considering two different kinds of target models, namely discrete models and
hybrid models. Finally, basic concepts from control are presented because hybrid models frequently
are focused on control.

2.1 Language Descriptions

Regarding semiotics, a particular kind of sign-system is a language, which can be described by a
triple L = (Lsyntactics, Lsemantics, Lpragmatics). Lsyntactics deals with the valid relations between
a set of signs without to consider their meaning and their interpretation by an actor. Lsemantics
deals with the relation between signs and their meaning. Lastly, Lpragmatics deals with the use,
by actors, of signs considering their meaning in context. In semiotics, these aspects can be studied
separately (MORRIS, 1938).

Concerning programming/modeling languages, the Lsyntactics can be refined by a four-tuple
Lsyntactics = (LconcreteSyntax, LabstractSyntax, LsyntacticMapping, LstaticSemantics), where:

• LconcreteSyntax offers well-formed rules and a specific notation used to express defini-
tions, e.g., a textual one in Esterel with the statement pause or a graphical notation in
UML class diagrams in which a Class is a labeled rectangle with compartments;

• LabstractSyntax defines the language concepts, their relationships and well-formed rules
independently of the concrete syntax, e.g., a Class may have Properties in UML;

• LsyntacticMapping : LconcreteSyntax → LabstractSyntax maps concrete constructs into ab-
stract syntax concepts so it is possible to have more than one concrete syntax for one
abstrac syntax. Note the next definitions of a modeling/programming language only
make reference to LabstractSyntax;

• LstaticSemantics : LabstractSyntax → {true, false}, also called context-sensitive con-
straints, it defines well-formed rules considering the context in which concepts from
the abstract syntax are used. One can define them writing a set of function specifi-
cations that defines the conditions under a given instance of the abstract syntax is
declared well-formed. These functions can be Boolean-valued functions (TUCKER; NOO-

NAN, 2002), and can express ideas like “all classes in the same package have unique
names”.

The semantics, Lsemantics, can be refined regarding programming/modeling languages by a double
Lsemantics = (LsemanticDomain, LsemanticMapping), where:

• LsemanticDomain defines the universe of discourse of the meanings, in programming
languages, it defines which types an execution manipulates, e.g., in an object-oriented
language, Objects are part of the semantic domain;

• LsemanticMapping : LabstractSyntax → LsemanticDomain maps syntactical elements into
the semantic domain, therefore, it provides meaning for syntactical elements. Meaning
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covers structural and behavioral aspects so, for example: a class (syntax, structural) A
defines a subset of the Objects in the semantic domain, an action CreateObjectAction
from class A (syntax, behavioral) creates a new Object in the subset related to the class
A in the semantic domain.

Finally, pragmatics of programming/modeling languages is seldom studied and it does not
admit the same kind of formal description applied in the other components (GABBRIELLI;

MARTINI, 2010). For that reason, a programming/modeling language can be described as follows.
Nonetheless, pragmatics is no less important than the syntactics and the semantics.

Definition 2.1 (Language). A programming/modeling language is described by the tuple de-
scribed in the equation 2.1 considering the above descriptions for each element.

L = (LconcreteSyntax, LabstractSyntax, LsyntacticMapping , LstaticSemantics, LsemanticDomain, LsemanticMapping)
(2.1)

All elements of a language description need some sort of representation. The LconcreteSyntax of tex-
tual languages is often described by the Backus-Naur Form(BNF) or its extensions, e.g., Alf ((OMG),
2013a) and Esterel (BERRY, 2000). While the concrete syntax has BNF as a typical notation, the
other elements from a language L did not end up at such de facto standard. From BNF description,
tools can generate an abstract syntax LabstractSyntax for textual languages, whereas, for graphical
languages, one technique applied by OMG is meta-modeling, for which a UML model defines the
abstract syntax of a language, e.g., fUML ((OMG), 2012a)(see Section 2.2.3).

Regarding the semantic domain LsemanticDomain, a rare approach is the semantic domain model-
ing (GARGANTINI et al., 2009), in which meta-models are used to define the semantic domain, e.g.,
the semantic domain of fUML is defined by a UML model ((OMG), 2012a).

The mappings LsyntacticMapping and LsemanticMapping are often specified informally in a language
manual or specification (GARGANTINI et al., 2009; GABBRIELLI; MARTINI, 2010), e.g., the syntactic
mapping from the Alf concrete syntax into its abstract syntax is informally specified in Alf specifi-
cation ((OMG), 2013a). Nonetheless, it is well-accepted that the semantic mapping LsemanticMapping

must be rigorously defined (HAREL; RUMPE, 2004; GARGANTINI et al., 2009).

The semantic mapping LsemanticMapping rigorously definition can be grouped in three main meth-
ods: denotational, declarative and operational. In the denotational method, there is a set of func-
tions exactly as previously defined LabstractSyntax → LsemanticDomain, in which function, domain
and codomain are described using mathematical notation, and then the meaning of a well-formed
program is a compositional definition of these functions from the program’s input to its output.
The declarative methods use logic or algebra to express properties of the meaning of a well-formed
program regarding its input and outputs, e.g., the axiomatic semantics (HOARE, 1969) is a well-
known example of a declarative method using logic. In the operational methods, a concept of state
is defined and then a series of transitions regarding the abstract syntax is described in terms of
changes to that state, therefore, the meaning of a well-formed program is the set of transitions that
computes its outputs starting from an input and an initial state, e.g., the structural operational
semantics (PLOTKIN, 1981) is an operational method and abstract state machines can be used as an
operational method (BÖRGER; STÄRK, 2003; GARGANTINI et al., 2009)(see Section 2.2.4). Although
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the operational method naturally determines an interpreter, the semantic mapping does not need
to determine one, however, it should provide criteria to check that an interpreter (or other form
of implementation) follows the defined semantic mapping. Regarding the representation, while de-
notational and declarative methods use mathematical notation, the operational one does not have
such common agreement and its representation can vary widely ranging from a set of inference
rules to some sort of code. Therefore, the semantics of the representation (meta-semantics) is not
an issue for the denotational and declarative methods since they rely on the standard mathematical
semantics. On the other hand, it is not the case for the operational methods and the representation
used for defining them should have a well-defined semantics (pp. 7; (MOSSES, 2005)).

Still, regarding representation of the semantic mappings LsemanticMapping, if it is needed to
formalize the semantic mapping of a given language L using an existent language Lm, at which
Lm has a well-defined semantics, then it is clear that some kind of relation must be established
between the languages L and Lm. Taking into account the operational methods, a recurrent
technique is called embedding (NIPKOW et al., 2000). One particular kind of embedding is called
deep embedding (NIPKOW et al., 2000).

Definition 2.2 (Semantic mapping representation through deep embedding (NIPKOW et al., 2000)).
Deep embedding uses a language Lm with a well-defined semantics to represent the semantic map-
ping for a language L. It represents the abstract syntax from the language L using the language
Lm (defining the embedded abstract syntax), furthermore, the semantic domain of L is represented
using Lm. Afterwards, the semantic mapping of L is defined using Lm by an explicit function from
the embedded abstract syntax to the semantic domain represented using Lm. Deep embedding is
frequently used when it is needed to formalize and evaluate properties of the language L as a whole.

A large number of research has investigated the relationships between semantic mappings using
variations of these three main methods (TUCKER; NOONAN, 2002; MOSSES, 2005; GABBRIELLI;

MARTINI, 2010).

2.1.1 Models of Computation

A model of computation is an abstract specification of how computations are done, e.g., a classical
example is the Turing Machine (FERNANDEZ, 2009). Regarding programming/modeling languages,
those that have a well-defined semantic mapping covering behavior define a model of computation
consequently.

The question is the level of abstraction of models of computation, frequently, material details of the
semantic mapping of languages can be abstracted in favor of a focused description of concurrency
and communication. In this sense, a model of computation from a given language is an abstraction
of its semantic mapping determining when processes perform internal computations, update their
internal state, and perform external communication (LEE; ZHENG, 2007; LEE; SESHIA, 2011). These
abstractions can be collected from a series of languages and studied under a common framework.
One particular framework proposed in the literature is the tagged-signal model (LEE; SANGIOVANNI-

VINCENTELLI, 1998).

In the tagged-signal model (LEE; SANGIOVANNI-VINCENTELLI, 1998) the basic entities are events,
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signals and processes. Given a set of values V and a tag set T (the order of the tag set is the
fundamental concept to describe concurrency), an event is an element of T × V. A functional
signal s is the set of events defined by s : T → V. The set of all signals S is defined by P(T × V).
Signals can be composed in tuples of n signals, which leads to tuples of signals Sn, n ∈ N>0. The
set of all tuples of signals is defined by P(Sn). A process P ⊆ Sn is a set of possible behaviors,
where a behavior is s ∈ P . A subset of the behaviors I ⊆ P from a process P can be externally
defined, i.e., inputs.

Definition 2.3 (Deterministic process (LEE; SANGIOVANNI-VINCENTELLI, 1998)). A process is
deterministic if and only if for any input it has exactly one behavior or exactly no behavior.
Otherwise, it is nondeterministic.

Therefore, a model of computation is distinguished by the order it imposes on its tag set and the
nature of processes. Regarding the nature of processes, an additional important characteristic of a
model of computation is how it combines behaviors of different natures, specifically, discrete and
continuous (described by ODEs or DAEs, see Subsection 2.3.1) behaviors.

2.2 Support for Discrete Modeling

This section covers preliminaries related to discrete modeling. Note the synchronous paradigm is a
particular approach for discrete modeling (see Subsection 2.2.2). Through this section, a classical
example from the discrete community - vending machine, is used to illustrate the discrete modeling.

Example 1 (VendingMachine (KATZ; BORRIELLO, 2005; GROUP, 2014).). A vending machine has
a coin slot and a store of gums. Each gum costs 15 cents. The machine handles signals representing
the recognition of nickels (5 cents) and dimes (10 cents) in the coin slot. In the simplest case, these
signals do not occur at the same time. When the accumulated value sums 15 cents, the machine
delivers a gum. Objects different from nickel and dime, inserted in the coin slot, are rejected,
likewise they do not generate signals for the system. Moreover, the system does not give change, a
change (if there exists) is accumulated for a next processing.

2.2.1 Mathematical Modeling

There is a large number of abstract machines that models discrete systems (SCHNEIDER, 2003),
e.g., Mealy machines, Moore machines, etc... A general mathematical model for semantics of
discrete systems is the labeled transition systems (LTSs). Although there is a large number of
formalisms for transition systems, such as I/O labeled transition systems (RAY; CLEAVELAND,
2008) or synchronous transition systems (BENVENISTE et al., 2000), the classical concept is
presented and used to support the theoretical analysis in different contexts.

Definition 2.4 (Syntax of labeled transition system (HENZINGER, 1996)). A labeled transition
system is a tuple LTS = (S, S0, L, T ) with the following components:

• S : a (possibly infinite) set of states S, which defines the state space.
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• S0 : a subset S0 ⊂ S of initial states.

• L : a (possibly infinite) set L of transition labels, where lstutter ∈ L;

• T : S × L × S. For each transition label l, a binary relation on the state space S.
Each triple t : (s, l, s′) is called a transition. The transition (s, lstutter, s′) (stuttering
transition) exists for all states, and it means that always there is the possibility to do a
transition without changing the system’s state, where, in this case, s = s′ (LAMPORT,
1994).

Definition 2.5 (Semantics of labeled transition systems). The semantics of LTSs is defined by
one operational rule: given a state s ∈ S and a transition t : (s, l, s′) ∈ T then the transition label
l leads to s′. Hence, the execution ex of an LTS is an alternating (possibly infinite) sequence of
states and transition labels, where ex = s0l1s1l2s2... such that (si, li+1, si+1) ∈ T, 0 ≤ i,∀i ∈ N. A
trace tr of an execution ex of the LTS is a sequence (finite or infinite) of transition labels l. Let
TR(LTS) be the set of all traces of the LTS.

Graphically, an LTS can be represented as a directed multigraph (S,L), in which the vertices of
the graph are the states S and the edges are the transitions labels L. The initial states are marked
by an incoming edge without source.

Example 2 (VendingMachine as an LTS.). Consider the main part of the VendingMachine is the
accumulation of money, then the LTSAccumulator is modeled with two transition labels, namely:
lessThan15 and greaterThanOrEqual15. And, each state represents the amount of money up to 20
cents. The lstutter transitions are omitted. Hence, the LTSAccumulator can be formally modeled as
follows:

• S = {0, 5, 10, 15, 20}

• S0 = {0}

• L = {lessThan15, greaterThanOrEqual15}

• T = {(0, lessThan15, 5), (5, lessThan15, 10), (10, lessThan15, 15), (0, lessThan15, 10),
(5, lessThan15, 15), (10, lessThan15, 20), (15, greaterThanOrEqual15, 0),
(20, greaterThanOrEqual15, 5)}

Fig. 2.1 shows the graphical representation of LTSAccumulator. Note that this is an abstract
model, one can interprets it as follows: (1) nickels recognized by machine causes the follow-
ing transitions T ⊃ Tnickel = {(0, lessThan15, 5), (5, lessThan15, 10), (10, lessThan15, 15)},
(2) dimes recognized by machine causes the following transitions T ⊃
Tdime = {(5, lessThan15, 15), (10, lessThan15, 20)}, and (3) the act of dis-
patching a gum is related somehow with the transitions T ⊃ Tgum =
{(15, greaterThanOrEqual15, 0), (20, greaterThanOrEqual15, 5)}.

One possible infinite trace for LTSAccumulator is: lessThan15 lessThan15 greaterThanOrEqual15
lessThan15 lessThan15 lessThan15 greaterThanOrEqual15 ...
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Figure 2.1 - The graphical representation of LTSAccumulator.

Systems are composed of interconnected interdependent parts. Furthermore, frequently, com-
ponents are modeled independently and then combined through sequential and/or parallel
composition. In order to support parallel composition, a binary operation is defined in such
a way that labels belonging to solely one component do not enforce synchronization between
transitions so these transitions are interleaved. While shared labels enforce synchronization,
hence, they are simultaneous. The lstutter plays a fundamental role in the parallel composition
of LTSs because interleaved transitions is better described when one component does a transi-
tion and the other executes a lstutter indicating that the internal state of the former did not change.

Definition 2.6 (Parallel composition of LTSs (HENZINGER, 1996)). Let LTS1 = (S1, S
0
1 , L1, T1)

and LTS2 = (S2, S
0
2 , L2, T2) be two LTSs. The product LTS1 || LTS2 is defined to be the LTS =

(S, S0, L, T ):

• S = S1 × S2

• S0 = S0
1 × S0

2

• L = L1 ∪ L2

• ((s1, s2), l, (s′1, s′2)) ∈ T ⇔



(s1, l, s
′
1) ∈ T1 ∧ (s2, lstutter, s

′
2) ∈ T2 ∧ l ∈ L1 \ L2

∨
(s2, l, s

′
2) ∈ T2 ∧ (s1, lstutter, s

′
1) ∈ T1 ∧ l ∈ L2 \ L1

∨
(s1, l, s

′
1) ∈ T1 ∧ (s2, l, s

′
2) ∈ T2 ∧ l ∈ L1 ∩ L2

Example 3 (VendingMachine as a parallel composition of LTSs.). One can model the act of
dispatching a gum using two states, open (o) and close (c), for a dispenser. Hence, the LTSDispatcher
can be formally modeled as follows:

• S = {c, o}

• S0 = {c}

• L = {gum, greaterThanOrEqual15}

• T = {(c, greaterThanOrEqual15, o), (o, gum, c)}
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Consider now that the LTSV endingMachine = LTSAccumulator || LTSDispatcher is the parallel com-
position of LTSAccumulator and LTSDispatcher. Hence, the system can be formally modeled as
follows:

• S = {(0, c), (5, c), (10, c), (15, c), (20, c), (0, o), (5, o), (10, o), (15, o), (20, o)}

• S0 = {(0, c)}

• L = {lessThan15, greaterThanOrEqual15, gum}

• T = {
((0, c), lessThan15, (5, c)), ((5, c), lessThan15, (10, c)), ((10, c), lessThan15, (15, c)),
((0, c), lessThan15, (10, c)), ((5, c), lessThan15, (15, c), ((10, c), lessThan15, (20, c)),
((0, o), lessThan15, (5, o)), ((5, o), lessThan15, (10, o)), ((10, o), lessThan15, (15, o)),
((0, o), lessThan15, (10, o)), ((5, o), lessThan15, (15, o), ((10, o), lessThan15, (20, o)),
((0, o), gum, (0, c)), ((5, o), gum, (5, c)), ((10, o), gum, (10, c)),
((15, o), gum, (15, c)), ((20, o), gum, (20, c),
((15, c), greaterThanOrEqual15, (0, o)),
((20, c), greaterThanOrEqual15, (5, o))}

Fig. 2.2 shows the graphical representation of LTSDispatcher as well as LTSV endingMachine. This
abstract model can be interpreted by an extension of the previous interpretation. In the extended in-
terpretation, the transition label greaterThanOrEqual15 synchronizes the components, afterwards,
the gum should be dispatched, and then the system returns to a state on which coins are accepted.
Note some states should not be reached by a meaningful system, e.g., (10,o).

One possible infinite trace for LTSV endingmachine is: lessThan15 lessThan15 greaterThanOrEqual15
gum lessThan15 lessThan15 lessThan15 greaterThanOrEqual15 gum ...

Example 4 (VendingMachine supported by a special semantics for composition.). Yet consider-
ing LTSV endingMachine = LTSAccumulator || LTSDispatcher, assume two statements: (a) the open
action shall be sent to the dispatcher, while there is some mechanism to close the dispatcher au-
tomatically after the gum is delivered; (2) there is a special semantics for parallel composition at
which computation and communication are done in zero physical time. In this case, it is possible
to define the composition of the two LTSs as shown in Fig. 2.3. Two transitions are labeled with
two words (greaterThanOrEqual15 and gum) meaning that both things occur at the same time.
This type of concurrency contributed to reduce the state space significantly, which is enabled by
a special semantics that supports parallel composition in such well-behaviored way. This special
semantics is used in synchronous languages and it is explored in the next subsection.

2.2.2 The Synchronous Hypothesis and Synchronous Languages

The synchronous hypothesis states computation and communication are performed in zero physical
time, which means that according to the hypothesis the computing resources and the networks are
infinitely fast, and computation and communication take place only at discrete points in physical
time, with no duration (zero physical time) (BENVENISTE et al., 2003; POTOP-BUTUCARU et al.,
2005). The hypothesis is used to specify, to model and to verify properties of a system, nevertheless,
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Figure 2.2 - The graphical representation of LTSDispatcher and LTSV endingMachine.

Figure 2.3 - The graphical representation of LTSV endingMachineSpec supported by a special
semantics for parallel composition.

as a hypothesis, it should be tested regarding implementations, the basic precautions are: the
implementation must be faster than the environment and each discrete instant of computation and
communication must finish before the beginning of new one.

Indeed, the synchronous hypothesis defines an abstract notion of time: the notion of physical
time is replaced by an order among events, in which the relevant relationships are coincidence
and causal precedence. The behavioral activities are divided according to a sequence of discrete
instants. Physical time does not play a special role because it is handled as an external event,
as any other event coming from the environment. This is called the multiform notion of time:
one can express delays in “centimeters” or in “seconds” counting their occurrences (ANDRÉ et al.,
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2007). The duration of such occurrences as well as their starting physical time are not considered
and remain abstract (FORGET et al., 2008a). Due to the abstract notion of time, generally, readings
and writings referring to future instants are not allowed (HALBWACHS et al., 1992).

Definition 2.7 (Macro-step (SCHNEIDER, 2009)). In each discrete instant, input signals are read,
computations take place and signals are communicated until output signals are computed and a
final global state is reached. This set of operations is called macro-step, and it defines a reaction
of the model for the input signals provided by the environment.

The synchronous languages rely on the synchronous hypothesis together with the constructive
semantics. The constructive semantics defines that the status of each signal in a macro-step is
established and uniquely defined prior to being tested and used, which enforces a deterministic
behavior provided that the model is constructive (nonconstructive models are rejected) (see
Subsection 4.1). A property of the constructive semantics is that the results do not depend on the
macro-step execution strategy for the actions (observed the data dependencies).

Definition 2.8 (Essential and sufficient features of synchronous languages (BENVENISTE et al.,
2000)). The synchronous languages, which rely on the synchronous hypothesis and on the con-
structive semantics, are characterized by three essential and sufficient features:

• Programs progress via an infinite sequence of macro-steps;

• In a macro-step, decisions can be taken on the basis of the absence of signals. The
absence of signals is direct for input signals, while the absence of signals emitted and
received inside a model is defined by the constructive semantics.

• Communication is performed via instantaneous broadcast. Provided that a model is
constructive and its communications are instantaneously broadcasted, the parallel com-
position is given by the conjunction of associated macro-steps.

Synchronous languages have been established as a technology of choice for specifying, modeling,
and verifying real-time embedded applications, e.g., Esterel (BERRY, 2000), Quartz (SCHNEIDER,
2009), Lustre (HALBWACHS et al., 1992) and Signal (BENVENISTE et al., 1991). An evidence of the
applicability of the synchronous models for realt-time systems is the following quotation from
(MILLER et al., 2005), which started using a synchronous model and then considered the effect of
asynchrony:

..., proving the other properties turned out to be much more complex
than for the synchronous case. The properties themselves are more difficult
to state, were weaker than could be achieved in the synchronous case, and
required considerable complexity to be added to the model to ensure that
even the weakened properties were true(pp. 23; (MILLER et al., 2005)).

Moreover, the focus of synchronous languages is to allow modeling and programming of systems
for which cycle precision is a requirement (POTOP-BUTUCARU et al., 2005). These cycles, a rigid
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division of time, force the modeler to be well aware of them so as not to miss important signals (AN-

DRÉ et al., 2007). In particular, it has been argued that synchronous languages are well-suited for
programming reactive real-time systems, while complex systems generally require the combination
of asynchronous and synchronous modules (HALBWACHS et al., 1992).

Finally, the benefits of synchronous languages are numerous, for this thesis the most important
are: (1) the abstract notion of time allows the definition of proper mathematical models
and operational semantics (SIMONE; ANDRÉ, 2006), (2) the constructive semantics guarantees
determinism and predictability, (3) the combination of synchronous hypothesis and constructive
semantics simplifies composition and (4) as the example 4 shown, the combination of synchronous
hypothesis and constructive semantics also leads to smaller LTSs, which in turn is a crucial factor
for the feasibility of verification techniques, e.g., model-checking.

Example 5 (VendingMachine with a synchronous accumulator.). Consider now the following
system constraint “signals do not occur at the same time” is removed from the VendingMachine
initial description. Therefore, the recognition of nickels and dimes can be performed at the same
time of the emission of one gum, and then the LTSV endingMachineSync can be graphically visualized
in Fig. 2.4. The differences are: (1) the state space is bigger due to the fact that at state s = 10 one

Figure 2.4 - The graphical representation of LTSV endingMachineSync.

new transition is defined by the reception of one nickel and one dime at the same time, which leads
to the state s = 25; and (2) the number of transitions increases since there are more alternatives
to reach the same state with different combinations of signals (expressed by transition labels).
Although the number of transitions is biggger, the explicit enumeration of them is avoided by the
synchronous approach (see next examples).

The next subsection explores the common model of computation of all synchronous languages, af-
terwards, the major synchronous languages are briefly explored considering two groups: imperative
languages and declarative languages1.

1The goal of these subsections is not to introduce the languages, while some key features,
relevant to this thesis, of the languages are roughly discussed.
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2.2.2.1 Model of Computation

The synchronous languages share a model of computation called synchronous-reactive that can be
characterized by the tagged-signal model (LEE; SANGIOVANNI-VINCENTELLI, 1998). The tagged-
signal model for this MoC is defined as follows (LEE; ZHENG, 2007).

Let T = N>0 be the tag set, where N>0 is the set of non-zero natural numbers with the usual
numerical order, which represents the macro-step counter. Then, let Tsem ⊂ T be the set of all
tags used by a semantics for a synchronous language. Let V be a set of all possible values for a
given synchronous language, and Vb = V ∪ {�,⊥} be the set of all possible values plus an absent
value (it indicates explicitly that the value is defined, however, it is not present) and an unknown
value (it marks that the value is not available, and it causes an error if a program tries to read it).
Then a function defines a signal s:

s : T → Vb (2.2)

Furthermore, ∀t 6∈ Tsem, s(t) = ⊥ and ∀t1, t2 ∈ Tsem, t1 ≤ t2, s(t2) 6= ⊥ ⇒ s(t1) 6= ⊥, which means
that once a signal is defined for t2 the signal for t1 shall be previously defined. The set of all signals
S is defined by P(T ×Vb). In addition, let ≺ be a partial order defined by ≺: ⊥ ≺ v,∀v ∈ Vb. The
set Vb equipped with the partial order ≺ defines the so-called three-valued logic, where ⊥ is the
unknown value, � is false and other values correspond to true. Accordingly, false and true cannot
be compared2.

Definition 2.9 (Clock). Given a tag set T and a signal s : (t, v) ∈ S, a clock is defined by the
following function:

clock : S → {⊥, false, true}

clock(t, v) :=


⊥ if v = ⊥

false if v = �
true if v 6= �

(2.3)

Therefore, the clock of a signal identifies the macro-steps in which the signal is present. The notion
of clock is fundamental for the synchronous declarative languages, indeed, some of them promoted
the clocks to the syntax allowing programs to manipulate them directly, e.g., Signal (BENVENISTE

et al., 1991).

The semantics of synchronous languages are defined by the constructive semantics (BERRY, 2000),
which formalizes how the actions should be evaluated in a given macro-step. Furthermore, the
term constructive means that the output values can be derived from the presence of input values
and the program (not presence does not mean absence necessarily). It can be roughly described
as follows. In order to compute the output signals of a given program and a given macro-step
(tag t), the input signals are read (they assume value true), all other signals are set to ⊥, and
then an iteration occurs until a fixpoint. In each iteration, all the actions that depend only from
the already defined signals are executed assigning values greater than the previous one to signals
(note this is a monotonic behavior and an already defined signal cannot be redefined because true
and false are not comparable), further, when there is no action that can transform a signal in

2Frequently, the set and the partial order is augmented with the value > forming a complete
partial order.
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true it is declared false. Considering the tag t, if the reached fixpoint defines values different from
unknown for all signals ∀s ∈ S, s(t) 6= ⊥, the program is declared constructive for the given input,
and, consequently, deterministic (see Definition 2.3). Usually, only programs that are constructive
for all possible inputs are accepted by compilers.

2.2.2.2 Imperative Languages: Esterel and Quartz

Imperative synchronous languages, as Esterel (BERRY, 2000) and Quartz (SCHNEIDER, 2009), en-
able the definition of a series of statements that changes the state so they describe how to perform
an instantaneous computation and what signals must be instantaneously broadcasted.

A program consists of statements that can be composed either sequentially (using ;) or concurrently
(using ||). Programs can be structured in modules. Each module may be a concurrent process that
communicates with others using signals (the only prescribed means of communication is through
signals). Consumption of time must be explicitly programmed with the special statement pause.
Each execution of a pause statement consumes one macro-step, and therefore separates different
macro-steps from each other. As the pause statement is the basic statement that consumes time, it
follows that all threads of a synchronous program run in lockstep: they execute the code between
pause statements in zero time, and synchronize at the next pause statements (SCHNEIDER, 2009).

Esterel

In addition, to the previously common definitions. Esterel provides two types of signals: (a) pure
signal has a presence status, present or absent and (b) valued signal carries a value of arbitrary
type and a presence status (BERRY, 2000).

In Esterel (BERRY, 2000), the emission of a pure signal is defined by the statement emit S and
valued signal is emitted by emit S(exp). Signals can be read using four alternatives: (1) a blocking
read using the statement await, which can consume more than one macro-step, (2) testing the
presence or absence of a signal through the statement present S then ... else ... end present (the
basic method to react to absence), (3) reading the value of a valued signal using the expression
?S or (4) reading a previous value for a valued signal using the expression exp(?S) (a signal is
considered absent before it exists (pp.53; (BERRY, 2000))).

Esterel allows several sucessive values for a variable at a macro-step (pp.25; (BERRY, 2000)),
whereas forbids more than one value for a signal (simple valued signal), which establishes a clear
separation between computation (based on variables and signals) and communication (based
exclusively on signals).

Example 6 (VendingMachine modeled using Esterel.). Fig. 2.5 shows the code of the VendingMa-
chine using Esterel, which in turn can be described by the LTSV endingMachineSync(see Fig. 2.4).
Credit is declared as a local signal shared between the concurrent components Accumulator and
Dispatcher. Accumulator uses a local variable called lcredit, that assumes more than one value in
a same macro-step, to calculate the credit to be sent to other components and also to store the
value for the next macro-step. Due to the fact that there is a cycle between the components, an
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expression pre is used in the Dispatcher to break this circularity turning the model a constructive
one.

module VendingMachine:
input nickel,dime;
output gum;
signal credit:=0 :integer in

loop
run Accumulator
||
run Dispatcher

end loop
end signal
end module

module Accumulator:
input nickel, dime, gum;
output credit:integer;
var lcredit:integer in

lcredit := 0;
loop

var nickelAmount,dimeAmount,gumAmount:integer in
present nickel then nickelAmount := 5 else nickelAmount := 0 end present;
present dime then dimeAmount := 10 else dimeAmount := 0 end present;
present gum then gumAmount := -15 else gumAmount := 0 end present;
lcredit := lcredit + nickelAmount + dimeAmount + gumAmount;

end var;
emit credit(lcredit);
pause;

end loop
end var
end module

module Dispatcher:
input credit:integer;
output gum;
loop

var lcreditd:integer in
lcreditd := pre(?credit);

% PRE turns the program causal
if 15 <= lcreditd

then emit gum
end if;

end var;
pause;

end loop
end module

Figure 2.5 - VendingMachine modeled using Esterel.

Table 2.1 shows the synchronous streams for three macro-steps for the given inputs. Its computa-
tion is based on the constructive semantics defined in Subsection 2.2.2.1, and, it can be roughly
explained as follows. At the first macro-step, the input signals are read, which enables the test
of the presence in the Accumulator until the test of Gum because Gum can be emitted by the
Dispatcher. Concurrently, the Dispatcher is evaluated, it reads a previous value of credit that is
initially defined as 0 (signal credit := 0 : integer), it tests its value, and then it reaches a pause.
Now, there is no concurrent process that can generate the Gum and then it is declared absent,
afterwards, the new lcredit is computed and, finally, it emits the signal Credit. The following two
macro-steps exhibits the same deterministic behavior but with different results of computation,

21



Table 2.1 - Synchronous streams for VendingMachine using Esterel.
Source: (ESTEREL.ORG, 2014).

signal macro-step 1 macro-step 2 macro-step 3
Inputs
nickel true � �
dime true � �
Outputs
gum � true �
Local signals and variables
lcredit 15 0 0
lcreditd 0 15 0
credit 15 0 0
pre credit 0 15 0

and, consequently, the value of emitted signals.

Quartz

Quartz is a derived language from Esterel (BERRY, 2000) but with significant different decisions
about the semantics (SCHNEIDER, 2009).

For this thesis, the important differences from Esterel are: (1) the reaction to absence
defines default values for variables so a program is not able to check if the value was previously
defined or was the result of the reaction to absence; (2) there is no difference between signals
and variables (computation and communication), therefore, every variable assumes only one
value in each macro-step (computation and communication are dealt as being the same
phenomenon), (3) it allows the scheduling of actions to the future (delayed actions affect the
next macro-step), in constrast, Esterel allows access to the previous or the current macro-step only.

Example 7 (VendingMachine modeled using Quartz.). Fig. 2.6 shows the code for the Vending-
Machine using Quartz, which in turn can be described by the same LTSV endingMachineSync(see
Fig. 2.4).

Table 2.2 shows the synchronous streams for three macro-steps for the given inputs. Its computation
is based on the constructive semantics defined in the subsection 2.2.2.1. The differences from the
synchronous streams presented for Esterel are: (1) the reaction to absence defined values false for
the boolean variables and (2) the use of the next shifted the value of the current value of Credit
by one macro-step.

2.2.2.3 Declarative Languages: Lustre and Signal

Declarative synchronous languages, among which Lustre (HALBWACHS et al., 1992) and Signal (BEN-

VENISTE et al., 1991), enable the description of a series of equations relating inputs and outputs
instantaneously propagated between the components, therefore, they describe what should be done
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module VendingMachineAdapted(event bool ?nickel,?dime,gum) {
int credit;
Accumulator(nickel,dime,gum,credit);

||
Dispatcher(credit,gum);

} drivenby {
emit(nickel);
emit(dime);
pause;
pause;

}

module Accumulator(event bool ?nickel,?dime,?gum,int credit) {
loop {

event int{31} nickel_amount, dime_amount, gum_amount;
if(nickel) nickel_amount = 5; else nickel_amount=0;
if(dime) dime_amount=10; else dime_amount=0;
if(gum) gum_amount=-15; else gum_amount=0;
next(credit) = credit + nickel_amount + dime_amount + gum_amount;
// NEXT turns the program causal and enables memory
pause;

}
}

module Dispatcher(int ?credit, event bool !gum) {
loop {

if(15 <= credit)
emit (gum);

pause;
}

}

Figure 2.6 - VendingMachine modeled using Quartz.
Source: Adapted from (GROUP, 2014).

Table 2.2 - Synchronous streams for VendingMachine using Quartz.
Source: (GROUP, 2014).

signal macro-step 1 macro-step 2 macro-step 3
Inputs
nickel true (�)false (�)false
dime true (�)false (�)false
Outputs
gum (�)false true (�)false
Local signals and variables
credit 0 15 0
next credit 15 0 0

in a given macro-step.

A system consists of a set of nodes connected by signals, which can be easily visualized as a block
diagram. A connection means an equation defining that all connected elements access the same
value in each macro-step. Each node consists of a set of equations that relates inputs to outputs,
the equations uniquely define the values of their components in each macro-step. In each macro-
step, the current or previous inputs are read and the equations are solved producing the outputs.
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The infinite sequences of input values and output values are called flows.

There is no difference between variables and signals (computation and communication), therefore,
every variable assumes only one value in each macro-step (computation and communication
are dealt as being the same phenomenon). Moreover, likewise Esterel, declarative synchronous
languages do not allow references to future macro-steps, what can be accessed is the previous
macro-steps or the current one.

The demarcation of macro-steps is defined by the semantics so there is no concept of pause, from
imperative synchronous languages, for demarcation of macro-steps, and, consequently, all nodes of a
system would be executed in all macro-steps. Now recall definition of clock 2.9, the clock of a signal
identifies the macro-steps in which the signal is present. Declarative languages use the presence
or absence of clocks (reaction to absence) to enable the definition of in which macro-steps the
nodes are executed. Finally, only signals with the same clock can be combined by an equation,
and this consistency is a matter of the compilers from declarative languages. Therefore, compilers
from the declarative languages ensure two conditions regarding the synchronous hypothesis: (1)
the system is constructive (a general condition to all synchronous languages) and (2) the system
is clock consistent.

Lustre

Lustre provides two main operators to control the execution based on clocks, namely when and
current. The operator s when c operator has the meaning of sampling so it selects a value of a
signal (s) from a given flow based on a given condition (c), whereas current s operator has the
meaning of holding, therefore, it retrieves the last present value of a signal (s) from a given flow.
Note in Lustre, it is not possible to access a clock directly.

As in Esterel, it has the operator pre s, which retrieves the previous value of a given signal (s)
from a given flow. However, differently from Esterel, this operator never returns absent values
because the clock consistency applied to accept programs ensures that two related signals have
the same clock. Moreover, the initial instant has an unknown value, which causes error if read.
Therefore, to use the operator pre is always needed to define an initial value using the operator
followed by (->). For example: s2 = ( 0 -> pre s1), in this case, the operator (->) defines that
the (s2) has the value 0 at the first macro-step, and at the following ones, the previous value of (s1).

Example 8 (VendingMachine modeled using Lustre.). Fig. 2.7 shows the code of the Vending-
Machine using Lustre, which in turn can be described by the same LTSV endingMachineSync(see
Fig. 2.4).

Table 2.3 shows the synchronous streams for three macro-steps for the given inputs. Its computation
is based on the constructive semantics defined in the subsection 2.2.2.1. The differences from the
synchronous streams presented for Esterel are: (1) the clock consistency was ensured by the Lustre
compiler then there is no absent values so inputs and outputs have the value false instead of the
absent value, (2) pre credit was initialized using the operator (->), otherwise, an error would be
generated during the access to the unknown value and (3) the reaction to absence using clocks
was exemplified by the conditional activation of the node dispatcher using a combination of if,
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node vendingMachine (nickel,dime:bool) returns (gum:bool);
var credit, preCredit:int;

dispatcherClock:bool;
let

credit = accumulator(nickel, dime, gum);
preCredit = (0 -> pre credit);
/* clock of dispatcher */
dispatcherClock = preCredit > 0;
/* gum */
gum = if dispatcherClock then current(dispatcher(preCredit) when dispatcherClock) else false;

tel;

node accumulator (nickel,dime,gum:bool) returns (credit:int);
var nickelamount,dimeamount,gumamount:int;
let

nickelamount = if nickel then 5 else 0;
dimeamount = if dime then 10 else 0;
gumamount = if gum then -15 else 0;
credit = (0 -> pre credit) + nickelamount + dimeamount + gumamount;

/* PRE turns the program causal and enables memory */
tel;

node dispatcher (credit:int) returns (gum:bool);
let

gum = 15 <= credit;
tel;

Figure 2.7 - VendingMachine modeled using Lustre.

Table 2.3 - Synchronous streams for VendingMachine using Lustre.
Source: (VERIMAG, 2014).

signal macro-step 1 macro-step 2 macro-step 3
Inputs
nickel true false false
dime true false false
Outputs
gum false true false
Local signals and variables
credit 15 0 0
pre credit ⊥ 15 0
0 -> pre credit 0 15 0
preCredit 0 15 0
dispatcherClock false true false
dispatcher(preCredit) when dispatcherClock ⊥ true ⊥
current(dispatcher(preCredit) when dispatcherClock) ⊥ true true
if dispatcherClock then false true false

current(dispatcher(preCredit) when dispatcherClock)
else false

when and current, which simple means the dispatcher is only activated when the previous credit
is greater than 0.

Signal

Signal is a declarative synchronous language as Lustre (BENVENISTE et al., 1991). However, one
significative difference is that it promoted clocks of flows to the syntax. Therefore, the equations
can define relations between signals as well as between clocks. This promotion has profound con-
sequences in the semantics of the language that are beyond the scope of the present thesis. The
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important fact for this thesis is that Signal (BENVENISTE et al., 1991) introduced the syntactical
capabilities for declarative clock relations(see Subsection 2.2.3.5).

2.2.3 OMG’s Specifications

The Object Management Group (OMG) is an international, open membership, not-for-profit
technology standards consortium. It defines the modeling standards UML ((OMG), 2011b) and
SysML ((OMG), 2012c).

Fig. 2.8 shows the relationships between the OMG’s specifications, which are reviewed in the sequel.
fUML is positioned at the center (see Subsection 2.2.3.3), offering semantics for an executable
subset of UML (positioned at the bottom; see Subsection 2.2.3.1), and supporting the textual
action language Alf (at the top; see Subsection 2.2.3.4). Moreover, SysML (see Subsection 2.2.3.2)
and MARTE (see Subsection 2.2.3.5) are based on UML, left and right side respectively.

Figure 2.8 - Relationships between OMG specifications.

A common concept in the OMG’s specifications, is the stratification of the specifications. Thus, the
set of concepts of a given specification is partitioned into horizontal layers of increasing capability
called compliance levels (e.g., L0, L1, . . . ). The goal is to support standardized partial compliances.

Lastly, another common concept in the OMG’s specifications is called four-layer metamodel hier-
archy ((OMG), 2011b; (OMG), 2012a). This concept defines the following layers for models: (M3)
called meta-meta models, defined by MOF (Meta-Object Facility) through the establishment of
basic concepts for definition of languages; (M2) called meta-models, on which UML, SysML, fUML
and MARTE are, they define languages or extensions for languages; (M1) called models, given a
language with syntax defined by a meta-model and perhaps a semantics, this level defines user
models, e.g., the VendingMachine; and (M0) some times called runtime model, it is the result of
a semantic mapping starting from a model in the level M1, e.g., running a UML VendingMachine
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model defined in accordance with fUML, a runtime model is produced by the operational semantics
of fUML.

2.2.3.1 UML

The Unified Modeling Language (UML) is an object-oriented graphical modeling language, further,
it is a general purpose language intensively used for software engineering applications ((OMG),
2011b). Two fundamental premises constrain the semantics of UML:

a) All behavior in a modeled system is ultimately caused by actions executed by the so-
called active objects (see Subsection 2.2.3.3).

b) UML behavioral semantics only deals with discrete behaviors, nevertheless, continuous
behaviors can be modeled provided that they are abstracted using discrete instants,
which can be as small as needed by the model ((OMG), 2011b).

As many formalism for modeling, it provides constructs to model structure and behavior. Structure
is mainly modeled using classes and, consequently, visualized by class diagrams. Whereas behavior
is usually defined by use cases, activities and/or state machines and, as a result, they can be visu-
alized by use case diagrams, activity diagrams and/or state machine diagrams. A complementary
set of diagrams is derived from the behavioral diagrams, e.g., sequence diagrams ((OMG), 2011b).

2.2.3.2 SysML

SysML is a general purpose modeling language for systems engineering applications. SysML reuses
a subset of UML called UML4SysML. In addition, it provides extensions to address the necessities
of systems engineering, e.g., requirements, parametrics and allocations.

Subsection 2.2.3.3 assesses the activities and actions from fUML regarding the adherence to the
SysML’s compliance levels.

2.2.3.3 fUML

Although UML 2 defined the action semantics, in which a set of actions are the fundamental
units of behavior, the lack of precise semantics was still an issue ((OMG), 2011b). This lack of a
precise semantics in the OMG specifications has been manifested by a large number of proposals
for semantics of UML (RAY; CLEAVELAND, 2008; JARRAYA et al., 2009; BENYAHIA et al., 2010;
GRONNIGER et al., 2010; KRAEMER; HERRMANN, 2010; OBER; DRAGOMIR, 2011; MAOZ et al., 2011;
PERSEIL, 2011; KNIEKE et al., 2012; ABDELHALIM et al., 2012).

The size and complexity of a language’s syntax may have direct consequences on the size and
complexity of its semantics. Aware of this, OMG defines a semantics for a foundational subset of
UML (fUML)3, as an attempt to answer the need for a precise semantics for UML ((OMG), 2009).
Thus, fUML selects part of actions defined in UML to model behavior, and part of expressivity

3 fUML is either registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.
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of classes to model structure. The specification does not define a concrete syntax so the only
notation available to define users’ models is the graphical notation provided by UML, namely
activity diagrams and class diagrams.

Regarding the contents of the fUML, they are selected considering three criteria: compactness,
ease of translation and action functionality. As actions are the fundamental building blocks of
behavior in UML, the most basic actions are selected. Ease of translation means that should be
straightforward to support the translation from bigger UML subsets into fUML, and from fUML
into conventional languages, e.g., Java. Finally, compactness is used as a criteria to make fUML
small and then its size facilitates the definition of a semantics. Two exclusions are important
for this thesis: (1) constraints are excluded from fUML because they are considered design-time
annotations that should already be satisfied by a well-formed model (pp. 22; ((OMG), 2012a)) and
(2) fUML excludes the UML composite structures arguing that they are moderately used and a
straightforward translation is possible from them into the foundational subset (pp. 20;((OMG),
2012a))(pp.19;((OMG), 2013b)).

Example 9 (Dispatcher from VendingMachine modeled using fUML.). Fig. 2.9 shows the behavior
of the dispatcher from the VendingMachine modeled using fUML. It is composed of actions, e.g.,
AcceptEventAction - it receives a signal sent by another active object, ReadStructuralFeatureVal-
ueAction - it reads a value assumed by a statically defined property from an object, etc. . . Also,
it has activity nodes, e.g., InitialNode, MergeNode, etc. . . Note activity diagrams quickly become
large (see 2.2.3.4).

As Fig. 2.9 shows, in fUML, the basic notion for the behavioral semantics is that of an action which
transforms the state of a world. Furthermore, the semantics of fUML can be understood as a labeled
transition systems in which actions are transitions between states (disregarding control flow).
These two characteristics are shared with the action languages from artificial intelligence (BARAI;

GELFOND, 2005)4.

A world is modeled using objects in fUML, therefore, fUML can be called an action language
changing the state of objects. This leads to the LTS shown in Fig. 2.10, in which at top corner the
previous LTS for the dispatcher is shown for comparison(see Fig. 2.2), and at the middle the LTS
with first states for the activity shown in Fig. 2.9.

Two important facts are: (1) the abstraction’s level from the LTSs are completely different
and (2) fUML does not constrain concurrency so a semantics can be defined based on inter-
leaved transitions. The interleaved semantics for concurrency appears in Fig. 2.10 between s1

and s4 because there are two alternatives to reach s4 from s1, one can execute first the read-
ing(ReadStructuralFeatureAction_credit) of the property credit from the received signal and then
the specification of the predefined value 15 (ValueSpecification15 ), or the other way around.

The specification defines four elements of the language: (1) abstract syntax, (2) model library, (3)
execution model, and (4) base semantics ((OMG), 2012a).

4In artificial intelligence, an action language can be represented by: an action description lan-
guage and an action query language. A set of propositions in an action description language de-
scribes the effects of actions on states.
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Figure 2.9 - The activity for the behavior of the Dispatcher from VendingMachine using
fUML and a possible representation using Alf (see Subsection 2.2.3.4).

Figure 2.10 - Part of the LTS for the semantics of the action language fUML modeling the
Dispatcher from VendingMachine.

The abstract syntax, represented by a UML meta-model, is a subset of UML with additional
constraints so a well-formed model is one that meets all constraints imposed on its syntactic
elements by the UML abstract syntax as well as all additional constraints imposed on those elements
by the fUML abstract syntax. These constraints are the equivalent of the static semantics according
to fUML ((OMG), 2012a).
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The model library, represented by a UMLmeta-model, defines the primitive functions (e.g., addition
of reals and binary comparators of reals) and a way to interact with the environment (e.g., how to
read a line from the standard input).

The fUML’s execution model, represented by a UML meta-model, is an interpreter written in
fUML (circular definition). In order to support the interpreter definition, a subset of fUML is se-
lected, which consists of core elements (classes, activities, actions and edges) that together form the
base UML (bUML). However, activity diagrams quickly become large and hard to comprehend (pp.
88; ((OMG), 2012a)) so, instead of using activity diagrams with bUML, the interpreter is defined
as equivalent code in Java. In order to support the interpreter’s definition in Java, a mapping from
Java to UML activity diagrams using bUML is defined.

The base semantics breaks the circular definition of fUML providing a set of axioms that con-
strains an execution. It specifies when particular executions conform to a model defined in
bUML (pp.351; ((OMG), 2012a)) so it covers bUML, furthermore, it is specified in first order
logic based on the process specification language (PSL) (BOCK; GRUNINGER, 2005; NIST, 2013).
PSL provides a way to disambiguate common flow modeling constructs in terms of constraints on
runtime sequences of behavior execution. A desired behavior is specified by constraining which
of the possible executions is allowed. PSL and base semantics are defined using Common Logic
Interchange Format (CLIF) (ISO, 2007).

Table 2.4 shows the list of activities in fUML ((OMG), 2012a) as well as if they are present or not
in bUML, base semantics and SysML ((OMG), 2012c). bUML and base semantics should have a
perfect match, however, ActivityFinalNode is used in bUML and it does not have semantics in the
base semantics (ROMERO et al., 2014b)(see Appendix B ). Moreover, SysML excludes some of the
foundational activities ((OMG), 2012c).

Table 2.5 shows the actions in fUML ((OMG), 2012a) as well as if they are present or not in bUML,
base semantics and SysML ((OMG), 2012c). bUML and base semantics should match perfectly, nev-
ertheless, two actions have defined semantics without being part of bUML, namely AcceptEven-
tAction and ReadIsClassifiedObjectAction (ROMERO et al., 2014b)(see Appendix B ). Regarding
actions, SysML is compliant with fUML ((OMG), 2012c).

Base Semantics
As discussed in the previous subsection, fUML offers an interpreter, which can be extended or
completely replaced, e.g., to address scattered scheduling algorithm (COMBEMALE et al., 2013) or
nondeterminism (BENYAHIA et al., 2010).

The specification states that the conformance of an interpreter would be demonstrated by a formal
proof that it respects all the definitions of the base semantics (pp. 7; ((OMG), 2012a)). In order to
understand how a formal proof could be evaluated for a fUML interpreter, Fig. 2.11 presents the
relationships between abstract syntax, execution model, semantic domain and base semantics.

Considering the package Semantics, the execution model defines the semantic domain (which types
an execution manipulates, e.g., ActivityExecution, Object, Reference), and an interpreter (an algo-
rithm) that maps instances of the abstract syntax into the semantic domain (in fact, part of the
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execution model in fUML). This semantic mapping defines the meaning of a given activity.

In Fig. 2.11, the base semantics depends on the abstract syntax, and is defined to formalize (using
first-order logic) the semantic mapping from the abstract syntax into the semantic domain without
taking into account the particular interpreter offered by the execution model (recall the base
semantics only covers bUML elements). The technique applied to define this formal semantic
mapping is called deep embedding (see Definition 2.2).

Figure 2.11 - Relationships between fUML, bUML and the base semantics.
Source: (ROMERO et al., 2014b).

Table 2.4 - Activities in the bUML, base semantics and SysML.

Node bUML Base semantics SysML level
Intermediate Activities
ActivityFinalNode X × L1
ActivityParameterNode X X L1
ControlFlow X X L1
DecisionNode X X L2
FlowFinalNode × × L2
ForkNode X X L2
InitialNode X X L1
JoinNode × × L2
MergeNode X X L2
ObjectFlow X X L2
Complete Structured Activities
ConditionalNode × × L2
LoopNode × × L2
StructuredActivityNode X X L2
Extra Structured Activities
ExpansionNode X X ×
ExpansionRegion X X ×
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In the embedding technique, the semantic mapping is defined by a set of axioms and inference rules.
Furthermore, a complementary set of inference rules is defined considering the deeply embedded
abstract syntax, i.e., some syntactical patterns are explicitly defined to support the inference rules
of the semantic mapping.

Therefore, the package Formal Semantics defines a set of axioms and inference rules that maps
a formal version of activities, defined using the deeply embedded abstract syntax, into a formal
version of the semantic domain.

A formal representation of the semantic domain is called model by logicians. Indeed, (GRAVES,
2012) recognized that the use of the word model is different in the modeling community and in
the logic community. For the former, model is a representation of the system under consideration
(source), whereas model is a consistent interpretation for a given set of axioms (result) for the

Table 2.5 - Actions in the bUML, base semantics and SysML.

Node bUML Base semantics SysML level
Basic Actions
CallBehaviorAction X X L1
CallOperationAction X X L1
InputPin X X L1
OutputPin X X L1
SendSignalAction X X L1
Intermediate Actions
AddStructuralFeatureValueAction X X L2
ClearAssociationAction × × L2
ClearStructuralFeatureAction X X L2
CreateLinkAction × × L2
CreateObjectAction X X L2
DestroyLinkAction × × L2
DestroyObjectAction × × L2
ReadLinkAction × × L2
ReadSelfAction X X L2
ReadStructuralFeatureValueAction X X L2
RemoveStructuralFeatureValueAction X X L2
TestIdentityAction X X L2
ValueSpecificationAction X X L2
Complete Actions
AcceptEventAction × X L3
ReadExtentAction × × L3
ReadIsClassifiedObjectAction × X L3
ReclassifyObjectAction × × L3
ReduceObjectAction × × L3
StartClassifierBehaviorAction × × L3
StartObjectBehaviorAction X X L3
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second one.

CLIF offers the logic syntax and the base semantics provides a set of axioms and inference rules
so they form a mathematical theory. As envisioned by fUML ((OMG), 2012a), this mathematical
theory should be used to evaluate formal properties of an interpreter. Nonetheless, the same theory
can be used to verify properties of fUML models, embedding these models in the first-order logic
and then applying the theorem proving approach (ROMERO et al., 2014b).

In summary, regarding the definition of a language (see Definition 2.1),
fUML can be characterized as follows. Its syntactics Lsyntactics =
(LconcreteSyntax, LabstractSyntax, LsyntacticMapping, LstaticSemantics) is defined by:

• LconcreteSyntax class diagrams and activity diagrams;

• LabstractSyntax the abstract syntax meta-model provided by the specification;

• LsyntacticMapping : LconcreteSyntax → LabstractSyntax as the diagrams manipulate the
abstract syntax directly, there is no syntactic mapping for fUML;

• LstaticSemantics : LabstractSyntax → {true, false} represented by object constraint lan-
guage (OCL) constraints from the UML abstract syntax meta-model and the fUML
abstract syntax meta-model.

Moreover, fUML has two semantics Lsemantics = (LsemanticDomain, LsemanticMapping). The first
one defining the semantic mapping using the operational method with a language without a well-
defined semantics (fUML itself), therefore, it can be characterized as follows:

• LsemanticDomain represented by the “execution model” meta-model;

• LsemanticMapping : LabstractSyntax → LsemanticDomain defined using bUML and repre-
sented in the “execution model” meta-model by Java code.

The second one defining the semantic mapping using the declarative method with logic (hence,
formal, in the sense that it has the standard mathematical semantics), therefore, it can be charac-
terized as follows:

• LsemanticDomain a non-empty set of objects described by predicates using first-order
logic, e.g., (form:property-value o p v f);

• LsemanticMapping : LabstractSyntax → LsemanticDomain represented by axioms and in-
ference rules based on an embedded abstract syntax (deeeply embedded) and on the
semantic domain (embedded), which constrain valid executions of activities defined by
bUML.

Model of Computation
Concerning the MoC provided by UML, one basic premise from this modeling language is that
all behaviors are ultimately caused by actions executed by active objects ((OMG), 2011b). This
establishes concurrent processes (active objects) but it does not define a specific MoC because all
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BehavioralFeatures (e.g., Operations and Receptions) in UML allow three types of concurrency:
sequential, guarded, and concurrent. Therefore, the semantics is unconstrained, which supports
heterogeneous MoCs. In fact, it is one of the goals of the specification.

fUML constrains the concurrency for all BehavioralFeatures to the sequential type. As a result,
the sole mechanism for asynchronous invocation in fUML is sending signals (SendSignalAction)
to another active objects ((OMG), 2012a). Furthermore, the sending’s action is not blocking,
i.e., an object sends a signal and continues its execution. It does not wait for a response or
an acknowledgment, and then it is called nonblocking write. In contrast, the reception’s action
(AcceptEventAction) is blocking, i.e., one running computation is blocked when it expects to
receive a determined signal, and then it is called blocking read. Moreover, the received signals
are stored in an unbounded event pool for each active object, which is a FIFO (first-in first-out)
in the fUML standard execution model. Consequently, the fUML standard execution model is
characterized by concurrent processes (active objects) communicating with each other through
unidirectional unbounded FIFOs, on which writings on the event pool are nonblocking, and
readings from the event pool are blocking.

These fUML’s characteristics are what the Kahn process networks have (LEE; SANGIOVANNI-

VINCENTELLI, 1998). However, fUML standard execution model defines that signals coming from
different active objects should be stored in the same event pool. Allowing more than one process to
write in an event pool, the resulting process network is neither deterministic nor a Kahn Process
Network (ROMERO et al., 2013b).

Despite the nondeterminism of fUML MoC, it is designed to support a variety of different MoCs.
This is pursued using two techniques: (1) defining explicit variation points, which are: event dis-
patching scheduling (used in the inter-object communication) and polymorphic operation dis-
patching; (2) leaving some semantics elements unconstrained, namely timing, concurrency and
inter-object communication.
Remark 2.1 (Asynchronous versus synchronous communication). Here, the asynchronous term is
interpreted as defined by UML “the caller proceeds immediately and does not expect a return
value”, while the term synchronous means that “the caller waits for completion of the invoked
behavior” (pp. 250; ((OMG), 2011b)). In this sense, these terms do not comprehend any defini-
tion about the relationship between signals emitted, only about the invocation from the caller to
the callee. The terms do not have the same meaning concerning MoCs, for which a synchronous
MoC is one on which all signals are synchronized using a notion of a totally ordered time (see
Subsection 2.2.2).

2.2.3.4 Alf

Action language for foundational UML (Alf) provides a textual concrete syntax for fUML ((OMG),
2013a). It is a language that includes primitive types (including real numbers), primitive actions
(e.g., assignments), and control flow mechanisms, among others. It is object-oriented, and it is an
imperative language (like C and Java). Furthermore, the execution semantics for Alf is given by
mapping the Alf abstract syntax to the abstract syntax of fUML ((OMG), 2013a).
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Remark 2.2 (Remark - The usage of possible Alf representations.). As activity diagrams become
large even for small examples, through this thesis possible Alf representations are used in order to
facilitate the understanding of a given activity diagram or to compare the code with other textual
programming languages. However, the mapping from Alf abstract syntax into the fUML abstract
syntax (defined in the Alf specification ((OMG), 2013a)) and the other way around are not strictly
followed in this thesis ((OMG), 2013a). The reasons are mainly the following ones: (1) this thesis
deals with the language fUML and then the diagrams are the concrete syntax, however, due to the
reasons above presented the Alf code is seen as a tool to help the understanding the diagrams and
their semantics; (2) the mapping from Alf into fUML demands elements that are outside the scope
of this thesis. Moreover, regarding the synchronous fUML (see Chapter 4), the Alf representations
use the annotations defined in (ROMERO et al., 2013a; ROMERO et al., 2013b).

2.2.3.5 MARTE

The UML profile for modeling and analysis of real-time embedded systems (MARTE) is a profile
dedicated to real-time systems modeling because time should not be considered as an external
factor: time and behavior are strongly coupled (pp. 57; ((OMG), 2011a)). Therefore, MARTE defines
a time model to provide a generic timed interpretation of UML models focused on real-time systems.
The goal is to define a standard semantics avoiding that different tools give different semantics for
the same domain. The time model provides mechanisms to specify clocks and their relationships
can be specified using Clock Constraint Specification Language (CCSL). CCSL is a non-normative
annex of MARTE (pp. 488; ((OMG), 2011a)).

In MARTE, a clock does not tick, whereas gives access to a TimeBase. A TimeBase is an ordered
set of Instants. A MultipleTimeBase is composed of one or many TimeBases.

An important clock called idealClk is provided by MARTE. It represents the usual notion of
“physical time” measured in seconds with perfect precision and accuracy. In addition, there are
two types of clock (ClockType): chronometric and logical. Chronometric clocks are defined by the
discretization of idealClk. In fact, MARTE only consider countable sets, therefore, chronometric
clocks can be indexed by rational numbers and logical ones by positive integers.

Definition 2.10 (Logical Clocks). The stereotype Clock can be applied on SignalEvents defin-
ing a logical clock, and then each occurrence of the signal event (caused by a reception in an
AcceptEventAction) is denotated by a new Instant in the TimeBase associated with the Clock.
In this case, logical clocks match the definition of clocks in the synchronous languages (see Def-
inition 2.9) perfectly. Furthermore, logical clocks have a property currentTime that can be used
to formalize the relationship between a clock in synchronous languages and a clock in MARTE
regarding SignalEvents.

currentT ime : T → N

currentT ime(ti) :=
i∑

j=1
if clock(tj , vj) = ⊥ then 0 else if clock(tj , vj) then 1 else 0 (2.4)

CCSL is used to define relations between existent clocks or to derive clocks from preexisted
clocks using expressions (in the spirit of the declarative synchronous language Signal - see Subsec-
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tion 2.2.2.3). Regarding real-time systems, an usual expression is discretizedBy, which is used to
discretize the idealClk. For example, the expression Clock c is idealClk discretizedBy 0.01 defines
a derived clock, for which the distance between two accessible successive instants is 0.01 seconds.
Periodicity and Sporadicity are described by the relations isPeriodicOn and isSporadicOn. For
example, the relation c isPeriodicOn physicalClk period 100 establishes that the distance of two
accessible successive instants of c is the occurrence of 100 instants in physicalClk. Subclocking is
denoted by isCoarserThan so the relation c1 isCoarserThan reactionClk determines that c1 is a
subclock of reactionClk.

In addition to the time model, MARTE defines other profile packages, one of them is the high-
level application modeling (HLAM). HLAM provides high-level modeling concepts to deal with
real-time features, e.g., RtUnit, which has the core semantics from active classes enhanced with
additional descriptions. Furthermore, HLAM formalizes an asynchronous model of computation
applicable for event-based approaches to real-time. Other models of computation are not explicitly
addressed (pp. 182;((OMG), 2011a)).

For an introduction to MARTE ((OMG), 2011a), see (ANDRÉ et al., 2007).

2.2.4 Abstract State Machines

Abstract State Machine (ASM) has shown to be a formal method suitable for describing the
operational semantics of modeling/programming languages, e.g., Java, C/C++, SpecC, VHDL,
Prolog, . . . (BÖRGER; STÄRK, 2003; GARGANTINI et al., 2009). Moreover, it has been argued that
ASM, an operational method, allows integration of declarative methods for semantics definition,
e.g., through the logic of ASMs (pp. 300; (BÖRGER; STÄRK, 2003)).

ASM combines a formal notion for two concepts: abstract states and transition systems (BÖRGER;

STÄRK, 2003).

Abstract states are algebraic structures, for which data come as abstract objects (one for each cate-
gory of data), i.e., as elements of sets, with basic operations (functions). An ASM transition system
is an LTS, which is computed running steps. An ASM step consists in executing synchronously
all updates of all transition rules whose guard is true in a given state, when these updates are
consistent. As in synchronous languages (see Subsection 2.2.2), the synchronousness supports the
abstraction of irrelevant sequentialities and the reduction of the state space.

An update changes or defines a value for a given function. A set of updates is called consistent if
it does not contain pairs of updates for the same function with the same arguments and different
values.

A basic transition rule has the form of guarded updates: if Condition then Updates. In addition, an
appropriate rule constructor allows unrestricted synchronous parallelism forall x in X do Rule,
where x is an element from the set X, and Rule is a transition rule. The basic ASMs defined using
these basic rules are extended introducing operators from the so-called Turbo ASM (BÖRGER;

STÄRK, 2003). The operators introduced are: iteration of ASMs - iterate, it admits two natural
stop situations either when the update set becomes empty or when it becomes inconsistent, and
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sequential composition of ASMs - seq, it enables the sequential execution of transition rules.
Furthermore, ASM provides a generalization on which multiple agents interact concurrently in a
synchronous way, and the operator for these rules is called multiDeterm.

Regarding the abstract state, in ASMs, there is a major distinction between static functions and
dynamic functions. While static functions never change during a run, the dynamic ones change as
a consequence of updates performed by transition rules. One important concept is the expansion of
the domains, which means new elements are created during a run from an ASM. The new elements
come from a set reserve, and its role is to provide new elements whenever needed.

Finally, an ASM is defined by four fundamental pieces: signature, body, main rule and initial rule.
Signature determines the notion of state containing domains and dynamic functions. The boby
consists of static functions and rules. The unique main rule is a transition rule, which represents
the starting point of the machine and it does not have parameters. Lastly, the initial rule determines
the valid initial states of a given ASM.

A complete mathematical definition of the ASMs can be found in Börger and Stark (BÖRGER;

STÄRK, 2003). Furthermore, there is a large number of dialects for ASM. In this thesis, it is used
the dialect defined by AsmGofer (SCHMID, 2001), which is based on the functional programming
language Gofer (“Good For Equational Reasoning” is a subset of Haskell – the de-facto standard
for strongly typed lazy functional programming languages).
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2.3 Support for Hybrid Modeling

This section covers preliminaries related to hybrid modeling. Through this section, a classical
example from the hybrid community - bouncing ball, is used to illustrate the hybrid modeling.

Example 10 (BouncingBall). The bouncing ball system (GOEBEL et al., 2009; KURZHANSKI;

VARAIYA, 2009; BAUER, 2012; POUZET et al., 2014) models a ball as a point of mass with some
potential energy due to its position, velocity, mass and the earth (inertial reference frame) gravity
field. The system describes: (1 - continuous behavior) the falling and rising movement, which is
defined by the Newton’s second law (one-dimensional case); and, (2 - discrete behavior) the hitting
of the ball on the floor, in which a fraction of kinetic energy is lost, expressed by a loss of the
velocity (parametrized by the restitution coefficient, restCoef ∈ R), and the direction of velocity
is changed. In the case of restCoef ∈ (0, 1), this hybrid model exhibits the Zeno behavior where
physical time does not diverge.
From here on, it is assumed the following conventions: forces acting in the downward direction are
negative forces while the forces that act in the upward direction are positive. Likewise, an object
moving downward (i.e., a falling object) will have a negative velocity.
In this thesis, all instances of this example assume the following initial conditions and pa-
rameters: position = 10, velocity = 0, mass = 1, restCoef = 0.5 and g = −9.81.

2.3.1 Mathematical Modeling

A continuous dynamical system consisting of a finite number of lumped elements may be de-
scribed by ordinary differential equations (ODEs) in which time t ∈ R is the independent
variable (OGATA, 2009; ÅSTRÖM; WITTENMARK, 2011), hence:

ẋ(t) = f(x(t), t) (2.5)

where x(t) ∈ Rn. The function f : Rn → Rn is called a direction field on Rn. As this thesis does
not deal with the analysis of these functions, it is assumed existence and uniqueness of the solution
for the initial value problem:

ẋ(t) = f(x(t), t) x(0) = x0 (2.6)

More generally, an implicit system of ordinary differential equations of order one takes the implicit
form:

F (ẋ(t), x(t), t) = 0 (2.7)

where F is a vector of n functions f that involve subsets of Rn and their first derivatives. A system
of ODEs is called time-invariant if its direction field does not depend explicitly on time (OGATA,
2009; ÅSTRÖM; WITTENMARK, 2011).

Example 11 (BouncingBall - Mathematical Modeling.). Taking into account the initial conditions
and parameters stated previously, the continuous behavior of the bouncing ball system can be
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modeled as follows:

x =
[
position

velocity

]
, x ∈ R2 (2.8a)

f1(t) := ẋ1 = x2 (2.8b)

f2(t) := ẋ2 = −9.81 (2.8c)

x1(0) = 10 (2.8d)

x2(0) = 0 (2.8e)

The domain of validity of the system is defined by: mass ∈ R>0. In addition, note this model
lacks of the discrete behavior modeling.

In order to facilitate the modeling task as well as to support reuse of models, one can use differ-
ential algebraic equations (DAEs) to model reusable sets of equations and systems composed
of these reusable sets. DAEs support algebraic equations in addition to ODEs. Hence, an implicit
system of differential algebraic equations is:

F (ẋ(t), x(t), w(t), t) = 0 (2.9)

where w is the vector of algebraic variables for which no derivatives are present.

Example 12 (BouncingBall - Reusing a Mathematical Model.). One wants to define a reusable
set of equations for an entity called Mass, which can be done by the following DAE system.

x =
[
position

velocity

]
, x ∈ R2 (2.10a)

f1(t) := ẋ1 = x2 (2.10b)

f2(t) := ẋ2 = sf / m (2.10c)

where for the entity Mass: mass > 0, mass ∈ R is its mass, and sf ∈ R is the sum of all forces
actuating on it.

This reusable system of DAEs must be complemented to define the continuous behavior of the
bouncing ball system as follows:

f3(t) := sf − (−9.81) = 0 (2.11a)

x1(0) = 10 (2.11b)

x2(0) = 0 (2.11c)

The Newton’s third law, the sum of all forces acting at a specific point is zero, is 2.11a. This
equation determines only one force, with value 9.81 and in a downward direction, is actuating on
the Mass. This is an instance of the rule sum-to-zero applied here, and in Modelica (FRITZSON,
2004; MODELICA, 2012), when energy flows together at a certain point, without storing at the
point. Again, note this model lacks of the discrete behavior modeling.
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Discrete behaviors are modeled using conditional functions, which may be activated at certain
points or during some interval of points. These conditional functions may change instantaneously
the state when a predicate holds, e.g., a variable x (current value) assumes a new value x′ (next
value). The DAEs augmented with conditional functions are called hybrid DAEs (FRITZSON,
2004; MODELICA, 2012).

Example 13 (BouncingBall - Hybrid Mathematical Model.). Until here, the set of equations 2.10
and 2.11 defines the continuous behavior of the system using DAEs. The following equation de-
scribes the discrete behavior related to the bounce of the ball.

f4(t) :=
{

x′2 = −x2 × .5 if x1 = 0
x′2 = x2 otherwise

(2.12)

Therefore, the complete hybrid DAE for the bouncing ball system, considering reuse of equations,
is composed of the equations 2.10, 2.11 and 2.12, whereas, considering non-reusable equations, the
system is composed of the equations 2.8 and 2.12. Note the complete definition of a conditional
function activated only at certain points, demands a otherwise, which is directly related to the
stuttering transition to be introduced later in this chapter.

The introduction of conditional functions in the DAEs generates three major issues: discontinuity,
discrete event detection, and complementary semantics.

Discontinuity poses challenges for the analysis (this thesis assumes existence and uniqueness of
a solution before and after an evaluation of a conditional function).

Discrete event detection or identification of roots generates the zero-crossing problem because
the conditions are often described by inequalities (pp. 88; 8.5 Event and Synchronization; (MODEL-

ICA, 2012)) (pp. 31; Discrete Event Detection; (BAUER, 2012)) (BENVENISTE et al., 2012). Usually,
the analytical function for ODEs and DAEs are not available so the process of detection is done by
numerical methods, which are susceptible to error due to the step size and/or integration method.
In the case of conditions described by equalities, the zero-touching problem emerges.

A complementary semantics for the standard mathematical semantics for DAEs is
needed to deal with hybrid DAEs, e.g., when the equation 2.12 is enabled it changes the state,
however, this change does not disable the equation so a naive semantics can iterate forever only
in this equation. Moreover, one conditional function can enable another conditional function that
can enable other conditional function and so on and so forth. This is called event iteration in
Modelica (pp. 30; (MODELICA, 2012)) or cascades of zero-crossings in Zélus (pp. 3; (BENVENISTE

et al., 2012)), and it also demands a thorough semantics.

Roughly, a solution of this type of hybrid DAEs consists of three steps (possibly performed many
times), first the determination of the time t where the conditional functions are enabled (optional),
second the search for consistent initial values at t, and then the solving of the initial value problem.
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2.3.2 Hybrid Automaton

There are innumerous definitions of the concept of hybrid automaton (HENZINGER, 1996; GOEBEL

et al., 2009; BAUER, 2012) and a large number of variations, e.g., Hybrid I/O automaton (LYNCH

et al., 2003). However, the main characteristic of a hybrid automaton is the explicit partition of
the system’s state space into a continuous state and a discrete state. The continuous state space
is modeled by points in Rn, whereas the discrete state space is modeled by the vertices of a graph
(control modes). Likewise, the continuous behavior is often modeled using ODEs associated with
a control mode, and the discrete behavior is modeled by edges of the graph. Frequently, the
geometry of the continuous and discrete state spaces produces the rich dynamical phenomena in
a system rather than the characteristics of the ODEs or the graph (GOEBEL et al., 2009).

Definition 2.11 (Syntax of hybrid automaton (HENZINGER, 1996)). A hybrid automaton5 H is
a tuple H = (X,V,E, L) with the following components:

• X : a finite set of variables X ∈ Rn. Ẋ is the set of first derivatives of the variables,
while X ′ is the set of values at the conclusion of a discrete transition.

• V : a finite set of control modes, where each v ∈ V has the form v =
(initv, invv, f lowv).

– initv : a predicate whose free variables are from X, which determines the initial
conditions for the control mode.

– invv : a predicate whose free variables are from X that defines the domain of
validity of the control mode.

– flowv : a finite set of ODEs whose free variables are from X ∪ Ẋ.

• E: a finite set of discrete transitions between control modes, where each e ∈ E has
the form e = (v, jumpe, resete, v′).

– v, v′ ∈ V .

– jumpe : a predicate whose free variables are from X, which defines the condition
for the firing of resete and perhaps move to another control mode.

– resete : a set of equations whose free variables are from X ∪ X ′, which defines
the instantaneous change of the state. A special equation, iden, is the identity
equation, which do not change the state.

A stuttering transition (v, true, iden, v) shall exist for each v ∈ V (LAMPORT, 1994).

• L: is a finite set of labels, where a function label : E → L assigns for each e a l.

Note (V,E) is a finite directed multigraph, further, H it is always time-invariant because it is
impossible to use time in the ODEs defined in flowe.

5The solely change to the original definition of (HENZINGER, 1996) is the extraction of the reset
function from the jump predicate (just in an attempt to make it clearer), and consequently, jump
cannot have free variables from X ′.
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Example 14 (BouncingBall as a hybrid automaton.). The hybrid automaton of Fig. 2.12 models
the BouncingBall example. Its formal version HBouncingBall is defined as follows (omitting the
stuttering transition):

variables :X = {x1, x2 ∈ R}, where x1, x2 are the position and the velocity, respectively.

control modes :V = {(init1, inv1, f low1)}

initial conditions :init1 := x1 = 10 ∧ x2 = 0

location invariants :inv1 := x1 >= 0

flow :flow1 := ẋ1 = x2, ẋ2 = −9.81

discrete transitions :E = {((init1, inv1, f low1), jump1, reset1, (init1, inv1, f low1))}

jumps :jump1 := x1 = 0 ∧ x2 < 0

resets :reset1 := x′2 = −x2 ∗ 0.5

labels :L = {l1}, label(((init1, inv1, f low1), jump1, reset1, (init1, inv1, f low1))) = l1

Due to the lack of the complementary semantics to evaluate the set of equations 2.8 and 2.12 (see
Subsection 2.3.1), it is not possible to compare this hybrid automaton with them. However, it is
clear that init1 and flow1 are equally described in Equation 2.8 as well as reset1 in Equation 2.12.
Nonetheless, the predicate jump1 is bigger than the predicate in Equation 2.12 since it is a self-loop
(a transition to itself) and this kind of jump shall disable itself (except for stuttering transition)
according to the semantics defined in the sequel.

Figure 2.12 - A hybrid automaton for the BouncingBall.

Although it is common to find variations of the model presented in Fig. 2.12 using hybrid automata,
e.g., (pp. 12; (BAUER, 2012)), it is rare the evaluation of equations’s reuse (as it is discussed in
Subsection 2.3.1). The usual notion of reuse is based on an entire automaton, then reuse means
composition of automata (LYNCH et al., 2003; BAUER, 2012). In addition, elaborated versions of the
theory of hybrid automata include the notion of stepwise refinement (LYNCH et al., 2003) based on
traces, however, this advanced notions are not directly used in this thesis.

Given the syntax defined in Definition 2.11, the semantics of hybrid automata is abstracted by
fully discrete LTSs (pp. 3; (HENZINGER, 1996)) (see Definition 2.5). Two LTSs can be defined:
timed transition systems and time-abstract transition systems. The first abstracts flows by
transitions labels so, in this case, a transition label is defined by the amount of physical time
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passed in the flow, while the former abstracts the amount of physical time passed in the flow by a
stuttering transition (HENZINGER, 1996).

Definition 2.12 (Semantics of timed transition systems (HENZINGER, 1996)). Recall a LTS is
a tuple LTS = (S, S0, L, T ) so a timed transition system for a given hybrid automaton H =
(X,V,E, LH) is the LTStH with the following components:

• S ⊆ V ×Rn such that (v, x) ∈ S if and only if the invv holds for x.

• S0 ⊆ V × Rn such that (v, x) ∈ S0 if and only if the invv holds for x and the initv
holds for x.

• L = LH ∪ R≥0

• ((v, x), l, (v′, x′)) ∈ T ⇔



∃ e : (ve, jumpe, resete, v′e) ∈ E | v = ve ∧ v′ = v′e∧
JjumpeK(v,x) = true ∧ resete(x) = x′ ∧ Jinvv′K(v′,x′) = true

∧ label(e) = l

∨
∃ r = l ∈ R≥0 | v = v′ ∧ flowv(0) = x ∧ flowv(r) = x′∧

∀δ ∈ (0, r) JinvvK(v,δ) = true

The semantics of LTStH is defined by two operational rules: discrete step semantics and continuous
step semantics.

Discrete step semantics, when l ∈ LH , given a state (v, x) ∈ S and a transition t :
((v, x), l, (v′, x′)) ∈ T then the transition label l leads to (v′, x′). It does not consume physical
time (an instantaneous step), furthermore, the stuttering transitions are evaluated using this rule.

Continuous step semantics, when l /∈ LH , given a state (v, x) ∈ S and a transition
t : ((v, x), l, (v, x′)) ∈ T then the transition label l leads to (v, x′) with a consumption of physical
time l. This transition solves the initial value problem with x as initial conditions and flowv as a
set of ODEs, and then compute the solution at l.

A hybrid automaton H is called consistent if and only if its LTStH diverges in time. This is a
liveness assumption that rules out ill-formed hybrid automata and hybrid automata that exhibit the
so-called Zeno behavior in which the physical time increment becomes infinitesimal (HENZINGER,
1996; GOEBEL et al., 2009).

Example 15 (Semantics of BouncingBall as a hybrid automaton.). Using the above semantics, the
hybrid automaton HBouncingBall shown in Fig. 2.12 may produce the following LTStBouncingBall.

The LTStBouncingBall, which is depicted in Fig. 2.13, can be roughly explained as follows. (1) It
starts at s0 where init1 holds. (2) The liveness assumption acted as a driving “force”, due to the
fact that time should evolve, and a continuous step was done for flow1 and init1 respecting the
inv1, which led to the transition labeled as “≈ 1.43” and s1 representing that 1.43 seconds was
passed. (3) Again, due to the liveness assumption, the only possibly way to evolve physical time
was to do a discrete step with the transition label l1 which led to s2, indeed an instantaneous step.
(4) s2 respected inv1 and then a new continuous step could be performed, and so on and so forth.
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Figure 2.13 - Part of the LTSt
BouncingBall of the BouncingBall hybrid automaton.

Due to the restCoef = 0.5 used in the hybrid automaton HBouncingBall, this automaton is not
consistent because LTStBouncingBall has an infinite execution that does not diverge in time.

Definition 2.13 (Composition of hybrid automata (HENZINGER, 1996)). Let H1 and H2 be two
hybrid automata, and LTSt1 and LTSt2 be their respective timed transition systems. The semantics
of the parallel composition H1 || H2 is defined by the parallel composition of labeled transition
systems LTStH1||H2

:= LTSt1 || LTSt2 (see Subsection 2.2.1).

Example 16 (Composition of BouncingBalls.). Given two hybrid automata shown in Fig. 2.14,
where the left one is the previous show HBouncingBall, and the right one is HBouncingBall2.
HBouncingBall2 has two differences compared to HBouncingBall: (a) the initial condition is x1 = 100
and (b) the label for the discrete transition is l2. (b) is a necessary condition for a “reason-
able” composition, otherwise, the balls synchronize when one of them hits the floor. The resulting
LTStHBouncingBall||HBouncingBall2

may have the same prefix shown in Fig. 2.13 for LTStBouncingBall.

Figure 2.14 - The parallel composition of BouncingBall hybrid automata.

The reason for this fact is that by definition of the semantics of timed transition systems and
the composition of LTSs (see Subsection 2.2.1) two timed transitions systems LTSt1 and LTSt2
with LH1 ∩ LH2 = ∅ when composed LTSt1 || LTSt2 exhibits the original label transitions LH1 ∪
LH2 and the lower values for transitions l1,i, l2,i ∈ R≥0,∀i ∈ N>0 that after the composition
are lLTSt

1||LTSt
2,i
≤ l1,i and lLTSt

1||LTSt
2,i
≤ l2,i. This fact can be defined by the trace refinement

relationship, where TR(LTSt1 || LTSt2) |LTSt
i
is a trace refinement of the set TR(LTSti ),∀i ∈ {1, 2}.
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The classical semantics does not define when an enabled discrete step should be performed
so it defines a nondeterministic semantics, in which all possible combinations of discrete and
continuous steps determine the states of a LTSt. This semantics is convenient for verification
purposes, however, for modeling purpose one way to go in the determinism direction is to define
an extended semantics where discrete steps have precedence over continuous steps. This extended
semantics transforms every transition label l ∈ LH in an urgent discrete transition (see (BAUER,
2012)) so it is called urgent semantics of timed transition systems. Furthermore, due to the
precedence of discrete transitions over continuous evolutions, the zero-crossing problem (based on
inequalities) or zero-touching problem (based on equalities) are promoted to the keystone of the
semantics since, in this sense, jumpe and resete form a conditional functional, as discussed before
(see Subsection 2.3.1), that drives the continuous evolutions.

Definition 2.14 (Urgent semantics of timed transition systems). The semantics of LTStuH is
defined by the operational rules defined for LTStH plus the following one:

Precedence of discrete steps, given a state (v, x) ∈ S, at the physical time min(δ) ∈ (0,∞]
such that ∃t : ((v, x), l, (v′, x′)) ∈ T, v 6= v′ the transition label l shall be evaluated according to
the discrete step semantics.

Note the urgent semantics conflicts with the “liveness assumption” in the sense that a discrete
transition that is repeatedly enabled can prevent the divergence in time. However, it fits perfectly
for an operational semantics defined by the alternation of run-to-completion of discrete actions and
continuous evolution. Moreover, it is possible to define an abstract LTS for the urgent semantics of
timed transition systems as shown in Fig. 2.156. Indeed, taking into account the interaction between
discrete and continuous behaviors, Fig. 2.15 characterizes the operational semantics of the follow-
ing languages: Modelica (MODELICA, 2012), Hybrid Quartz (BAUER, 2012) and Zélus (BOURKE;

POUZET, 2013) (see Section 3.2 for a detailed discussion).

Figure 2.15 - An abstract LTS for the urgent semantics of timed transition systems.

2.3.3 Modelica Association Specification

Modelica Association, a non-profit organization, has been working to develop the open specification
for Modelica language and the open source Modelica standard library. Modelica is an equation-

6The initial state depends on the presence or not of enabled discrete transitions in the initial
state of the evaluated LTStu.
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based object-oriented (EOO) language, in which declarative models define set(s) of variables de-
pendent on time, and set(s) of relations (i.e., equations) between these variables(MODELICA, 2012).
This declarative approach for the equations enables the so-called acausal model, which is one of
the pillars of the effective library development in Modelica.

An acausal model is a continuous-time behavior in form of an implicit DAE (see Subsection 2.3.1).
It is an abstraction, i.e., it extracts the essence of the system (equations) removing the necessity
to define how the DAE should be solved. The task of solving the DAE is transferred to a tool (e.g.,
a simulator), which must undertake a substantial amount of symbolic processing. This processing
includes the definition of a causality to be applied by a numerical solver (ZIMMER, 2013). In
particular, a fundamental key of implicit DAEs is that they can be reused without changes, while
explicit ODEs are hardly reused (FRITZSON, 2004). See (ROMERO; SOUZA, 2012) for a discussion
about DAEs and reuse.

While the analysis and numerical solving of implicit DAEs are well understood, hybrid DAEs
pose a number of unique challenges (BARTON, 2000). In addition to the issues described in
Subsection 2.3.1, fundamental issues emerge about initialization and state transfer. Initial values
of the DAEs need to be determined on each discrete transition (conditional functions that change
system’s state) from one mode to another considering the adequate state transfer (BARTON,
2000).

Example 17 (BouncingBall modeled using Modelica.). Fig. 2.16 shows, at top, the model Bounc-
ingBallEquations that uses equations to define the continuous behavior as well as a conditional
equation (when equation in Modelica).

Moreover, Fig. 2.16 shows the model BouncingMassLibrary using two notations: (1) at middle,
graphical notation defined using available components in the Modelica::Mechanics::Translational
library; (2) at bottom, the textual representation adding the conditional equation previously de-
fined.

Note both models define the domain of validity of the equations using an assertion assert. These
models are defined and tested using an open-source implementation of Modelica, OpenModel-
ica ((OSMC), 2014).

Regarding the definition of a language (see Subsection 2.1), Mod-
elica can be characterized as follows. Its syntactics Lsyntactics =
(LconcreteSyntax, LabstractSyntax, LsyntacticMapping, LstaticSemantics) is defined by:

• LconcreteSyntax the “Appendix B - Modelica Concrete Syntax” in the Modelica specifi-
cation (MODELICA, 2012), using an extension of BNF as notation;

• LabstractSyntax Modelica does not standardize an abstract syntax (pp. 47; ((OMG),
2012b));

• LsyntacticMapping : LconcreteSyntax → LabstractSyntax Modelica does not standardize an
syntactic mapping (pp. 47; ((OMG), 2012b));

• LstaticSemantics : LabstractSyntax → {true, false} Modelica has constraints defined
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model BouncingBallEquations
Real v;
Real p(start = 10);
constant Real g = -9.81;
parameter Real m = 10;

equation
der(v) = g;
der(p) = v;
assert(m > 0, "out of domain of validity");
when p <= 0 then

reinit(v, -v * 0.5);
end when;

end BouncingBallEquations;

model BouncingMassLibrary
Modelica.Mechanics.Translational.Components.Mass mass(m = 1, s(start = 10));
Modelica.Mechanics.Translational.Sources.Force gravitationalForce;
Modelica.Blocks.Sources.Constant gravitationalAcceleration(k = -9.81);
Modelica.Mechanics.Translational.Interfaces.Flange_a flange_a;
Modelica.Mechanics.Translational.Interfaces.Flange_b flange_b;
Modelica.Mechanics.Translational.Sensors.PositionSensor positionsensor;
Modelica.Mechanics.Translational.Sensors.SpeedSensor speedsensor;
Modelica.Blocks.Interfaces.RealOutput s;
Modelica.Blocks.Interfaces.RealOutput v;

equation
connect(mass.flange_b,speedsensor.flange);
connect(mass.flange_b,positionsensor.flange);
connect(speedsensor.v,v);
connect(positionsensor.s,s);
connect(mass.flange_a,flange_a);
connect(mass.flange_b,flange_b);
connect(gravitationalAcceleration.y,gravitationalForce.f);
connect(gravitationalForce.flange,mass.flange_a);
assert(mass.m > 0, "out of domain of validity");
when s <= 0 then

reinit(mass.v, -mass.v * 0.5);
end when;

end BouncingMassLibrary;

Figure 2.16 - BouncingBall modeled using Modelica (textual equations, graphical using
libraries, textual using libraries).
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by plain text in the specification, e.g., component declaration static semantics
(pp.34; (MODELICA, 2012)).

Moreover, the semantics Lsemantics = (LsemanticDomain, LsemanticMapping) of Modelica can be
characterized as follows:

• LsemanticDomain Modelica does not standardize a semantic domain;

• LsemanticMapping : LabstractSyntax → LsemanticDomain Modelica does not standardize
the semantic mapping, however, the general idea is presented in the “Appendix C -
Modelica DAE Representation” (pp. 252;(MODELICA, 2012)) using plain text, in addi-
tion, the fundamental premises are stated in Section “Synchronous Data-flow Principle
and Single Assignment Rule” (pp. 88;(MODELICA, 2012)).

The fundamental premises that constrain the semantics of Modelica are (pp. 88;(MODELICA, 2012)):

• All variables keep their actual values until these values are explicitly changed. Variable
values can be accessed at any time instant during continuous integration and at event
instants;

• At every time instant, during continuous integration and at event instants, the active
equations express relations between variables which have to be fulfilled concurrently;

• Synchronous hypothesis (see Subsection 2.2.2);

• The total number of equations is identical to the total “number of unknown variables”,
single assignment rule.

The first two principles have as goal to define how the discrete-behavior interprets the continuous-
behavior and vice versa, moreover, the second one defines that concurrent behavior is represented
by concurrently active equations (pp. 411; (FRITZSON, 2004)).

Model of Computation

In order to explore informally the model of computation of Modelica, it is needed to define roughly
the domain of the semantic mapping. The semantic mapping’s domain of Modelica is defined by a
flat Modelica model, which is computed by the expansion and elaboration of classes, parametriza-
tion of the classes and the variables, generation of the equations for connection between classes,
and, mapping discrete behavior in some sort of equations. In other words, the structure of the
model is replaced by a set of equations (flat) covering all relations between the variables.

Now, note concurrent behavior is represented by equations (second premise of the Modelica’s se-
mantics) that are all at the same level (flat Modelica model), therefore, every equation is a process.
Moreover, Modelica assumes the synchronous hypothesis but it does not apply the constructive
semantics (see Subsection 2.2.2), which guarantees in the synchronous languages a series of bene-
fits including determinism. In spite of that, (FRITZSON, 2004) argued that Modelica prescribes a
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deterministic processing of discrete behavior (pp. 657; (FRITZSON, 2004)), which is pursued by de-
termining that events are sequentially processed using an ordered event queue where the elements
are added in accordance with the data dependencies.

The section “Appendix C - Modelica DAE Representation” (pp. 252; (MODELICA, 2012)) from
Modelica specification presents the basic idea behind a model of computation for Modelica, which
is depicted in Fig. 2.17.

Figure 2.17 - The abstract LTS defined by the Modelica’s MoC.
Source: Adapted from (pp. 252; (MODELICA, 2012)).

Fig. 2.17 can be explained as follows considering a flat Modelica Model: (1) the DAEs are nu-
merically solved considering discrete variables as constants, (2) the possible events (zero-crossings)
are monitored, when an event is detected the semantics freezes the DAEs solving, (3) at an event
instant (physical time is frozen), the set of algebraic equations is solved, (4) if another event is
detected the semantics iterates until there are no events, and, finally, (5) it restarts the numerical
solving using the step (1) until a pre-defined time horizon.

Note Modelica shares the same basic model of execution from the urgent semantics of timed
transitions systems (see Subsection 2.14), i.e., it alternates between run-to-completion of discrete
actions (without physical time consumption) and continuous evolutions, which are halted by event
detections (indeed, zero-crossings).

2.4 Control

Taking into account a continuous dynamical system described by ODEs at which time t ∈ R
is the independent variable (see Subsection 2.3.1), the interaction of a discrete controller (to be
implemented by computers) and a continuous plant can be analyzed considering Fig. 2.18 7.

The continuous plant may be described by ODEs at which time t ∈ R is the independent vari-
able (see Subsection 2.3.1), therefore, the output of the plant y(t) is a continuous-valued signal. A
converter analog-to-digital converts the output into a discrete-valued signal y(tk). The conversion
is done at sampling physical times tk, where k ∈ N>0 is a logical time provided by the clock. The
discrete-valued signal can be seen as a stream of values {y(tk)}. The discrete-valued signal y(tk) is
the input for the controller that computes at a logical time k the controller output u(tk), hence,

7Disregarding disturbances as well as references, and assuming a closed-loop.
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Figure 2.18 - Sampled-data systems: discrete-time systems versus continuous-time sys-
tems.
Source: Adapted from (ÅSTRÖM; WITTENMARK, 2011).

u(tk) is converted by a digital-to-analog converter into a continuous-valued signal u(t), which is the
input at t for the plant closing the feedback loop (OGATA, 2009; ÅSTRÖM; WITTENMARK, 2011).

A model of a system containing continuous-valued signals and discrete-valued signals, defined by
sampling, has traditionally been called sampled-data system (ÅSTRÖM; WITTENMARK, 2011). The
mixture of different types of signals is usually avoided assuming two different viewpoints (ALBERT,
2004; ÅSTRÖM; WITTENMARK, 2011).

In the first viewpoint, the controller is viewed as a box that contains the clock, the discrete controller
and the converters (see Fig. 2.18 the cuttings before and after the converters). Hence, this box only
has input and output signals of the type continuous-valued, and then it can be considered as a
continuous-time system, which tries to approximate the behavior of a continuous controller.

In the second viewpoint, the plant is viewed as a box that contains the continuous plant and the
converters (see Fig. 2.18 the cuttings before and after the discrete controller). Hence, this box
only has input and output signals of the type discrete-valued, and then it can be considered as a
discrete-time system. In this case, two discrete-time systems are composed, and, consequently, the
behavior of the system is only described at the discrete instants defined by sampling.

(ALBERT, 2004; ÅSTRÖM; WITTENMARK, 2011) argued that while the first viewpoint is limited by
the results of a continuous controller, the second one is sufficient in the most cases and extracts
better results from a discrete controller.

It turned out that sampled-data systems are a special case of hybrid systems, where the plant is
always a continuous one, the controller is always a discrete one and the continuous and discrete
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behaviors interact at certain instants defined by a clock. However, hybrid systems can have differ-
ent mixtures of continuous and discrete behaviors, e.g., when a plant hits certain boundaries its
ODEs change. Moreover, the interaction at certain instants in hybrid systems can be defined by
other origins different from the classical clock of sample-data systems, e.g., when a plant hits cer-
tain boundaries. Hybrid automaton (see Subsection 2.3.2) is the most common model for hybrid
systems (CASSANDRAS; LAFORTUNE, 2008). Finally, another special case is when a plant is not
described by ODEs 8, hence, the system has only discrete components and then it is called discrete
event system (CASSANDRAS; LAFORTUNE, 2008). Consequently, its natural model is some kind of
automaton that do not consider physical time (CASSANDRAS; LAFORTUNE, 2008).

Regarding a discrete controller and sampled-data systems, the index k used in its input discrete-
valued signal y(tk) is exactly the same in its output discrete-valued signal u(tk), which means that
at the modeling level computation performed by the discrete controller is instantaneous. This
assumption, at the model level, is verified using existent techniques, which are beyond the scope
of the present thesis, however, a significative issue is that the dynamics of the system is analyzed
considering certain frequencies and latency boundaries for the computation. These frequencies (or
periods) and boundaries for latency are the origins from the most stringent temporal demands,
which lead to the notion of real-time systems.

Definition 2.15 (Real-time systems (STANKOVIC, 1988; KOPETZ, 1991)). In real-time systems
the correctness of the system depends on the functional results as well as the physical time at which
the results are produced. They require to be functionally deterministic, which means that for
the same input they always produce the same output, and temporally deterministic meaning that
the output is always produced at a predictable physical time.

There are two fundamental different paradigms for the design of real-time systems: time-triggered
and event-triggered. While the time-triggered is the usual choice for safety critical systems, e.g., the
X-by-wire systems, the event-triggered is common in the non-safety critical community (KOPETZ,
1991; ALBERT, 2004).

Definition 2.16 (Time-triggered systems (KOPETZ, 1991)). The dissemination of states of compo-
nents through all system is the main concern in a time-triggered system. This dissemination of state
is performed periodically in periods which match the dynamics of the system (called time-driven
systems in (CASSANDRAS; LAFORTUNE, 2008)).

Definition 2.17 (Event-triggered systems (KOPETZ, 1991)). In an even-triggered system, the
system activities are initiated by the occurrence of significant events in the environment or in it
(called event-driven systems in (CASSANDRAS; LAFORTUNE, 2008)).

In order to explore the pragmatics of the hybrid fUML, two examples of controlled systems are
introduced: (1) BasketBall a system composed of the BouncingBall example (see Subsection 2.3.1)
and a discrete controller (see Example 18), and a classical discrete controller for the SpringMass-
Damper system (see Example 19).

8ODEs and difference equations.
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Example 18 (BasketBall.). The BasketBall system reuses the BouncingBall system as a hybrid
plant (one dimensional case without disturbances) and adds a discrete controller, which shall
maintain the ball bouncing with a maximal height equals to 10 meters. The controller does not
need to know the plant state to define the control force because the plant’s behavior is well-
defined and known so the controller is defined by the type on-off. Therefore, when the ball has its
kinetic energy close to zero (it is defined an ε error of 0.01 m/s for the velocity of the ball), the
force actuator is turned on applying a force of 24254 newtons. Afterwards, the actuator should be
turned off.

This example is interesting for this thesis since it reuses a hybrid plant largely analyzed in the
current thesis and in the literature (GOEBEL et al., 2009; BAUER, 2012; POUZET et al., 2014). Fur-
thermore, the act of turning on and off the force actuator can be modeled in a large number of
ways including the following ones:

a) an event-triggered system with one event - when the ball has its kinetic energy close to
zero an event happens “turn on”, and the processing of this event changes immediately
the ball velocity (like in the BouncingBall but at the top and adding energy instead of
loosing), in this case, the event of “turn off” is not needed.

b) an event-triggered system with two events - when the ball has its kinetic energy close
to zero an event happens “turn on”, and the processing of this event defines a value for
the external force actuator in the plant so the velocity is changed if the equatios are
solved. Consequently, it is mandatory to define a “turn off” that can be based on the
kinetic energy so if velocity is greater than an error the force actuator should be turned
off, however, it also should consider the physical time consumption during the ODEs
solving for the event “turn on”.

c) a time-triggered system - the controller periodically checks the kinetic energy of the
hybrid plant (matching the dynamics of the system), when it is under a threshold the
force actuator is “turned on”, otherwise it is “turned off”. Therefore, the physical time
consumed during the equations solving for the event “turn on” is considered in the
definition of the period.

Fig. 2.19 shows the numerical comparison between the BouncingBall system (red and blue lines),
and the option (c) - BasketBall modeled as a time-triggered system - using sample period of 0.001s
(light blue and green lines).

Chapter 6 models the option (b) (see Example 26) and (c) (see Example 27) using hybrid fUML.
The option (a) does not represent an additional challenge for a language that models the Bounc-
ingBall.
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Figure 2.19 - Numerical results from a simulation of BouncingBall and BasketBall.
Source: ((OSMC), 2014) (integration method: Euler).

Example 19 (SpringMassDamper.). The example shown in Fig. 2.20 is adapted from (ELMQVIST

et al., 2012) in such a way to be compatible with available version of Modelica specification in
OpenModelica ((OSMC), 2014).

It models a continuous plant composed of a spring, a mass and a damper and described by the
initial value problem described by Equation 2.13.

x =
[
position

velocity

]
, x ∈ R2 (2.13a)

f1(t) := ẋ1 = x2 (2.13b)

f2(t) := mẋ2 = F (t)− kx1 − bx2 (2.13c)

x1(0) = 1 (2.13d)

x2(0) = 0 (2.13e)

where m is the mass of the mass, k is the spring constant (the spring force is proportional to the
position), b is the damping coefficient (the damper force is proportional to the velocity) and F(t)
is an external force used to control the plant.

A proportional controller for a spring-mass-damper plant is modeled providing the controlled ex-
ternal force for the plant. It is a discrete controller so it is based on sampled data retrieved from
the continuous plant. This is described by the equations encompassed by when sample(0, 1) in
Fig. 2.20, which means starting from time 0 for each second this set of equations should be evalu-
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package SpringMassDamperPackage
// Plant
model Plant

parameter Modelica.SIunits.Mass m = 1;
parameter Modelica.SIunits.TranslationalSpringConstant k = 1;
parameter Modelica.SIunits.TranslationalDampingConstant b = 0.1;
Modelica.SIunits.Position x(start = 1, fixed = true) "Position";
Modelica.SIunits.Velocity v(start = 0, fixed = true) "Velocity";
Modelica.SIunits.Force f "Force";

equation
assert(m > 0, "Mass is outside of the domain of validity", AssertionLevel.error);
der(x) = v;
m * der(v) = f - k * x - b * v;

end Plant;
//Controller
model Controller

extends Plant;
constant Real K = 1 "Gain of speed P controller";
constant Modelica.SIunits.Velocity vref = 2 "Speed ref.";
discrete Real vd;
discrete Real u;

equation
//SAMPLED-DATA SYSTEM

when sample(0, 1) then
vd = v;

u = K * (vref - vd);
f = u;

end when;
end Controller;

end SpringMassDamperPackage;

Figure 2.20 - SpringMassDamper modeled using Modelica.
Source: Adapted from (ELMQVIST et al., 2012).

ated. The constructor when equations defines conditional functions as explored in Subsection 2.3.1,
moreover, using sample operator a zero-crossing detection can be defined based on the evolution
of physical time simulated by Modelica.

This example is a minimalist time-triggered system since it retrieves the plant state periodically,
and this period also triggers the discrete computation of the control force as well as the sending
of the control force to the plant. Indeed, there is only one period due to the instantaneous effect
desired for the closed loop (see Example 28). However, Example 29 models a variation, in which
an observer, using another period, checks the control force against a threshold.
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3 RELATED WORKS

This chapter uses the concepts and formalisms introduced in the previous one to review the related
works regarding discrete and hybrid modeling. Concerning discrete modeling, the research related
to fUML and synchronous languages are reviewed. Afterwards, three closely related languages that
support hybrid modeling are reviewed. Finally, other frameworks, languages and formalisms are
briefly reviewed.

3.1 Support for Discrete Modeling

UML and SysML have demonstrated the capability for top-down design of large-scale sys-
tems (GRAVES, 2012). Therefore, UML/SysML is expressive but their lack of formal foundations
results in imprecise models. This lack of a precise semantics in the UML related specifications
has been manifested by a large number of proposals for semantics of UML (JARRAYA et al., 2009;
BENYAHIA et al., 2010; GRONNIGER et al., 2010; KRAEMER; HERRMANN, 2010; OBER; DRAGOMIR,
2011; MAOZ et al., 2011; PERSEIL, 2011; KNIEKE et al., 2012; ABDELHALIM et al., 2012; GRAVES,
2012). Moreover, although there are languages with a formal semantics, there are no modeling
languages with widespread use in systems engineering and software engineering communities that
have the attraction of UML (GRAVES, 2012; BORDIN et al., 2012).

3.1.1 Semantics of UML and fUML

There is a large number of research papers focused on the semantics of UML. UML, SysML and
fUML share the definitions about activities. Therefore, every research that has defined semantics for
behavior based on activities is related to fUML. Taking into account this relationship, works focused
on behavioral semantics for UML, SysML, or fUML can be classified as follows: (1) definition of a
semantics and (2) translation to other formalisms.

The first class has led to definitions of the operational semantics for activities mainly. (BÖRGER;

STÄRK, 2003) presented a formal semantics using ASMs for activity diagrams from UML 1.x.
(SARSTEDT; GUTTMANN, 2007) formalised the semantics of token flow in UML 2 activity diagrams
in terms of ASM rules covering control flow, object flows and a generic action. (JARRAYA et al., 2009)
presented a structural operational semantics (SOS) (PLOTKIN, 1981) for a subset of activity dia-
grams of SysML. This subset comprised control nodes and a generic action. The semantics covered
advanced control flows such as unstructured loops and concurrent control flows, and model-checking
was applied for verification purposes. Focused on reactive systems, (KRAEMER; HERRMANN, 2010)
presented an operational semantics for a subset of activity diagrams of UML. This subset included
one action representing method calls that are executed in one time unit. Regarding control flows,
this work defined time and queues for synchronization, and applied model-checking for verification.
(GRONNIGER et al., 2010) defined a semantics for a subset of UML activity diagrams. The subset
comprised control flow, object flow and an abstract action language. This work stated that all
definitions, including the abstract syntax, should be encoded in machine-readable form, allowing
the use of a theorem prover. (KNIEKE et al., 2012) proposed common constructs for the definition
of operational semantics for a subset of activity diagrams. The subset covered the actions: Call-
BehaviorAction, SendSignalAction and AcceptEventAction. In this case, semantics was described
through algorithms defined using pseudo-code, and did not comprise object flows.
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A broad set of works adhered to translation through the definition of a mapping between UML
and a formal language. (BOUSSE et al., 2012) proposed a transformation from a subset of SysML
into a subset of the B method, moreover, the selected subset of SysML covered behavioral defini-
tions expressed using Alf. Afterwards, the resulting B method representation could be proved by a
specialized tool. (PÉTIN et al., 2010) defined transformation from SysML requirements and SysML
behavior (defined by state machine diagrams and activity diagrams disregarding fUML) into tem-
poral logic and timed automaton, respectively. Henceforth, the UPPAAL model-checker was used
to check safety requirements. (PERSEIL, 2011) suggested that a subset of Alf ((OMG), 2013a) should
be translated to PlusCal, which has precise semantics defined by a translation to temporal logic
of actions (TLA) so the model-checker of TLA could be used for verification. (MAOZ et al., 2011)
defined a translation from UML activity diagrams to a labeled transition system described using
the language of the SMV model-checker. The subset included control nodes and a generic action.
(ABDELHALIM et al., 2012) defined a method that receiving state machine diagrams and activity
diagrams (according to fUML) applied a transformation to communicating sequential processes
(CSP). Later, the method used a model-checker to verify the resulting CSP representation. This
work focused on maintaining the behavioral consistency between state machine diagrams and ac-
tivity diagrams. Moreover, (ABDELHALIM et al., 2012) defined optimization rules for CSP’s usage
since difficulties emerged when non-trivial fUML inter-object communication mechanism was for-
malized. The optimization rules were identified based on recurrent patterns that were correct from
the modeler’s point of view and the system representation, however, the CSP representation of
that model generated a state space explosion during model-checking. The first pattern was the
“self-sending signals”, where an object sends a signal to itself, and a simple optimization was to
replace the sending/accepting signal by a control flow. The second pattern was unacknowledged
signals, and then a typical construction from CSP was the proposed optimization, the rendezvous.

Nonetheless, the reviewed semantics did not take into account the language defined by
fUML ((OMG), 2009) so they did not notice the subset of the UML syntax, the operational se-
mantics defined for this subset, the base semantics formalizing using first-order logic the semantics
of bUML as well as the semantic domain. On the other hand, one research focused on trans-
lation (ABDELHALIM et al., 2012) faced issues during the translation concerning the operational
semantics defined by fUML, while others (BOUSSE et al., 2012; PERSEIL, 2011) suggested to define
the semantics of Alf in the target formalism of the translation regardless of fUML.

Some degree of semantics for models is a prerequisite for verification. Taking into account verifica-
tion, there is a large number of research papers about the verification of UML, and consequently
SysML, behavioral models, focusing on state machine diagrams, sequence diagrams and activity
diagrams. Nonetheless, a way to check the correctness of behavioral representations is still not
agreed (PLANAS et al., 2011). (PLANAS et al., 2011) presented a method to verify correctness of
behaviors defined using Alf through analysis of all possible execution paths. The method used as
input an UML model, and performed its checks directly on this model. (ROMERO et al., 2014b)
evaluated a subset of the base semantics from fUML covering the formal definition of the abstract
syntax, the semantic domain and the semantic mapping. The evaluation showed that the base
semantics was not consistent (see Appendix B), and then a consistent subset of the base semantics
was defined. This consistent subset of the base semantics was used to illustrate similarities and
differences with other techniques for semantics definition. In addition, an example was formally
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verified using the reviewed base semantics and a theorem prover.

3.1.2 Semantics of UML Composite Structures and fUML

UML composite structure is a fundamental technique to describe systems of systems with bound-
aries and connections between them (OBER et al., 2011). This notion is well suited for the definition
of the components, which should have an explicit separation between internal elements, ports (a
connection point) describing the provided features, and ports describing the required features of
the environment (CUCCURU et al., 2008).

However, fUML excluded the UML composite structures arguing that they are moderately used,
and a straightforward translation is possible from them into the foundational subset (((OMG),
2012a);pp. 20)(((OMG), 2013b); pp.19). Moreover, the literature (OLIVER; LUUKALA, 2006; CUC-

CURU et al., 2008; OBER; DRAGOMIR, 2011; OBER et al., 2011; ROMERO et al., 2014a) recognizes
the large number of ambiguities that emerges from a use of the composite structures without a
thorough static semantics. In fact, precise semantics for composite structures based on fUML is a
request for proposal (RFP) from Object Management Group ((OMG), 2013b), which solicits specifi-
cations containing precise semantics for UML composite structures to enable execution and reduce
ambiguities ((OMG), 2013b).

(CUCCURU et al., 2008) presented an evaluation of semantics for composite structures to support the
request propagation across ports. (OBER; DRAGOMIR, 2011) refined the evaluation from (CUCCURU

et al., 2008) proposing that ports should be uni-directional because the bi-directionality raises
typing problems. (OBER et al., 2011) discussed the gap between the expressiveness of UML and
the requirements of the engineers. It is stated that the hierarchical decomposition, enabled by
composite structures, proved to be a central technique for system modeling. Also, it recognized
that ports are used to define simple connection points, where an incoming request is dispatched
to a concrete handler. Nevertheless, UML defines a large number of options for port behavior
modification. (ROMERO et al., 2014a) proposed a complementary meta-model for fUML covering a
subset of UML’s composite structures. The subset was defined in such a way that ports (from UML)
were changed to compute the required and provided features based on abstract classes instead of
interfaces (excluded from fUML ((OMG), 2012a)). Afterwards, the paper explored two techniques
to integrate the newly created meta-model in the fUML meta-model, namely translational and
extensional. Moreover, the paper used the embedding technique to extend the base semantics
including relations about the composite structures, and then formal rules for the static semantics
were defined using those newly relations.

3.1.3 Model of Computation of UML and fUML

It is rare to find research about the model of computation provided by fUML. Two remarkable
exceptions are the following ones.

(BENYAHIA et al., 2010) showed that fUML was not applicable to real-time systems because the MoC
defined in the fUML execution model was sequential and nondeterministic. In spite of variation
points provided by fUML, this work recognized that they were not powerful enough to change the
MoC, and then an extension of the core execution model was presented to accommodate different
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MoCs.

(ROMERO et al., 2013b) concluded that the fUML’s MoC was nondeterministic since it allowed more
than one active object to write in a unique event pool of another active object. (ROMERO et al.,
2013b) explored additional roots of this nondeterminism, grouping them as follows: (1) structural
features manipulation - e.g., to assign a value to a property of an object; (2) conditions - fUML
conditional clauses, e.g., defined using if or switch Alf statements; (3) token flow semantics -
how tokens were offered, and, consequently, in which sequence nodes were fired; and (4) event
dispatching - how signals in the event pool were dispatched to AcceptEventActions. The research
concluded that the groups (3) and (4) definitively compromised the capacity of the standard fUML’s
MoC to give a meaningful semantics for deterministic models. Finally, the work informally enabled
the synchronous-reactive MoC in Alf models presenting a set of annotations for Alf as well as
a mechanism for multicasting due to the fact that fUML only provided point-to-point (unicast)
communication.

In the same spirit of (ROMERO et al., 2013b) but in a broader context, (SIMONE; ANDRÉ, 2006)
discussed how MARTE could change the semantics of UML in order to support the synchronous-
reactive MoC. (SIMONE; ANDRÉ, 2006) identified that the hypothesis of processing one event at
a time should be reviewed allowing simultaneous event occurrences for a single active object ac-
cording to the synchronous-reactive MoC. Finally, (SIMONE; ANDRÉ, 2006) defended the use of the
synchronous-reactive MoC for real-time embedded systems modeled using UML.

3.1.4 Real-time Extensions of Synchronous Languages

Although synchronous languages have been established as a technology of choice for specifying,
modeling, and verifying real-time embedded applications (BENVENISTE et al., 2003), it is well-
accepted that, for a class of systems in which physical time plays an essential role even in the
specification (time and behavior are strongly coupled), the classical abstract notion of time is not
enough (ANDRÉ et al., 2007; FORGET et al., 2008a; BOURKE; SOWMYA, 2009). In fact, when dealing
with this class of systems, a synchronization with the physical time is mandatory (pp. 235; (ANDRÉ

et al., 2007)) (FORGET et al., 2008a), furthermore, in control systems, the interplay of physical time
and logical time is a commonplace (pp. 239; (ANDRÉ et al., 2007)). Extensions of synchronous
languages (CLOSSE et al., 2001; FORGET et al., 2008a; FORGET et al., 2008b; BOURKE; SOWMYA,
2009) support this interplay likewise MARTE (see Subsection 2.2.3.5).

Esterel, since its origins, recognized the importance of the integration of physical time and the
abstract notion of time for the mentioned class of real-time systems, as the following quote shows.

Should we place logical instants on a real-time axis, defining the actual “phys-
ical time” t(n) of the instant n? This natural temptation should be taken
with care. Is that useful for all applications? Yes for many real-time pro-
grams, no for simple man-machine interface drivers. What does it bring in
terms of power? The relation with continuous control theory for control pro-
grams or with sampling theory for signal processing, the relation with actual
timing delays in telecommunication or systems drivers, nothing for many
other untimed reactive applications (pp. 100; (BERRY, 2000)).
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Taxys introduced code annotations to specify timing constraints in Esterel (CLOSSE et al., 2001;
BERTIN et al., 2001). One recurrent kind of timing constraint was the deadline, where a variable (in
fact, a real-valued clock in the sense of timed automaton) had a value assigned, some computation
was done (with best and worst case execution times defined as annotations) and then the variable
was checked against a predefined deadline. The annotated Esterel code was translated into a timed
automaton (a special case of the hybrid automaton with derivatives equals to 1), afterwards, a
model-checker was used to verify the timing constraints. Therefore, the main goal of the timing
constraints was to test the synchronous hypothesis considering the annotations given.

Raising temporal concerns to the model itself, (FORGET et al., 2008a) explored alternatives to
model multi-periodic behaviors in Lustre. It evaluated the period of a program as assumption
(basic_period) or using a primitive (periodic_clock(k,p)). periodic_clock(k,p) defined a clock of
period k and of phase p (a strictly periodic clock). (FORGET et al., 2008b) proposed a language,
with syntax similar to Lustre, that promoted strictly periodic clocks to the syntax. Three operators
dealt with strictly periodic clocks: an operator that produced a flow faster than a reference flow,
an operator which produced a flow slower than a reference flow, and, lastly, an operator that
introduced delays regarding the period of the reference flow.

(BOURKE; SOWMYA, 2009) argued that Esterel did not offer an adequate way to express behaviors
in physical time. The proposed solution to address this inadequacy was to provide a macro called
delay e, in which e was evaluated to a rational number interpreted as a duration in seconds.
This macro was transformed into Esterel native statements after the selection of an alternative to
implement these delays, therefore, the original program was maintained free of technical decisions
but it was able to describe fine timing behavior. Two relevant alternatives for implementation were:
(1) sample-driven implementation, where each macro-step had a physical time associated with it,
and then the counting of macro-steps gave the elapsed physical time, therefore, the basic final
translated statement was await n tick (n is the number of macro-steps) and (2) event-driven with
timing inputs, where the reception of a signal s occurred regularly with a predefined period so the
elapsed physical time was obtained by the multiplication of the number of signals received by its
period, the basic final translated statement was await n s (n is the number of receptions of the
signal s).
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3.2 Support for Hybrid Modeling

A large number of languages and formalisms has been proposed to model hybrid systems (CARLONI

et al., 2004). One particular branch of these languages assumes the synchronous hypothesis, which
offers several advantages for specifying, modeling, and verifying of real-time systems (BENVENISTE

et al., 2003; SIMONE; ANDRÉ, 2006; LEE; SESHIA, 2011). In the following, the last developments on
three languages that follow the synchronous hypothesis are explored. Additionally, the languages
and frameworks reviewed for hybrid modeling, as becomes clearer in the sequel, share the same basic
model of execution from the urgent semantics of timed transitions systems (see Subsection 2.14),
i.e., they alternate between run-to-completion of discrete actions and continuous evolutions.

3.2.1 Modelica

Modelica (MODELICA, 2012) is presented in Subsection 2.3.3. However, the language has been
extended to model control systems and to enable code synthesis for embedded systems (ELMQVIST

et al., 2012).

Modelica 3.3 (MODELICA, 2012) introduces synchronous languages primitives, which support clock
declaration and manipulation. It is an attempt to increase the precision of models focused on
control systems (ELMQVIST et al., 2012). Moreover, the clock consistency concept from declarative
synchronous languages (see Subsection 2.2.2.3) is introduced in the static semantics of Modelica.
The basic operators and constructors introduced in the concrete syntax are: Clock - to construct
clocks, sample(ce,c) - to sample the continuous-expression ce at ticks of the clock c, and hold(de)
- to hold the value of a clocked discrete-expression de. Moreover, the sample together with hold
define implicit boundaries in Modelica, which support analysis and synthesis (ELMQVIST et al.,
2012).

A long-standing desired capacity was to model states of a given system in Modelica (SCHAMAI et

al., 2013; ZIMMER, 2013). Modelica 3.3 (MODELICA, 2012) includes special constructs for state ma-
chines (pp. 201; (MODELICA, 2012)). These constructs allow the definition of states and transitions
and, in the case of a transition occurs, the number and type of equations can be changed.

OpenProd1 was a project focused on enabling whole-product model-driven systems development,
which meant to enable common models of the system as the basis for product and system
projects (FRITZSON, 2010). A significative research topic was the integration of Modelica, UML and
SysML. In the context of OpenProd project, (SCHAMAI et al., 2013) introduced the ModelicaML, a
UML profile that enabled modeling and simulation of systems and their dynamic behavior. Special
attention has been given to the translation of UML state machine diagrams, annotated with Mod-
elicaML profile, into Modelica algorithms. The action language used for the behavioral definition
of the UML model was Modelica.

The combination of the strenghts of Modelica and SysML is not new. SysML-Modelica Transfor-
mation ((OMG), 2012b) is a standardized bi-directional mapping between SysML and Modelica
defined by OMG and Modelica association. As well as ModelicaML, the action language avail-
able in SysML-Modelica transformation is Modelica (pp. 40;((OMG), 2012b)). Moreover, in the

1http://www.ida.liu.se/labs/pelab/OpenProd/
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bi-directional mapping, only block definition diagrams (BDD; a diagram based on the UML class
diagram ((OMG), 2012c)) and internal block diagrams (IBD; a diagram based on the UML com-
posite structure diagram ((OMG), 2012c)) are applied (pp. 90;((OMG), 2012b)).

Nonetheless, there have been works pointing out that the Modelica’s semantics can be improved.
For example: (CARLONI et al., 2004; BENVENISTE et al., 2012; BAUER, 2012; ZIMMER, 2013) stated
that the event iteration in Modelica, a fundamental concept for the discrete behavior semantics,
allowed different implementations and, consequently, the meaning of models was tool-dependent;
(BENVENISTE et al., 2012) observed that the part of Modelica that handled mode changes was not
compositional, which impaired the compositionality of the language.

3.2.2 Hybrid Extensions of Synchronous Languages

(LEE; ZHENG, 2007; BENVENISTE et al., 2011) showed that the synchronous-reactive MoC is powerful
enough to encode continuous-time. Consequently, extensions of synchronous languages have been
defined to support hybrid modeling. The main idea is to reuse the semantics and the benefits of
these languages in which the starting point is the usage of synchronous concurrency instead of
interleaved one.

(pp. 54; (BAUER, 2012)) claimed that there were two options to support continuous behaviors
in a synchronous language: (1) the definition of a second kind of macro-step dedicated to the
continuous behavior or (2) the integration of one continuous evolution in the semantics of a macro-
step. While Hybrid Quartz integrated one continuous evolution in the macro-step semantics, Zélus
chose to maintain the macro-step (with the necessary extensions in the syntax and static semantics)
dedicated to discrete behaviors and defined calls to off-the-shelf ODE solvers (what can be called
a macro-step dedicated for continuous behaviors, see Subsection 3.2.2.2).

Both strategies need an alternative to stop the continuous behavior once activated, as in the hybrid
DAEs (conditional function) and in the hybrid automaton (jumpe), the fundamental mechanism
is the zero-crossings (BENVENISTE et al., 2011; BAUER, 2012). An additional mechanism is called
time horizon (BENVENISTE et al., 2011), which is directly related to the sample period in control.
Furthermore, time horizons can be described by zero-crossings through additional variables and
equations. As advocated by hybrid automaton, due to the lack of access to the physical time,
the only way to access the progression of time is to define an additional variable with derivative
equals one and one or more discrete transitions monitoring the value of that variable. Note the
impossibility to access time is defined by the syntax of hybrid automaton (see Subsection 2.3.2).

3.2.2.1 Hybrid Quartz

Hybrid Quartz is an extension of Quartz (SCHNEIDER, 2009) that supports hybrid model-
ing (BAUER, 2012).

Concerning the concrete syntax, Hybrid Quartz introduced four constructs into the original con-
crete syntax of Quartz, namely: x← y, drv(x)← y, flow S until (c) and cont(x). The continuous
constructs x ← y and drv(x) ← y equate variable x or its derivation on time drv(x) with the
expression y. They may only occur in special statements of the form flow S until(c) where S is

61



a list of continuous constructs and c is a release condition that terminates the continuous evo-
lution defined by the flow statement. The continuous value of a given variable x is accessed by
the construct cont(x). Due to the fact of the Hybrid Quartz’s semantics defines two environments
Edisc and Econt, usual readings return values from Edisc, while readings using the construct cont(e)
return values from Econt (only allowed inside flows or in delayed actions, e.g., next(x)=cont(y);).

Hybrid Quartz is deeply rooted in hybrid automata, the components from a hybrid automaton
defined in Section 2.3.2 can be paired with a Hybrid Quartz program: control modes v are positions
of the control flow of the program, initv are assignments (perhaps above flow statements), flowv are
flow statements, jumpe are release conditions in the flow statements (under the urgent semantics
of timed transition systems), resete are assignments (possibly below flows). In order to support
parallel composition, stuttering transitions are defined in the semantics. The solely component from
a hybrid automaton suppressed by Hybrid Quartz is invv mainly due to the fact that the control
flow of the program defines which flows are enabled (another reason is the lack of specification
concern (pp. 52; (BAUER, 2012))).

Concerning the semantics, Hybrid Quartz did not explore the impacts of the introduced statements
and expressions in the static semantics already defined by Quartz (SCHNEIDER, 2009). Nonethe-
less, the operational semantics of Quartz (defined using structural operational semantics (PLOTKIN,
1981)) was enhanced with new inference rules covering the introduced statements. In order to sup-
port continuous behaviors, the macro-step was endowed by one continuous evolution that took
place between the immediate and delayed actions. While the previous inference rules were con-
structive, the introduced ones were not due to the zero-crossing problem (pp. 63;pp. 81; (BAUER,
2012)).

Model of Computation

The tagged-signal model (LEE; SANGIOVANNI-VINCENTELLI, 1998) for the Hybrid Quartz is defined
as follows. Let T = R≥0 × N>0 be the tag set, where R≥0 represents the physical time, and
N>0 represents the macro-step counter. This tag set is equipped with a lexical ordering on T :
(r1, n1) ≤ (r2, n2) ⇔ r1 < r2 ∨ (r1 = r2 ∧ n1 ≤ n2). Then, let Toper ⊂ T be the set of tags
used by the operational semantics of Hybrid Quartz (defined at the physical time at which release
conditions hold, which yields a discrete subset). Let V be the set of all possible values for all the
data types defined by Hybrid Quartz, and Vb = V ∪ {�,⊥} be the set of values plus the absent
value and the unknown value. Then a function defines a signal s:

s : T → Vb (3.1)

Furthermore, ∀t 6∈ Toper, s(t) = ⊥ and ∀t1, t2 ∈ Toper, t1 ≤ t2, s(t2) 6= ⊥ ⇒ s(t1) 6= ⊥, which means
that once a signal is defined for t2 the signal for t1 shall be previously defined. The set of all signals
S is defined by P(T × Vb). This is similar to (LEE; ZHENG, 2007) that applied the tagged-signal
model to describe the discrete-event MoC using super-dense time2. Although Hybrid Quartz does
not apply the discrete-event MoC, the work defining Hybrid Quartz declares the use of this tag
set explicitly (pp. 108; (BAUER, 2012)).

2Except by the following aspects: the use of the unknown value characterizing a total function,
the additional constraints, the use of a monotonic n that is never reset and starts from one.
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Example 20 (BouncingBall modeled using Hybrid Quartz.). Fig. 3.1 shows the Hybrid Quartz
program for the BouncingBall. Note the release condition uses (position <= 0) instead of
(position = 0) this is due to the fact that equalities are not allowed in the zero-crossing problem.
The initial macro-steps produce the following synchronous streams using the simulator available

macro g = -9.81;
macro restCoef = 0.5;
macro y0 = 10;

module BouncingBallPlant(event real ?initialPosition, hybrid real position, hybrid real velocity) {
position = initialPosition;
while(true) {

flow {
drv(position) <- cont(velocity);
drv(velocity) <- g;

} until(cont(position) <= 0 and cont(velocity) < 0);
next(velocity) = -velocity * restCoef; // delayed action
flow {} until (true);

}
} drivenby {

initialPosition = y0;
for(i=0..250) pause;

}

Figure 3.1 - BouncingBall modeled using Hybrid Quartz.
Source: Adapted from (pp. 74; (BAUER, 2012)))

(GROUP, 2014)3:

signal macro-step 1 macro-step 2 macro-step 3
initialPosition 10 0 0
position 10 ≈ −0.66 ≈ −0.66
velocity 0 ≈ −14.71 ≈ 7.35
next velocity ≈ −14.71 ≈ 7.35 ≈ −7.35

Note the velocity at the second macro-step is the last continuous value of the signal at the
first macro-step, which consumed ≈ 1.43 seconds, therefore, the signal velocity assumes the follow-
ing values: s: (0, 1) → 0, s: (≈ 1.43, 1) → −14.71, s: (≈ 1.43, 2) → −14.71, s: (≈ 1.43, 3) → 7.35,
and so on and so forth. Note the signal velocity is defined at the discrete instants r = 0 and
r = ≈ 1.43 following a precision defined by the simulator (GROUP, 2014). Moreover, due to the
semantics of discrete signals in a synchronous language, only one value per macro-step, the change
in the value of the velocity is scheduled at the second macro-step for the third macro-step.

Fig. 3.2 shows the abstract LTS for the operational semantics of Hybrid Quartz, which shows that
one continuous evolution was integrated inside the macro-step. The operational semantics for a
given macro-step can be roughly explained as follows. After computing the discrete variable envi-
ronment Edisc by means of the constructive semantics over instantaneous actions until a fixpoint

3The available simulator uses one macro-step to compute the updated velocity so at the 4th
step the velocity is changed. Due to the fact that this is not in accordance with the semantics, the
synchronous streams were manually adjusted.
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(see 2.2.2.1), the enabled continuous actions (flows) can be determined. Taking the values of Edisc
as initial values for the potential ODEs, the continuous flows of the macro-step are executed until
the first active release condition holds (zero-crossing). The environment Econt stores the values of
all variables at the end of the continuous evolution. Afterwards, the delayed actions obtain both
environments as inputs and computes the partial environment Edel for the next macro-step. In
addition, variables in the continuous environment Econt that are not changed by delayed actions
assume in the delayed environment Edel the last value defined in the continuous environment Econt
(in the Hybrid Quartz syntax, next(x) = cont(x))4. Therefore, a kind of memory was defined com-
plementing the construct next and allowing a standard access, at the next macro-step, to a signal
value defined at a release condition at the current macro-step.

Figure 3.2 - The abstract LTS defined by Hybrid Quartz’s MoC.
Source: Adapted from (pp. 110; (BAUER, 2012)).

Consequently, taking into account (r, n) ∈ T , each macro-step defines an increment of 1 in the
component n. When a given macro-step has no active flows or all active flows have release conditions
that immediately hold, the component r is not changed. When a given macro-step has active flows,
the component r is determined at the first holding of a release condition, accordingly, and the new
signal values are defined at r, in the most cases (as discussed above), the last signal is copied for
the tag (r, n + 1) . The delayed actions define signals with n + 1 and current r for expressions
using cont(e) as tag (otherwise, the initial r of the macro-step is used). In summary, concerning
the advancement of the tag set (r, n) for a macro-step, the n is always incremented by one (1),
furthermore, it is possible that one macro-step: (1) it does not advance the physical time, r, because
there are no active flows, (2) it does not advance the physical time, r, because all active flows have
release conditions that instantly holds, or (3) it advances the physical time, r, until the satisfaction
of the first release condition.

3.2.2.2 Zélus

Zélus is a programming language for hybrid modeling (BOURKE; POUZET, 2013). It is a hybrid
extension from a declarative synchronous language, a Lustre-like language (HALBWACHS et al.,

4Technically, the operational semantics of Hybrid Quartz does not use this strategy to enable
readings at the next macro-step from the continuous values defined at current macro-step, however,
the result is the same (see pp. 62 (BAUER, 2012) for the technical details).
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1992).

Zélus is defined to fulfill the following requirements (BOURKE; POUZET, 2013): (1) the usage of
off-the-shelf ODE solvers and (2) the reuse of the static and the operational semantics given by
declarative synchronous languages. Therefore, the concrete syntax was enhanced with constructs for
hybrid modeling, including the definition of ODEs, furthermore, the static semantics was extended
to cover the introduced constructs. However, the operational semantics for macro-steps did not
change since the introduced constructs are translated into the original ones through a series of
source-to-source translation (BOURKE; POUZET, 2013), further, the ODE solver’s call is coordinated
by a provided automaton.

Concerning the concrete syntax, the basic introduced constructs are: der x = e init e1 reset e2 →
e3, up(e) and last(x). The first construct defines an equation in which the first derivative with
respect to time of the variable x is equal to the expression e, moreover, the expression e1 is the
initial value, and when e2 is present the new initial value is e3 (a reset). Clearly, e2 can be defined by
a zero-crossing detection, which is defined by the construct up(e) (see discussion about the model of
computation for further details). The construct last(x) provides access to the final value computed
by the ODE solver for a given variable x. An additional macro period(r) defines a periodic clock,
and can be translated into a set of equations using the basic constructs and zero-crossing detection.

Taking into account the semantics of Zélus, it did not define an operational semantics (as discussed
above, it reuses an operational semantics). Nevertheless, the static semantics is defined, and it is
based on the definition of a kind for each function, equation and expression. There are three kinds:
A - combinatorial, e.g.,s addition natively supported by Zélus; D - discrete, it is the usual type
of behavior defined in Lustre (HALBWACHS et al., 1992), which is activated at discrete instants;
and C - continuous, it contains ODEs and shall be activated continuously. These kinds enable
the static analysis of programs, e.g., discontinuities can only occur in macro-steps (not during the
continuous evaluation performed by the ODE solver). Moreover, the adherence to the constructive
semantics is static analyzed based on a set of rules defined using a non-standard analysis and a
definition about the nature of signals (some signals are discrete and others are continuous). This
static semantics is presented in the following papers (BENVENISTE et al., 2011; BENVENISTE et al.,
2012; BENVENISTE et al., 2014).

Model of Computation

Zélus applies the non-standard analysis to define the tag set. For a focused introduction to non-
standard analysis, see (BENVENISTE et al., 2012).

The tagged-signal model for the Zélus is defined as follows (BENVENISTE et al., 2012). Let dt ∈
∗R, dt > 0, dt ≈ 0 then let Tdt = {tn = n × dt | n ∈ ∗N} be the tag set, where ∗R is the
set of the non-standard real numbers, and ∗N is the set of non-standard integer numbers. The
fundamental characteristics of Tdt are that for every u ∈ R>0 there exists a unique t ∈ Tdt such
that max{s | s ∈ Tdt, s < t} < u < t and t− u is infinitesimal, and Tdt is totally ordered. Then let
the set Tsem ⊂ Tdt describe the set of tags used by the semantics of Zélus (obtained by sampling
Tdt by a boolean condition or a zero-crossing event, which yields a discrete subset). Let V be the
set of all possible values for all the data types defined by Zélus, and Va = V ∪ {�,⊥} be the set of
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values plus the absent value and the unknown value. Then a function defines a signal s:

s : Tdt → Va (3.2)

Furthermore, ∀t 6∈ Tsem, s(t) = ⊥ and ∀t1, t2 ∈ Tsem, t1 ≤ t2, s(t2) 6= ⊥ ⇒ s(t1) 6= ⊥, which means
that once a signal is defined for t2 the signal for t1 shall be previously defined. The set of all signals
S is defined by P(T × Vb). For a complete definition see (section 7; (BENVENISTE et al., 2012)).

However, the non-standard real numbers are not feasible in an operational semantics so a naive one
dimensional operational interpretation of the set Tsem would be. Let TsemOper = {tn = n×dtOper |
n ∈ N, dtOper ∈ R>0, 0 < dtOper ≪ 1} be the operational tag set. Taking into account this set,
each macro-step as well the detection of zero-crossings that are instantaneously enabled would
consume a small amount of physical time since dtOper could not be 0, otherwise, s would not be a
functional signal.

In order to present an operational interpretation of Tdt from the Zélus’ model of computation,
(BENVENISTE et al., 2014) defined a standardization of the tag set Tdt, which results in the tag set
from the super-dense time (LEE; ZHENG, 2007). Therefore, let TdtOper = R≥0×N>0 be the tag set,
where R≥0 represents the physical time, and N>0 represents the macro-step counter. This tag set
is equipped with a lexical ordering on TdtOper: (r1, n1) ≤ (r2, n2)⇔ r1 < r2 ∨ (r1 = r2 ∧ n1 ≤ n2).
Then let the set TdtOperSem ⊂ TdtOper describe the set of tags used by the semantics of Zélus
(obtained by sampling TdtOper by a boolean condition or a zero-crossing event, which yields a
discrete subset). For a complete definition, see Section 3.2 of (BENVENISTE et al., 2014).

Example 21 (BouncingBall modeled using Zélus.). Fig. 3.3 shows the Zélus program for the
BouncingBall. Note the reset condition uses (up(−.position)) instead of (position = 0) this is due
to the fact that Zélus introduced an explicit construct to detect the zero-crossings.

let initialPosition = 10.0
let g = 9.81
let restCoef = 0.5

let hybrid ball(initialPosition) = (position, velocity, hitTheFloor) where
rec

der position = velocity init initialPosition
and

der velocity = -. g init 0.0 reset hitTheFloor -> (-. restCoef *. last velocity)
and

hitTheFloor = up(-. position)

(* Main entry point *)
let hybrid main () =

let (position, velocity, hitTheFloor) = ball(initialPosition) in
present hitTheFloor -> Showball.show (position, velocity);
()

Figure 3.3 - BouncingBall modeled using Zélus.
Source: Adapted from (POUZET et al., 2014).

The initial macro-steps produce the following synchronous streams using the simulator available
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at (POUZET et al., 2014):

signal macro-step 1 macro-step 2 macro-step 3
initialPosition 10 10 10
position 10 ≈ 0 ≈ 0
velocity 0 ≈ 6.99 ≈ 3.49
last velocity ⊥ ≈ −13.98 ≈ −6.98
pre velocity ⊥ 0 ≈ 6.99
hitTheF loor false true true

Note last velocity is the final output value of the ODE solver regarding the zero-crossing
indicated by hitTheFloor, and it is undefined in the first macro-step. In this way, velocity has
two readable values: (1) a discrete one (also writable according to the constructive semantics),
and a continuous one (came from the ODE solver and accessed by last). Moreover, due to the
semantics of signals in a synchronous language (only one value per macro-step), velocity is
undefined until the evaluation of the (−. restCoef ∗ . last velocity) at the second macro-step,
triggered by the zero-crossing hitTheFloor. For comparison between pre and last, pre velocity
refers always to the previous value according to the clock of the expression. In addition, note the
signal velocity assumes values regarding the tag set TdtOper only at discrete instants (either at
the end of a macro-step or at the end of a continuous evolution), s : TdtOper → Va: (0, 1) → 0,
(≈ 1.43, 1)→≈ −13.98, (≈ 1.43, 2)→ 6.99, and so on and so forth5.

The standardization of Tdt into TdtOper demands that valid programs satisfy two properties (BEN-

VENISTE et al., 2014): (1) discontinuity only occurs as a result of zero-crossing detection (which
enables the alignment of possible concurrent discontinuities) and (2) the semantics of a valid pro-
gram is independent of the value dx, which means that instantaneously enabled zero-crossings may
cause wrong results since, in the operational semantics, they are collapsed at the same instant r
without a call to the ODE solver.

Fig. 3.4 shows the abstract LTS for the operational semantics of Zélus, which highlights that one
continuous evolution is performed after one or more macro-steps. Using the tag set TdtOper and the
Fig. 3.4, the operational semantics can be roughly explained as follows. Each macro-step defines an
increment of 1 in the component n from the tag set. After computing the macro-step by means of
the constructive semantics until a fixpoint (see Subsection 2.2.2.1), the enabled ODEs as well as the
set of monitoring zero-crossings are determined. The set of monitoring zero-crossings are checked,
if one (or more) of them are instantaneously enabled (satisfied with the values for the current tag)
a new macro-step starts and the ODE solver is not called. If there does not exist zero-crossing
instantaneously enabled, the ODE solver is called with the ODEs and the set of zero-crossings to
be monitored, and then the result from the ODE solver is stored to be accessed as last(x) defining
a value for a new tag (r, n) where r is the last value of internal ODE time and n is the value of
last macro-step counter. Afterwards, a new macro-step may start.

5Regarding (BENVENISTE et al., 2014), a model with a Zeno behavior, like the BouncingBall,
could not be standardized correctly.
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Figure 3.4 - The abstract LTS defined by Zélus’ MoC.
Source: Adapted from (pp. 117; (BOURKE; POUZET, 2013)).

3.3 Other Frameworks, Languages and Formalisms

There are other frameworks, languages and formalisms that can support discrete and hybrid mod-
eling, and it is beyond the scope of this thesis a complete review of the options made available by
academic or commercial communities.

Concerning discrete modeling, the commercial tool SCADE has as its core language the declarative
synchronous language Lustre (BENVENISTE et al., 2003) (Lustre is reviewed in Subsection 2.2.2.3).
Hardware description languages have two well-known standards, namely Verilog and VHDL.
(ABOULHAMID; LAPALME, 2003) provided a short review about hardware/software codesign lan-
guages covering Verilog, VHDL and SystemC. SystemC provides a set of C++ libraries for system-
level modeling of hardware/software.

Regarding hybrid modeling, SystemC has a derivative called SystemC-AMS, which includes analog
and mixed-signal extensions (AMS) in order to support hybrid modeling (ADHIKARI et al., 2012).
Similarly, Verilog-AMS is an extension of Verilog that supports hybrid modeling. (CARLONI et

al., 2004) provided a good review about languages and formalisms that support hybrid systems
modeling. In particular, it covered Simulink/Stateflow on top of Matlab likewise Scicos/Xcos on
top of Scilab. Moreover, Scicos uses a subset of Modelica for component modeling (BENVENISTE

et al., 2012). Lastly, two more efforts related to synchronous languages or UML and its derivatives
focused on hybrid systems are briefly explored, namely Ptolemy II and Project P.

Ptolemy II is a framework that allows the combination of heterogeneous model of computations in
order to provide semantics for a model (LEE; ZHENG, 2007). A particular combination of three model
of computations, namely synchronous-reactive, discrete-event and continuous-time, was proposed
in (LEE; ZHENG, 2007). The continuous-time MoC was defined in such a way that it was a general
case from the discrete-event MoC, furthermore, the discrete-event MoC was defined in such a way
that it was a general case of the synchronous-reactive MoC. Hence, the three MoCs were able to
be combined hierarchically in arbitrary order (LEE; ZHENG, 2007). A special treatment was done
when the synchronous-reactive MoC was at the top level of the hierarchy, which could be attractive
because this MoC was amenable to formal analysis, optimization and code synthesis (LEE; ZHENG,
2007). In this case, it should define the passage of time, and then a parameter period was declared,
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which determined a fixed physical time increment between ticks of the global clock. In conclusion,
this work showed that the synchronous-reactive MoC could encode continuous-time provided that
the continuous behaviors were defined at discrete instants.

The goal of project P6 was to enable collaboration between system, control and software engineers
for system-level model integration, verification and code synthesis (BORDIN et al., 2012). The project
assumed that there was no need for new languages, whereas subsets of existing languages should
have a formal definition. In order to enable the integration with existing languages, three modeling
viewpoints were defined and for each one a set of existent languages was selected. The modeling
viewpoints and languages were: (1) system architecture could be defined using SysML/MARTE
or AADL, (2) software architecture should be defined using UML and (3) behavior could be
defined using Simulink, Stateflow, Scicos/Xcos, Embedded Matlab/Scilab or UML (activity and
state machine diagrams). Regarding these viewpoints and languages, models could be imported and
represented in a common formalism, called “P formalism”, henceforth, the internal “P formalism”
could support further analysis and code synthesis.

6http://www.open-do.org/projects/p/
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4 SYNCHRONOUS fUML - AN INTRODUCTION

This chapter starts complementing (BENYAHIA et al., 2010; ROMERO et al., 2013b) with the analysis
of the following example regarding the fUML’s MoC.

Example 22 (Accumulator from VendingMachine modeled using fUML.). For this example, con-
sider that the following system constraint “signals do not occur at the same time” is still valid.
Therefore, the classifier behavior of the accumulator can be expressed using Alf as shown in
Fig. 4.11.

do {
Integer lcredit = 0;

accept(crd:Credit); // CURRENT CREDIT
lcredit = crd.credit;

accept(nickel:NickelSignal) { // NICKEL
lcredit = lcredit + 5;

} or accept(dime:DimeSignal) { // DIME
lcredit = lcredit + 10;

} or accept(gum:GumSignal) { // GUM
lcredit = lcredit - 15; }

this.gumDispatcher.ReceptionCredit( // EMIT CREDIT for DISPATCHER
new Credit( credit => lcredit ) );

this.ReceptionCredit( // EMIT CREDIT for ITSELF
new Credit( credit => lcredit ) );

} while(true);

Figure 4.1 - Accumulator modeled using Alf.

The behavioral definition shown in Fig. 4.1 is the classifier behavior for the Accumulator which
may receive (blocking read) the current Credit and stores its value in a scoped local variable
lcredit. Afterwards, it may receive (blocking read) one of the signals Nickel, Dime or Gum, and
then the updated credit is computed. Finally, it emits (nonblocking write) the updated Credit
to the Dispatcher and to itself so it has the updated credit in the next iteration of the loop(do
{. . . } while(true);). Note the point-to-point communication style provided by Alf and fUML so it
is necessary to know the target active objects and to define sendings for each one explicitly.

As the Accumulator emits to itself the updated credit (a self-loop), this model uses one of the
optimizable patterns recognized by (ABDELHALIM et al., 2012), which causes state space explosion
when model-checked. Besides, this model is nondeterministic taking into account the fUML’s MoC.

In order to show that this model is nondeterministic regarding the fUML’s MoC, consider the
following set of inputs: Credit(0), Nickel and Dime. They should generate the following outputs
after the fixpoint (consider also the Dispatcher shown in Fig. 2.9): Gum and Credit(0). The next
table shows the iterations of the loop(do {. . . } while(true);) in the Accumulator, considering the
ordered inputs from top to bottom and left to right, i.e., the history of the event queue from the

1It is shown using Alf since its fUML representation is big and it does not add value to the
discussion about nondeterminism
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older event to the newer one is: Credit(0), Nickel, Credit(5), Dime, Credit(15) and Gum.

signal 1. iteration 2. iteration 3. iteration
Ordered inputs in the event queue
Credit 0 5 15
Nickel ×
Dime ×
Gum ×
Outputs
Credit 5 15 0

Now, consider the same inputs but with a different history of the event queue for the initial three
events, which is from the older event to the newer one: Credit(0), Nickel and Dime. The difference
is that the Dime arrived in the event queue before the Credit(5) generated by the first iteration of
the Accumulator’s loop. Note the input sets are the same so a deterministic process should produce
the same output (see Definition 2.3). The following table shows the result after the fixpoint.

signal 1. iteration 2. iteration 3. iteration
Ordered inputs in the event queue
Dime ×
Credit 0 5
Nickel ×
Gum

Outputs
Credit 5

This result can be explained as follows. In the second iteration from the Accumulator’s loop, when
it accepts the Credit, the semantics finds a Dime as the first signal in the event pool, this signal
is removed from the event pool and checked against the current accept statements, and as there is
no matching, it is lost. Afterwards, the first signal in the event pool is Credit(5), which is received
and processed, then the code blocks in the next set of accept statements waiting for Nickel, Dime
or Gum.

The reuse of a sole event pool for all signals and lack of time together with the following definition
from fUML lead to this undesirable nondeterministic behavior even in a small example.

If no matching event acceptor is found, the signal instance is not returned
to the event pool and is lost (pp. 168; ((OMG), 2012a)).

One may argue that changes in the previous model can overcome the nondeterminism, e.g., replac-
ing the signal by a local variable, establishing a sort of protocol between the Accumulator and the
active objects that send signals to it, more specifically, considering the signal Credit as a kind of
acknowledgement (ABDELHALIM et al., 2012).

On the contrary, it should be possible to maintain the models as simple as possible and to change
the fUML MoC’s. The event dispatch scheduling examined above is an explicit variation point and
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time is an unconstrained element in fUML (pp.8; ((OMG), 2012a) but the reuse of the sole event pool
is hardly defined in the execution model, therefore, as (BENYAHIA et al., 2010) recognized, changes
in that point are not easily made in the execution model, which in turn makes it difficult or even
impossible to replace the nondeterministic asynchronous fUML’s MoC defined in the execution
model by a deterministic one.

In conclusion, on the one hand the reviewed synchronous-reactive MoC (see Section 2.2.2.1) can
provide determinism and can simplify the modeling and verification tasks, on the other hand,
the execution model provided by fUML, which defines the fUML’s MoC, does not have sufficient
mechanisms to change its asynchronous nondeterministic MoC.

The next section explores an alternative to undertake this impasse. Afterwards, the overview of the
proposed extension is presented discussing syntactics and semantics in an informal way. Finally,
pragmatics is explored. The goal of the next sections is to provide a quick overview of how models
are defined (syntactics) and what are their interpretations regarding the proposed operational
semantics (semantics).

4.1 Language’s Decisions and Requirements

In order to undertake the previously stated impasse about the difficulty of changing the fUML’s
MoC, the first step will be to recall the components from fUML in another perspective. Fig. 4.2
shows the standard meta-models made available by OMG for fUML ((OMG), 2012a). Regarding
object-orientation and bUML, the meta-model Semantics is composed of classes modeling the
semantic domain augmented with operations defined using bUML. Those operations define the
semantic mapping so the object-orientation applied in the Semantics meta-model is the reason
why fUML couples semantic domain and semantic mapping in the so-called execution model, which
indeed is an interpreter, defined in the meta-model Semantics.

Figure 4.2 - Standard meta-models from fUML. Source: Adapted from ((OMG), 2012a).

Therefore, the semantic mapping from fUML is defined using bUML in the meta-model Semantics,
which is part of fUML, the so-called meta-circular definition.

One could consider the text of an interpreter as a formal definition of the
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language that it implements. The language used for writing it should already
have a well-defined interpretation, of course: a so-called, meta-circular inter-
preter, written using the language itself being interpreted, does not formally
define anything at all. (pp. 7; (MOSSES, 2005))

Aware of this weakness of the meta-circular definitions and in order to break this circularity, fUML
defines the base semantics, which specifies when particular executions conform to a model defined
in bUML (pp.351; ((OMG), 2012a)). Consequently, the entire semantic mapping can be replaced
provided that the new one demonstrates by a formal proof that it respects all the definitions of
the base semantics (pp. 7;((OMG), 2012a)).

At this point, two remarks are important: (1) the base semantics, as defined by fUML’s specifica-
tion should totally cover bUML and nothing more, however, as reviewed in Section 2.2.3.3, it does
not cover one element in bUML, namely ActivityFinalNode, and it covers two elements outside
the scope of bUML, namely AcceptEventAction and ReadIsClassifiedObjectAction; and (2) the
base semantics is not consistent. Both remarks are under the OMG’s evaluation (ROMERO et al.,
2014b)(see Appendix B). These remarks lead to the following assumption about bUML and base
semantics.

Assumption 4.1 (bUML and base semantics). In bUML, ActivityFinalNode is replaced by Flow-
FinalNode because the former has a semantics that obligates the definition of the notion of time,
which is an unconstrained element in fUML and, consequently, in bUML (see proof in (ROMERO et

al., 2014b)). Moreover, an inference rule is defined in the base semantics for FlowFinalNode accord-
ing to the proposal from (ROMERO et al., 2014b). The inference rules supporting AcceptEventAction
and ReadIsClassifiedObjectAction are removed from base semantics. Therefore, bUML and base se-
mantics have a perfect matching.

Assumption 4.1 is crucial to enable the definition of a different semantic mapping because consider-
ing it one can prove that a new semantic mapping for bUML is compliant with base semantics. Con-
sequently, it can be used to support an entire new semantic mapping for fUML safely. Morevover,
it supports other model of computations because the SendSignalAction in bUML continues to
write in an abstract event pool, whereas the AcceptEventAction is not anymore constrained. For
example, the synchronous-reactive MoC in which the reaction of absence is possible, and then the
AcceptEventAction shall return a value without the mandatory existence of a previous event in the
event pool of the owning active object2.

In conclusion, taking into account Assumption 4.1, one can define a completely new semantic
mapping reusing the abstract syntax and the semantic domain defined in the meta-models Abstract
Syntax and Semantics respectively. Moreover, it can define this new semantic mapping for bUML,
afterwards, prove that it is consistent with the base semantics and, finally, it can be used to define
a complete new semantic mapping for fUML. This conclusion culminates in Definition 4.2.

2For example, the reaction of absence is not allowed by the inference rule defined in the base
semantics for AcceptEventAction because one event (absence) being not in the event pool should
be present at the output pin after the execution of the action.
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Definition 4.2 (Semantic mapping of synchronous fUML). Due the lack of formality in the
self-defined semantic mapping of fUML, synchronous fUML does not reuse it, furthermore, syn-
chronous fUML uses the base semantics to prove its conformance with the specification. There-
fore, synchronous fUML defines a novel semantic mapping for bUML reusing the abstract syntax
and the semantic domain defined by fUML. This novel semantic mapping is defined using ASMs
since ASM has been successfully used in similar endeavors for other modeling/programming lan-
guages (BÖRGER; STÄRK, 2003; GARGANTINI et al., 2009).

Definition 4.2 allows the introduction of the synchronous-reactive MoC in fUML through a novel
semantic mapping, however, it does not give any clue about how the abstract syntax will be
affected. The abstract syntax shall be affected, for example: in imperative synchronous languages,
there is a specific construct to demarcate the macro-steps pause (BERRY, 2000; SCHNEIDER, 2009);
and in synchronous declarative languages, there are constructs to declare relations between clocks,
e.g., when or current in Lustre (HALBWACHS et al., 1992). Therefore, the question is: what is the
synchronous language paradigm that fits better to fUML? Conjecture 4.3 presents an answer to
this question.

Conjecture 4.3 (Synchronous fUML is better described as an imperative synchronous language).
Although Alf has a functional flavor with an OCL-like syntax supported by the fUML nodes Ex-
pansionNodes and ExpansionRegions ((OMG), 2013a), fUML and Alf are intrinsic imperative
action languages due to their frequent utilization of side effects. For example: AcceptEventAc-
tion removes an event from the event pool (side-effect) and returns this event in its output pin,
SendSignalAction creates a new event in a target event pool (side-effect) without any return.

Table 4.1 provides empirical evidences about Conjecture 4.3 since the structure of the imperative
code for the Dispatcher in Esterel is similar to that of a possible representation using Alf.

Table 4.1 - Comparing the Dispatcher modeled using Esterel and a possible Alf represen-
tation.

Esterel A possible Alf representation

module Dispatcher:
input credit:integer;
output gum;

loop //@pausable
do {

var lcreditd:integer in
lcreditd := pre(?credit);

//@previous initValue=new Credit(credit=>0)
accept(crd:CreditSignal);

if 15 <= lcreditd then
emit gum

end if;

if (15 <= crd.credit) {
this.accumulator.ReceptionGum(
new GumSignal() );

}

end var;
pause;

end loop
end module

} while(true);
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The important similarities are: (1) the explicit use of demarcation of macro-steps in Esterel pause
and in a possible Alf representation @pausable, (2) the reading of a value of a previous signal in
Esterel pre and in a possible Alf representation an accept statement stereotyped with @previous
and (3) the emission of a signal in Esterel emit and in a possible Alf representation a call to a
SendSignalAction. From this, one can infer that the statement await in Esterel is related to the
action AccepEventAction from fUML.

Now recall the abstract syntax from fUML is specified ((OMG), 2012a) and if one wants to use the
large number of existent tools to define UML models then it is not allowed to create completely
new elements in the fUML abstract syntax. Therefore, there are two options for extension of the
abstract syntax from fUML: (1) to change the semantics of already defined elements by using a
profile (respecting the fUML constraints and the base semantics) or (2) to import elements defined
in UML abstract syntax and then to define their semantics.

The above discussion, the definition 4.2 and the conjecture 4.3 lead to the following design decisions
for synchronous fUML:

a) A subset of the abstract syntax from fUML is reused (see Section 4.2);

The abstract syntax from fUML can be extended by a profile (to change the seman-
tics of elements according to the necessities of the synchronous-reactive MoC regarding
an imperative style) or it can be extended by elements already defined in UML;

Exclusions from fUML are still valid, e.g., state machines, streams and actions as
BroadcastSignalAction;

b) The semantic domain from fUML is reused;

The semantic domain from fUML can be extended freely;

c) A novel semantic mapping covers the selected elements from bUML;

The semantic mapping must be defined operationally using the ultra deep embed-
ding technique;

The semantic mapping must provide the synchronous-reactive MoC;

The semantic mapping must provide only access to the previous and current macro-
step (no scheduling for next macro-steps);

It is out of scope the semantics for the entire fUML;

It is out of scope nondeterministic modeling features;

d) It supports broadcast of signals;

e) It defines and supports concurrency according to the constructive semantics;

f) It does not support concurrency inside activities;

g) It does not support advanced concepts of imperative synchronous languages like pre-
emption or advanced treatment of local signals;

h) It does not support object-orientation, which means the object-oriented concepts are
not considered in the semantic mapping (they can be used in the diagrams);
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i) It does not support reclassification of objects. The action ReclassifiyObjectAction is out
of bUML’s scope, therefore, synchronous fUML is a static typed language.

Decision (d) conflicts with the unicast (one-to-one) message pattern provided by fUML, and,
consequently, by Alf. However, broadcast (one-to-many) is required in many real-time systems
and it supports the non-intrusive observation of component interactions by an independent ob-
server (ROMERO et al., 2013a; ROMERO et al., 2013b). Moreover, imperative synchronous languages
provide broadcast as a technique to avoid unnecessary and undesired coding because a sender does
not need to know who and how many the receivers are (providing better composition). (ROMERO

et al., 2014a) recognized that UML composite structure is a feasible standardized option to support
broadcasting in fUML models because ports in active objects can work as relays dispatching sig-
nals received to other active objects. Therefore, the synchronous fUML introduces UML composite
structures in its abstract syntax and its semantic mapping in order to provide broadcasting.

Taking into account the above decisions and discussions, the following high-level requirements were
defined for synchronous fUML:

a) It shall enable modeling (syntax) of discrete behavior applying the abstract notion of
time (see Section 2.2.2);

b) The syntax shall be defined by a subset of fUML;

The syntax shall include UML Composite Structures in order to allow message
broadcasting;

c) The semantic domain from fUML shall be reused;

The semantic domain shall cover clocks of signals in accordance with the time
domain from MARTE (see Section 2.2.3.5);

d) It shall define a semantic mapping for part of bUML using ultra deep embedding;

It shall provide an executable operational semantics defined by ASMs (the op-
erational methods are well-suited for the description of the semantics of synchronous
languages (pp. 83; (SCHNEIDER, 2009)));

It shall provide the synchronous-reactive MoC;

It shall give semantics for constructive systems.

It shall enable proofs that the novel semantic mapping respects base semantics
(through the integration of ASMs and declarative methods);

Considering the constructive models, fUML, a dynamic language (it allows the creation and
destruction of objects during the execution of a model), poses additional challenges for the
constructive semantics. Nevertheless, during this thesis, the creation of objects is centralized in a
main activity so this issue is mitigated. Finally, the following pattern often appears in those models.

Definition 4.4 (Pattern reactive class). Reactive class is a recurrent pattern in the models defined
by synchronous fUML. It means that an active class has a non-instantaneous non-terminating loop
so, once started by the action StartObjectBehaviorAction, it continues running its own “thread”
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infinitely. Therefore, a reactive class is an active class with a non-instantaneous non-terminating
loop.

4.2 Syntactics

This section provides an overview of the syntax of synchronous fUML so the examples presented
in sequel can be explored and explained (see Section 5.2 for details). The abstract syntax supports
the description of structure and behavior.

The synchronous fUML covers the following elements supporting structural modeling: Class, Prim-
itiveType, DataType, ValueSpecification, Property, Reception, Signal, SignalEvent and Trigger. Note
Association and Generalization are not part of the abstract syntax so they can be used in the dia-
grams but the operational semantics does not cover them. Moreover, Association ends not owned
by the Associations are Properties of a Classifier.

In order to support broadcasting, the abstract syntax from synchronous fUML supports composite
structures with the following constraints:

• Constraint 1 - One active object cannot access data that is managed by another active
object (shared data between processes are forbidden). The reason for this constraint is
that shared data can easily make systems inconsistent, and pose challenges to compos-
ability (ROMERO et al., 2014a).

• Constraint 2 - The communication between objects cannot be bi-directional. The reason
for this constraint is that the communication is best understood when the channel
is uni-directional. This simplifies the static, and behavioral analyses, and there is no
expressivity loss because a bi-directional channel can be replaced by two uni-directional
channels (ROMERO et al., 2014a).

• Constraint 3 - Active objects (processes) are solely objects that can exchange messages
asynchronously through signals ((OMG), 2012a).

• Constraint 4 - Connectors have two end points because connectors with more than two
end points are rarely used (“A connector has two end points”; pp. 258; (OBER et al.,
2011); pp. 420; (OBER; DRAGOMIR, 2011)), they introduce unnecessary complexity in
the semantics and there is no expressivity loss (a connector with three endpoints or
more can be replaced by two or more connectors with two endpoints (ROMERO et al.,
2014a)).

Still, regarding composite structures, the required and provided features of a port is defined by
abstract classes and the attribute isConjugated. For example: a port that has type AbstractClassX
and attribute isConjugated equals to false means that the port receives the signals defined by the
abstract class AbstractClassX (an input port), whereas if the attribute isConjugated is equal to
true, the port emits the signals (an output port). Finally, it is possible to define structure and
content of pre-defined runtime instances using: InstanceSpecification and Slot.

Regarding behavioral modeling, synchronous fUML as well as fUML only support user-defined
behaviors described by Activities. Table 4.2 lists the selected subset of bUML activities that is cov-

78



ered by the abstract syntax from synchronous fUML, and the available stereotypes in synchronous
fUML.

Table 4.2 - Activities in bUML defined by Synchronous fUML and available stereotypes.

Node bUML Synchronous fUML Available
stereotypes in

synchronous fUML
Intermediate Activities
ActivityFinalNode X ×
ActivityParameterNode X ×
ControlFlow X X
DecisionNode X X Pausable
FlowFinalNode × X Pausable
ForkNode X X Pausable
InitialNode X X Pausable
MergeNode X X Pausable
ObjectFlow X X
Complete Structured Activities
StructuredActivityNode X ×
Extra Structured Activities
ExpansionNode X ×
ExpansionRegion X ×

The reasons for the exclusions are: ActivityFinalNode - it has no semantics defined by base se-
mantics (see Assumption 4.1); StructuredActivityNode, ExpansionNode and ExpansionRegion - less
effort required in the operational semantics definition without significant loss of the behavioral
modeling capabilities, i.e., activities can be structured hierarchically3. FlowFinalNode is included
because it offers a simple semantics for activity’s ending and it is defined in base semantics (see
Assumption 4.1). Lastly, every ControlNode can be stereotyped with Pausable, which means that
it demarcates the end/begin of macro-steps.

Concerning the actions provided by synchronous fUML, Table 4.3 shows the actions in bUML and
those that are part of synchronous fUML.

The rationale for the exclusions is: CallOperationAction - object-orientation is not in the scope of
the present thesis (see Section 4.1) and TestIdentityAction - as the creation of objects is centralized
in a main activity, it is not a common use case to test the identity of objects.

Eventually, AcceptEventAction is included in synchronous fUML because it is one of the key ele-
ments for the definition of the model of computation. Regarding the synchronous-reactive MoC,

3These exclusions make impossible to relate synchronous fUML models with Alf strictly because
Alf makes use of them frequently in the mapping from its abstract syntax to the fUML abstract
syntax. This is the reason for the use of “possible Alf representations”.
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Table 4.3 - Actions in bUML defined by synchronous fUML and available stereotypes.

Node bUML Synchronous Available
fUML stereotypes in

synchronous
fUML

Basic Actions
CallBehaviorAction X X
CallOperationAction X ×
InputPin X X
OutputPin X X
SendSignalAction X X
Intermediate Actions
AddStructuralFeatureValueAction X X
ClearStructuralFeatureAction X X
CreateObjectAction X X
ReadSelfAction X X
ReadStructuralFeatureValueAction X X
RemoveStructuralFeatureValueAction X X
TestIdentityAction X ×
ValueSpecificationAction X X
Complete Actions
AcceptEventAction × X NonBlockable,

PrecededBy,
Previous

StartObjectBehaviorAction X X

three stereotypes are available in synchronous fUML for the AcceptEventAction: NonBlockable - it
enables the reaction to absence, i.e., in every macro-step the AcceptEventAction stereotyped with
NonBlockable returns a value independently of the presence or absence of an event, in the case of
presence, the signal that caused the event is returned, in the case of absence a “null” is returned
(in the user’s models, there is no representation for absence of values so the action simply returns
“null”); PrecededBy defines that at first tick of the event’s clock a statically defined signal is re-
turned; and Previous enables memory and constructiveness (in closed-loops) establishing that the
value returned is the value of the signal that cause the event in the previous macro-step, besides,
it requires an initial value returned in the first macro-step (as synchronous declarative languages,
see Section 2.2.2).

Ultimately, a part of the foundational model library from fUML is available in synchronous fUML,
namely the following binary operators for reals (+), (*), (<=), the unary operator for real (-), the
following binary operator for booleans (and) and the unary operator for booleans (not).
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4.3 Semantics

This section provides an informal overview of the operational semantics of synchronous fUML to
enable the understanding of the example (see Section 5.4 for details).

Taking into account the language’s requirements, the synchronous-reactive MoC (see Subsec-
tion 2.2.2.1) is provided by synchronous fUML, which in turn defines that it relies on the syn-
chronous hypothesis and on the constructive semantics. Therefore, only constructive models have
interpretations.

The basic building block for concurrency in fUML is an active class. A class becomes an active
class when the modeler assigns the value true to the attribute isActive of the class. Moreover,
every active class must have an activity that defines its behavior, called classifier behavior. Both
definitions are made during the modeling. One can create an object of an active class using the
action CreateObjectAction, however, the creation does not start the classifier behavior. It is needed
to use the action StartObjectBehavior passing as parameter an active object to start the classifier
behavior. Therefore, the existence of an active object does not mean that it is running. This thesis
uses the term “alive” or “dead” for active objects, meaning that their classifier behavior are running
or not, respectively.

Non-terminating loops must be non-instantaneous, otherwise the system is not constructive. Recall
the pattern reactive class (see Pattern 4.4), reactive classes have a non-terminating loop that
must be non-instantaneous meaning that once an active object is started, it runs forever. A non-
terminating loop is not mandatory in every classifier behavior, in fact, a classifier behavior can
terminate. If there is no active object alive, nothing is computed because the premise of UML states
that all behavior in a modeled system is ultimately caused by actions executed by the so-called active
objects (see Subsection 2.2.3.1).

Indeed, synchronous fUML is a synchronous language since it has the essential and sufficient
features (see Definition 2.8), namely:

a) Programs progress via an infinite sequence of macro-steps - the operational semantics
of synchronous fUML defines the semantics for a macro-step;

b) In a macro-step, decisions can be taken on the basis of the absence of signals - as pre-
sented in Subsection 4.2, the action AcceptEventAction stereotyped with Nonblockable
enables the reaction to absence, absence is indicated by the returned value “null”;

c) Communication is performed via instantaneous broadcast - the signals sent to a port
(an active object) that it is not alive are instantaneously broadcasted to all objects
connected (if the active object is alive, it defines a different behavior, in this case,
the broadcast is not done by the semantics). Therefore, when it is defined, parallel
composition is the conjunction of associated macro-steps;

Likewise, a synchronous language, parallel composition of active objects is well-behaved and de-
terministic for constructive models. As Esterel, synchronous fUML deals with computation
and communication as different phenomena. Computation is performed internally to active
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objects and it allows more than one value for a given variable at a given macro-step. The sequence
of values for the variable is determined by the data flow and control flow dependencies. Communi-
cation is only allowed using signals exchanged between active objects and each one of these signals
assumes only one value at a given macro-step.

Finally, synchronous fUML has a main activity that is defined by an activity called Main that
must be defined in the fUML model to be interpreted. This activity should create the active
objects for a given model and start them.

4.4 Pragmatics

This sections explores the pragmatics of the synchronous fUML presenting Example VendingMa-
chine. Note the following example has the same LTSV endingMachineSync shown in Fig. 2.4, and
can be easily compared with the VendingMachine implemented in Esterel shown in Example 6.
The reason is the synchronous fUML provides the synchronous-reactive MoC and it has the
imperative style.

Example 23 (VendingMachine modeled using synchronous fUML.). Recall Example 1 and con-
sider the removal of the constraint that signals do not occur at the same time. A vending machine
has a coin slot and a store of gums. Each gum costs 15 cents. The machine handles signals rep-
resenting the recognition of nickels (5 cents) and dimes (10 cents) in the coin slot. When the
accumulated value sums 15 cents, the machine delivers a gum. The system does not give change,
a change (if there exists) is accumulated for a next processing.

Firstly, the structure of the system covering class diagram and composite structure diagram is
presented, and then, the behavior of the system defined by activity diagrams is shown.

Structure

Regarding the structure, Fig. 4.3 shows the class diagram for the system.

The main points are:

a) The system is modeled with three main active classes: VendingMachineSystem, Accu-
mulator and GumDispatcher ;

b) The Accumulator has the local variable credit that stores the current value of the
credit, furthermore, it assumes more than one value at one macro-step as the code
using Esterel (see Example 6);

c) The abstract active classes are used by a static semantics (not presented in this thesis)
to check validity of the connections defined in the composite structure shown in Fig. 4.4.
The abstract classes are: GumReceiver, MoneyReceiver and CreditReceiver ;

d) The other active classes, namely PortGumReceiver, PortMoneyReceiver and GumDis-
patcher, defines the ports that perform the broadcast of signals. Their classifier behaviors
do not define behavior;
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Figure 4.3 - The structure of VendingMachine modeled using synchronous fUML.

e) The signals of the system are explicitly modeled, which are: Dime, Nickel, Gum and
Credit. The latter signal has the attribute credit that defines the current value of the
credit.

f) The initial value for the signal Credit is defined by the InstanceSpecification InitCredit.

Fig. 4.4 shows the composite structure of the system. The white ports have the attribute isCon-
jugated as false and then they are input ports, while the gray ports have the attribute as false
and, consequently, they are output ports. The system has the input port moneyReceiver, which
receives the events from the environment. The signals received at a given macro-step are broad-
casted for the other endings of its connections, in this case, only the input port moneyReceiver
from the Accumulator receives its signals. The Accumulator emits signals to its output port cred-
itEmitter, which broadcasts them to the GumDispatcher. The GumDispatcher emits signals to its
output port gumEmitter, which broadcasts them to the Accumulator and to the system output
port gumReceiver. From the loop defined in the composite structure between the Accumulator and
Dispatcher, it is clear that one of them must use the stereotype Previous in their receptions in
order to guarantee constructiveness in the model.

Behavior

The classifier behavior from the Accumulator is shown in Fig. 4.5. The behavior starts assigning
the value 0 to the local variable credit using the action AddStructuralFeatureValueAction_credit.
As it is an instance of the pattern reactive class (see Pattern 4.4), it enters into a non-instantaneous
non-terminating loop. The loop begins reading (nonblocking read defined by the stereotype non-
Blockable) the signals Nickel, Dime and Gum, hence, the presence is tested. If the signal is absent
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Figure 4.4 - The composite structure of VendingMachine modeled using synchronous
fUML.

(if the returned value is “null”) the value to be used is 0, otherwise each signal defines the adequate
value being 5, 10 and -15 respectively. Afterwards, the values are summed with the local variable
credit and the computed value is assigned to the same variable using the action AddStructuralFea-
tureValueAction_credit (at the bottom of the diagram). Finally, the Credit signal is emitted to the
port creditEmitter. Note the local variable credit assumes two values at each macro-step, and it
offers local memory.

The classifier behavior from the GumDispatcher is shown in Fig. 4.5. The behavior starts entering
in a non-instantaneous non-terminating loop because Dispatcher is an instance of the pattern
reactive class (see Pattern 4.4). The loop begins with the AcceptEventAction_credit stereotyped
with previous. The application of this stereotype obligates to inform an initial value, in this case,
the value is InitialValueCredit shown in Fig. 4.3. The value for the signal in the previous macro-
step is returned, or the initial value is used in the first macro-step. Afterwards, the retrieved
value is compared by the action CallBehaviorActionLeT: <= against the constant 15 using the
FunctionBehavior (<=) part of the foundational model library from fUML. Finally, if the previous
comparison returned true, the signal Gum is emitted to the port gumEmitter.

Table 4.4 shows the synchronous streams for three macro-steps for the given inputs. Its computa-
tion is based on the constructive semantics defined in Subsection 2.2.2.1, and, it can be roughly
explained as follows. In the first macro-step, the input signals are read, which enables the test
of the presence in the Accumulator until the test of Gum because Gum can be emitted by the
Dispatcher. Concurrently, the Dispatcher is evaluated, it reads a previous value of credit that is
initially defined as 0, hence, it tests its value, and then it reaches the control node stereotype with
Pausable. Now, there is no concurrent process that can generate the Gum and then it is declared
absent, afterwards, the new Accumulator.credit is computed and, finally, it emits the signal Credit.
The following two macro-steps exhibits the same deterministic behavior but with different results
of computation, and, consequently, the value of emitted signals. The clocks are computed using
the definitions 2.3 and 2.4.

Note the interpretation according to the operational semantics and results are the same of the
VendingMachine implemented in Esterel (compare Table 4.4 generated by synchronous fUML with
Table 2.1 generated by Esterel).
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Table 4.4 - Synchronous streams for VendingMachine using synchronous fUML.
Source: synchronous fUML’s simulator.

macro-step 1 macro-step 2 macro-step 3
Input Signals
Nickel true � �
Dime true � �
Output Signals
Gum � true �
Local Signals and Variables
Accumulator.credit 15 0 0
Credit true true true
Credit.credit 15 0 0
previous Credit ⊥ true true
previous Credit.credit ⊥ 15 0
previous Credit.credit (initValue=0) 0 15 0
Clocks
clock(Nickel) true false false
currentT ime(Nickel) 1 1 1
clock(Dime) true false false
currentT ime(Dime) 1 1 1
clock(Gum) false true false
currentT ime(Gum) 0 1 1
clock(Credit) true true false
currentT ime(Credit) 1 2 3
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Figure 4.5 - The classifier behavior for the Accumulator.
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Figure 4.6 - The classifier behavior for the GumDispatcher.
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5 SYNCHRONOUS fUML - THE DESCRIPTION OF THE LAN-
GUAGE

This chapter starts presenting the architecture that supports the definition of the language “syn-
chronous fUML”. Afterwards, the significative parts of abstract syntax, semantic domain and op-
erational semantics (the semantic mapping defined using ASM) are described. Finally, concluding
remarks are shared.

5.1 Defining the Language through Ultra Deep Embedding

Section 4.1 states requirements about the reuse of the available meta-models describing the ab-
stract syntax and semantic domain from fUML as well as about the definition of a novel semantic
mapping using ASM (an operational method). In this section, the architecture for the reuse of the
meta-models supporting the definition of the ASM for synchronous fUML is explained, while the
extensions in those meta-models and the ASM are presented in the sequel.

Recall deep embedding (see Definition 2.2) uses a language Lm with a well-defined semantics, ASM
in this thesis, to represent the semantic mapping for a language L, synchronous fUML in this chap-
ter, considering an embedded abstract syntax and a definition of the semantic domain of L using
Lm. A generalization, covering the semantic domain, leads to the definition of ultra deep embedding.

Definition 5.1 (Semantic mapping representation through ultra deep embedding). Ultra deep
embedding uses a language Lm with a well-defined semantics to represent the semantic mapping for
a language L. It represents, using the same criteria, the abstract syntax and the semantic
domain from the language L using the language Lm (defining the embedded abstract syntax and
embedded semantic domain). Afterwards, the semantic mapping of L is defined using Lm by an
explicit function from the embedded abstract syntax into the embedded semantic domain.

The term same criteria means that the same set of main rules must be applied to the abstract
syntax and the semantic domain, e.g., each class (either in the abstract syntax or in the semantic
domain) defines a domain (a set part of the universe of discourse). Ultra deep embedding can
be easily applied to synchronous fUML since fUML standardizes both the abstract syntax and
the semantic domain using meta-models. Moreover, the meta-modeling of the semantic domain is
called semantic domain modeling (GARGANTINI et al., 2009).

Taking into account the ultra deep embedding of the standardized fUML meta-models, Fig. 5.1
shows the architecture that supports the operational semantics definition of an ASM calledmainSyn
(the ASM of synchronous fUML). It can be explained as follows.

The component m2:Meta-Models is composed of: (1) the extended abstract syntax (the standard-
ized meta-model of fUML extended with UML composite structures using abstract classes to
compute required/provided features), (2) the extended semantic domain (the standardized meta-
model of fUML extended with part of the MARTE time model and synchronous communication
support) and, finally, the synchronous fUML profile (it defines the stereotypes, e.g. Pausable).

The component m1:Models is composed of any user-defined model that conforms to the extended
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abstract syntax possibly using the synchronous fUML profile.

Figure 5.1 - Ultra deep embedding architecture.

The component transformations:MTLs is a key component for the ultra deep embedding archi-
tecture. It is composed of two types of transformations defined using OMG specification MOF
Model-To-Text Transformation Language (MOFM2T), which are: Embedding - M2 - ASM and
Embedding - M1 - ASM. Indeed, only Embedding - M2 - ASM encodes the rules for the ultra deep
embedding. For all executions of this transformation, either receiving abstract syntax or semantic
domain, it produces a formal embedded version of the meta-model, an ASM module. An ASM
module is, in fact, defined using the syntax of the functional language Gofer (AsmGofer (SCHMID,
2001) is based on Gofer, and AsmGofer is the dialect used for the ASM definitions in this thesis),
therefore, it contains data types and functions. Moreover, if the transformation is generating an
embedded version of the abstract syntax then, in addition, it generates another transformation
called Embedding - M1 - ASM. (GARGANTINI et al., 2009) calls Embedding - M2 - ASM a High
Order Transformation because this transformation produces as output another transformation.
Embedding - M2 - ASM uses the encoding rules to generate Embedding - M1 - ASM, which is
responsible for the transformation of a user-defined model (userModel:Model in m1:Models) in an-
other ASM module but now composed only of functions using the data types defined by the ASM
module of abstract syntax.

The component asmModulesAndASM:AsmGofer is the main object of this chapter because it de-
fines the operational semantics for synchronous fUML. It defines all the modules that are imported
by the ASM called mainSyn, some of them are embedded versions, namely abstract syntax, seman-
tic domain and user model, others are manually defined, e.g., the ASM module for the synchronous
fUML profile.
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The component m0:RuntimeModel exists when the operational semantics is executed for a specific
user model. Furthermore, the results of an ASM step of the machine mainSyn can be visualized
by the generated traces, which are: (1) clock - it shows all the clocks and the current time for each
one at a given macro-step and (2) signal - it stores all the signals exchanged between objects at a
macro-step.

Before proceeding with the presentation of language’s components, the main points of Embedding
- M2 - ASM as well as Embedding - M1 - ASM are presented.

Embedding - M2 - ASM

Recall ASM abstract states are defined by algebraic structures, where data come as abstract objects
(one for each category of data), i.e., as elements of sets, with basic operations (see Section 2.2.4).
This definition is the algebraic data types in the functional language Gofer (the basis of AsmGofer),
which is a subset of Haskell. However, it poses a series of challenges for the embedding due to the
object-oriented style applied in the fUML meta-models (SHIELDS; JONES, 2001).

There are some kinds of polymorphism that Haskell doesn’t support, or at
least not natively, e.g., . . . subtyping, common in OO languages, where values
of one type can act as values of another type1.

In this context, the transformation Embedding - M2 - ASM faces the subtyping issue (SHIELDS;

JONES, 2001). For example: in the abstract syntax of fUML an Action is a kind of ActivityNode that
is a kind of RedefinableElement, which is a kind of NamedElement that, finally, is a kind of Element.
One technique to face the subtyping issue is: for each super-class, it is defined an algebraic
data type that has a discriminator used to indicate the sub-classes (GARGANTINI et al.,
2009). Therefore, the sub-classes are disjoint subsets of the set defined by the algebraic data type
of the super-class. This technique defines different sets for each super-class so the super-classes
cannot have relationships of type “is kind of” between them. Otherwise, a class could be part of
two sets, which will turn its manipulation by the operational semantics hard and error-prone. Even
more, a class must be part of one and only one set so it is described by one and only one algebraic
data type with an adequate discriminator. Moreover, the algebraic data types must have a data
constructor for an empty element, i.e., part of the set but not part of any subset (a common pattern
in functional programming languages). This is the technique applied in the ultra deep embedding
for the abstract syntax and for the semantic domain in this thesis, however, the question is which
classes should be chosen in order to guarantee that they define disjoint sets.

The choice of classes is made analyzing the class hierarchy of each meta-model, and passing two
multi-valued parameters for the transformation, which are: (1) the list of the key classifiers, i.e.,
each one defines an algebraic data type, and (2) the list of target classifiers, i.e., the classifiers that
will be part of the sets defined by the key classifiers (which set is the adequate one is defined by
the transformation). These lists must respect the constraints previously discussed, furthermore,
only classifiers in these lists are embedded, which makes easy to select elements from bUML.

1http://www.haskell.org/haskellwiki/Polymorphism#Other_kinds_of_polymorphism
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For example: the execution of Embedding - M2 - ASM that supports the ASM mainSyn chooses
Event as a key classifier and SignalEvent as a target classifier. Therefore, Event has its alge-
braic data type FUML_Syntax_CommonBehaviors_Communications_Event, which has a discrimi-
nator FUML_Syntax_CommonBehaviors_Communications_EventType with only one possible value
SignalEvent FUML_Syntax_CommonBehaviors_Communications_SignalEvent. Additionally, there
is a FUML_Syntax_CommonBehaviors_Communications_EventEmpty allowing empty elements to
be part of the Event set. See the following excerpt where the naming convention for the algebraic
data types are shown (packageHierarchy "_" keyClassifierName").

data FUML_Syntax_CommonBehaviors_Communications_EventType =
FUML_Syntax_CommonBehaviors_Communications_SignalEvent

data FUML_Syntax_CommonBehaviors_Communications_Event =
FUML_Syntax_CommonBehaviors_Communications_Event
String
String
FUML_Syntax_Classes_Kernel_VisibilityKind
FUML_Syntax_Classes_Kernel_VisibilityKind
FUML_Syntax_Classes_Kernel_Classifier
FUML_Syntax_CommonBehaviors_Communications_EventType | FUML_Syntax_CommonBehaviors_Communications_EventEmpty

Another issue is the identity of the sets’ members, while the embedded abstract syntax can
work with static or dynamic ids, the embedded semantic domain only admits dynamic ids. The
dynamism is a required characteristic in the embedded semantic domain because it defines the
meaning of a given instance of the abstract syntax, in other words, the dynamic functions
store the state. Thus, if the identity of the abstract syntax is chosen to be static, another
parameter for the transformation is required (generateSemantics) indicating how the identity of an
algebraic data type is defined. In fact, this thesis chooses to use static ids for the abstract syntax
elements because the ids are statically defined in the meta-model (xmiId) and a user-model (which
instantiates the abstract syntax) is static for the operational semantics. Therefore, when generating
the embedded abstract syntax the xmiId is used as id (see the previous excerpt, the first
String parameter is the xmiId), however, when generating the embedded semantic domain the
id is dynamically generated, which indeed is the use of the ASM reserve to create new elements
(see the following extract where the use of the reserve from ASM is coded using the class Create
for an element from the embedded semantic domain, the Offer).

data FUML_Semantics_Activities_IntermediateActivities_Offer = FUML_Semantics_Activities_IntermediateActivities_Offer
Int | FUML_Semantics_Activities_IntermediateActivities_OfferEmpty

instance Create FUML_Semantics_Activities_IntermediateActivities_Offer where
createElem i = FUML_Semantics_Activities_IntermediateActivities_Offer i

UML PrimitiveTypes are mapped into primitive types of AsmGofer, namely Boolean to Bool,
String to String, Integer and UnlimitedNatural to Int, and Real to Float.

Properties of classes are mapped into ASM functions. Moreover, the properties of the super-
classes and sub-classes of the key classifier which maps to an algebraic data type are also defined
as functions for the algebraic data type. The multiplicity and the meta-properties isOrdered and
isUnique are considered for the definition of the codomain, furthermore, bags (multiplicity greater
than 1 and isOrdered=false and isUnique=false) are reported as error, and ordered sets (multiplicity
greater than 1 and isOrdered=true and isUnique=true) are reported as warnings and mapped

92



into sets. The transformation only considers properties that are owned by a classifier, therefore,
if an association end is owned by the classifier it is embedded, otherwise, not. Consequently,
bidirectional navigations where both association ends are owned by classifiers are embedded as
two functions, one for each classifier. These functions for the embedded abstract syntax can be
static or dynamic, whereas they must be dynamic for the embedded semantic domain (for the
same reason previously presented). The following extract shows the resultant function for the
property offeredTokens from Offer in the embedded semantic domain, which have the following
meta-properties: isOrdered=false, isUnique=true, multiplicity=0..* and type equals to Token. Note
the Dynamic keyword declaring that it is a dynamic function, and the naming decoration for
functions "function_" keyClassifierName "_" [classifierName] "_" propertyName, where
classifierName is optional and can be the name of a super-class or the name of a sub-class (a
target classifier).

function_Offer_offeredTokens :: Dynamic ( FUML_Semantics_Activities_IntermediateActivities_Offer ->
{FUML_Semantics_Activities_IntermediateActivities_Token} )

The same rationale applied for the identity of the sets’ members leads to static functions for
the embedded abstract syntax. As every definition of the embedded abstract syntax are based
on static functions, it is possible to define in the data constructor all the properties that are not
bidirectionality navigable2. The following extract shows the function for the property name defined
by the super-class NamedElement from Event in the embedded abstract syntax. Note the first
parameter of the non-empty data constructor is xmiId and the second is the name a property of
NamedElement, furthermore, two visibilities appear because Event has as its parents two classifiers
that declare visibility, PackageableElement redefines the property visibility from NamedElement.
Finally, note the use of name decoration to give a distinct name to each distinct function of a single
property, e.g., name from NamedElement (SHIELDS; JONES, 2001).

function_Event_NamedElement_name :: FUML_Syntax_CommonBehaviors_Communications_Event -> String
function_Event_NamedElement_name (FUML_Syntax_CommonBehaviors_Communications_Event

xmiId name1 visibility2 visibility3 signal4 fUML_Syntax_CommonBehaviors_Communications_EventType) = name1

The last issue for the transformation Embedding - M2 - ASM is the SemanticVisitor, an instance
of the Visitor design pattern, used by the meta-model of the semantics from fUML inten-
sively, in fact, the execution model. Following the object-oriented design pattern, fUML uses the
Visitor pattern in order to avoid changes in the class hierarchy defined in the abstract syntax
meta-model, at the same time, to provide operations, which are defined using bUML activities
(in reality, each operation has an opaque behavior written in Java but supported by the Java
to UML Activity Mapping). For example: the class from the abstract syntax ActivityNode has a
paired class in the semantic domain called ActivityNodeActivation, which specializes SemanticVis-
itor, has an unidirectional association to one ActivityNode and has the corresponding behaviors.
Nevertheless, this object-oriented pattern does not apply for ASM because behavior is not coupled
with the structure so ultra deep embedding of the classes that are exclusively defined for behavior
definition would only demand more algebraic data types without any new information. Therefore,
the SemanticVisitors defined uniquely for behavior definition are not embedded, e.g.,

2Although circular algebraic data types are not an issue for lazy functional programming lan-
guages, this thesis, avoid them so only not bidirectional properties are defined in the data con-
structor.
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ActivityNodeActivation and Evaluation. This simply means that the semantic domain is embed-
ded, while the semantic mapping defined by operations specified using bUML not, nonetheless,
the operation names for all key classifiers and target classifiers are generated as comments to sup-
port a clear matching between operations in the semantics meta-model and rules in
the ASM semantic mapping. For example, the class Locus from the semantics meta-model of
fUML is chosen as key classifier and target classifier so it defines an algebraic data type without
a discriminator because it does not have sub-classes, in addition, all the properties are embedded
using dynamic functions and its signatures of operations are generated as comments in order to
guide the definition of the semantic mapping (using the same name convention previously shown
but changing the prefix from "function_" to "operatio_").

data FUML_Semantics_Loci_LociL1_Locus = FUML_Semantics_Loci_LociL1_Locus Int | FUML_Semantics_Loci_LociL1_LocusEmpty

function_Locus_executor :: Dynamic ( FUML_Semantics_Loci_LociL1_Locus -> FUML_Semantics_Loci_LociL1_Executor )

-- operatio_Locus_add :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Semantics_Classes_Kernel_Value -> Rule ()
-- operatio_Locus_remove :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Semantics_Classes_Kernel_Value -> Rule ()
-- operatio_Locus_instantiate :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Syntax_Classes_Kernel_Classifier ->
-- Rule FUML_Semantics_Classes_Kernel_Value

In summary, every key classifier defines an algebraic data type. All properties from the super-
classes and sub-classes (target classifiers) are defined for the algebraic data type applying name
decoration. The embedded abstract syntax uses parameters in the non-empty data constructor for
each unidirectional property and a parameter for the xmiId, moreover, all functions are static. While
the embedded semantic domain does not define parameters in the non-empty data constructor using
the reserve from ASM, furthermore, every function is a dynamic function. Finally, the embedded
semantic domain does not have pure SemanticVisitors in the key classifiers or target classifiers.
Although there are particularities between the embedding of abstract syntax and semantic domain,
they share the same set of the main rules, which characterizes the ultra deep embedding.

Finally, when embedding the abstract syntax, Embedding - M2 - ASM must generate the transfor-
mation Embedding - M1 - ASM. The process of generation of Embedding - M1 - ASM is defined by
the same set of rules above described. For each key classifier, all its subclasses listed in the target
classifiers are used to generate a template for one static function for each instance of the target
classifiers. Furthermore, the bidirectional navigable properties generate templates also according
to the same pattern (for each key classifier, all its subclasses listed in the target classifiers)3. The
next subsection briefly discusses the resultant transformation.

Embedding - M1 - ASM

Once Embedding - M1 - ASM is generated by the Embedding - M2 - ASM, it is able to receive
any user-defined model that conforms with the embedded abstract syntax in order to produce an
embedded version of the user-defined model using the algebraic data types defined by the embedded
abstract syntax.

For example, part of the result of an Embedding - M1 - ASM execution for a given model that
has an instance of the SignalEvent called SignalEventReceivingPlantState is shown in the following

3The stereotypes are covered by this transformation, however, it is not presented in this thesis.
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extract.

g_k9JB0E1BEeOwa9EM7pyTgQ ::FUML_Syntax_CommonBehaviors_Communications_Event
g_k9JB0E1BEeOwa9EM7pyTgQ = FUML_Syntax_CommonBehaviors_Communications_Event

"g_k9JB0E1BEeOwa9EM7pyTgQ"
"SignalEventReceivingPlantState"
FUML_Syntax_Classes_Kernel_VisibilityKind_public
FUML_Syntax_Classes_Kernel_VisibilityKind_public
g_IYrDIE0minus_EeOwa9EM7pyTgQ
FUML_Syntax_CommonBehaviors_Communications_SignalEvent

The extract defines a member of the set FUML_Syntax_CommonBehaviors_Communications_Event
that has as identity g_k9JB0E1BEeOwa9EM7pyTgQ, which, in fact, is its xmiId. Specifically,
it is part of the subset FUML_Syntax_CommonBehaviors_Communications_SignalEvent. Fi-
nally, it is publicly visible and it has as Signal a member of another set which identity is
g_IYrDIE0minus_EeOwa9EM7pyTgQ.

In summary, this transformation defines members of the sets defined by the embedded abstract
syntax as well as their relationships. These members form the embedded user-defined model and
are possible inputs for the operational semantics defined in the sequel.

5.2 Abstract Syntax

One major concern from fUML is the compactness ((OMG), 2012a) so this thesis keeps the ab-
stract syntax as small as possible. Therefore, the extended abstract syntax is composed of the
abstract syntax from fUML plus the composite structures CompositeStructure4fUML (ROMERO

et al., 2014a). Recall UML composite structures is a requirement for synchronous fUML (see Sec-
tion 4.1).

The abstract syntax for CompositeStructure4fUML is presented in Fig. 5.2, where meta-elements
(classes, attributes, and relationships) from UML are included in the CompositeStructure4fUML
through copy (as fUML ((OMG), 2012a)). The included elements are marked with part of their qual-
ified name (CompositeStructures). The following properties and associations are removed during
the definition:

• From Port
isService - rationale: the goal of the ports is to establish connections between in-

ternal elements and the environment;
redefinedPort - rationale: ports redefinitions add significant complexity and are

rarely used by engineers (OBER et al., 2011);

• From Connector
contract - rationale: the valid interaction patterns are defined by the features of

the internal elements or connected ports;
redefinedConnector - rationale: connector’s redefinitions add significant

complexity and are rarely used by engineers (OBER et al., 2011).

Specifically, ports (from UML) are changed to compute the required and provided features based on
abstract classes instead of interfaces (excluded from fUML ((OMG), 2012a)). Furthermore, required
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Figure 5.2 - Abstract syntax for CompositeStructure4fUML.
Source: Adapted from (ROMERO et al., 2014a).

and provided features are mutually exclusive, which means: a port defines provided features through
the abstract classes realized by its type4, and the property isConjugated equals to false; or, a port
declares required features through the abstract classes realized by its type, and the attribute
isConjugated equals to true (recall “Constraint 2” in Section 4.2). If more than one independently
defined feature has to be exposed by a given port, an abstract class that specializes all desired
features must be defined.

At this point, there is a meta-model called extendedfUMLAbstractSyntax, which is com-
posed of all elements in fUML without change plus the CompositeStructure4fUML.
Using this meta-model and the parameters key classifiers, target classifiers and gen-
erateSemantics of the transformation Embedding - M2 - ASM the abstract syntax
of synchronous fUML is formally defined by algebraic data types taking into account
bUML.

The parameter key classifiers for Embedding - M2 - ASM has the following values for
synchronous fUML: ActivityEdge, ActivityNode, Classifier, ConnectorEnd, Event, Fea-
ture, InstanceSpecification, Parameter, Slot, Trigger and ValueSpecification. There-
fore, for each one of these classifiers, one algebraic data type (a set) is defined by the
transformation.

4Features defined by abstract classes without receptions and operations are not considered.
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For example, the following extract shows the algebraic data type for the classifier Trig-
ger the FUML_Syntax_CommonBehaviors_Communications_Trigger. Its non-empty data con-
structor receives the xmiId, name, visibility and a reference to a member of the set
FUML_Syntax_CommonBehaviors_Communications_Event (which is the algebraic data type for the
classifier Event), furthermore, it has functions to access these values for a given Trigger.

data FUML_Syntax_CommonBehaviors_Communications_Trigger = FUML_Syntax_CommonBehaviors_Communications_Trigger
String
String
FUML_Syntax_Classes_Kernel_VisibilityKind
FUML_Syntax_CommonBehaviors_Communications_Event | FUML_Syntax_CommonBehaviors_Communications_TriggerEmpty

function_Trigger_event :: FUML_Syntax_CommonBehaviors_Communications_Trigger ->
FUML_Syntax_CommonBehaviors_Communications_Event

function_Trigger_event (FUML_Syntax_CommonBehaviors_Communications_Trigger
xmiId name1 visibility2 event3) = event3

function_Trigger_NamedElement_name :: FUML_Syntax_CommonBehaviors_Communications_Trigger -> String
function_Trigger_NamedElement_name (FUML_Syntax_CommonBehaviors_Communications_Trigger

xmiId name1 visibility2 event3) = name1

function_Trigger_NamedElement_visibility :: FUML_Syntax_CommonBehaviors_Communications_Trigger ->
FUML_Syntax_Classes_Kernel_VisibilityKind

function_Trigger_NamedElement_visibility (FUML_Syntax_CommonBehaviors_Communications_Trigger
xmiId name1 visibility2 event3) = visibility2

Additionally, target classifiers for Embedding - M2 - ASM has the following values for
synchronous fUML: AcceptEventAction, Activity, AddStructuralFeatureValueAction,
CallBehaviorAction, Class, ClearStructuralFeatureAction, Connector, ConnectorEnd,
ControlFlow, CreateObjectAction, DataType, DecisionNode, EncapsulatedClassifier,
FlowFinalNode, ForkNode, FunctionBehavior, InitialNode, InputPin, InstanceSpeci-
fication, InstanceValue, LiteralBoolean, LiteralInteger, LiteralNull, LiteralReal, Lit-
eralString, LiteralUnlimitedNatural, MergeNode, ObjectFlow, OutputPin, Parameter,
Port, PrimitiveType, Property, ReadSelfAction, ReadStructuralFeatureAction, Recep-
tion, RemoveStructuralFeatureValueAction, SendSignalAction, Signal, SignalEvent,
Slot, StartObjectBehaviorAction, StructuredClassifier, Trigger andValueSpecification-
Action. Therefore, for each one of these classifiers, the transformation defines the
adequate algebraic data type (a set) for which it is a subset.

In conclusion, the formal version of the abstract syntax of synchronous fUML is defined by the ultra
deep embedding of the extendedfUMLAbstractSyntax performed by the transformation Embedding -
M2 - ASM with the above specified parameters for key classifiers and target classifiers. The former
parameter defines the algebraic data types (sets as well as functions) and the latter defines subsets
of the previously defined sets. Note there is no manual intervention in the embedded abstract
syntax or in the embedded user-defined model indirectly produced based on the same parameters
by the transformation Embedding - M1 - ASM.

5.3 Semantic Domain

In order to satisfy the requirements about reuse of the semantic domain from fUML and the reuse
of the semantic domain defined by MARTE in the time model (see Section 4.1), the meta-model
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Figure 5.3 - Abstract syntax for MARTE4fUML.

called MARTE4fUML is defined. Again, one major concern from fUML is the compactness ((OMG),
2012a) so this thesis keeps the semantic domain as small as possible. Therefore, MARTE4fUML
extracts only the mandatory classes to support clocks and instants from the time model defined by
MARTE (the extraction does not support relations between instants or time bases in the semantic
domain, see Section 2.2.3.5). Moreover, the Locus from the standardized semantic domain of fUML
is extended to integrate this additional semantic domain focused on clocks. Recall all objects created
during an execution are created at the locus of that execution ((OMG), 2012a).

The subset of time model from MARTE integrated in fUML, called MARTE4fUML, is shown in
Fig. 5.3. MARTE4fUML is defined in such a way that it supports chronometric clocks, those that
have relationship with the physical time. Indeed, one of the ClockTypes defined in MARTE4fUML
is the PhysicalClock. Furthermore, the clocks are managed by the Locus, in particular, the Lo-
cus has one property for a logical clock called reactionClock (nature=discrete, isLogical=true,
and unitType=LogicalTimeUnit) and another one for a logical clock called logicalClock (na-
ture=discrete, isLogical=true, and unitType=LogicalTimeUnit), moreover, it has a set with all
logical clocks in the locus logicalClocks. Finally, it has a property for the only one chronometric
clock allowed in the semantic domain, the physicalClock (nature=discrete, isLogical=false, and
unitType=TimeUnitKind).

At this point, there is a meta-model called extendedfUMLSemanticDomain, which is
composed of all elements in fUML plus the Marte4fUML. Using this meta-model and
the parameters key classifiers, target classifiers and generateSemantics of the trans-
formation Embedding - M2 - ASM, the semantic domain of synchronous fUML is
formally defined by algebraic data types taking into account bUML.

98



The parameter key classifiers of Embedding - M2 - ASM has the following values
for the semantic domain of synchronous fUML: Clock, ExecutionFactory, Executor,
FeatureValue, Instant, Locus, MultipleTimeBase, Offer, ParameterValue, TimeBase,
Token and Value. Therefore, for each one of these classifiers one algebraic data type
(a set) is defined by the transformation.

For example, the following extract shows the algebraic data type for the classi-
fier Instant the FUML_Semantics_Extensions_Clock_Instant. Its non-empty data con-
structor receives an integer and a discriminator because it has subsets, in this case,
only one FUML_Semantics_Extensions_Clock_JunctionInstant (a target classifier). In-
stant has subsets so the extraction of the ASM reserve is made by the rule
rule_FUML_Semantics_Extensions_Clock_Instant_create where the target subset is a pa-
rameter for the extraction of the reserve (using a unique identifier provided by the function
newIntegers). Afterwards, two functions are declared. The first one is a static function that
returns the subset of a given instant. The next one is a dynamic function in charge of the state’s
storage of a given instant.

data FUML_Semantics_Extensions_Clock_InstantType = FUML_Semantics_Extensions_Clock_JunctionInstant

data FUML_Semantics_Extensions_Clock_Instant = FUML_Semantics_Extensions_Clock_Instant
Int
FUML_Semantics_Extensions_Clock_InstantType | FUML_Semantics_Extensions_Clock_InstantEmpty

rule_FUML_Semantics_Extensions_Clock_Instant_create :: FUML_Semantics_Extensions_Clock_InstantType ->
Rule FUML_Semantics_Extensions_Clock_Instant

rule_FUML_Semantics_Extensions_Clock_Instant_create fUML_Semantics_Extensions_Clock_InstantType =
result( FUML_Semantics_Extensions_Clock_Instant (head $ newIntegers 1) fUML_Semantics_Extensions_Clock_InstantType)

function_Instant_type :: FUML_Semantics_Extensions_Clock_Instant -> FUML_Semantics_Extensions_Clock_InstantType
function_Instant_type (FUML_Semantics_Extensions_Clock_Instant

id fUML_Semantics_Extensions_Clock_InstantType) = fUML_Semantics_Extensions_Clock_InstantType

function_Instant_date :: Dynamic ( FUML_Semantics_Extensions_Clock_Instant -> Float )
function_Instant_tb :: Dynamic ( FUML_Semantics_Extensions_Clock_Instant -> FUML_Semantics_Extensions_Clock_TimeBase )

Additionally, the parameter target classifiers of Embedding - M2 - ASM has the following
values for the embedded semantic domain of synchronous fUML: ActivityExecution,
BooleanValue, ControlToken, DataValue, DiscreteTimeBase, ExecutionFactory, Ex-
ecutor, FeatureValue, IntegerValue, JunctionInstant, Locus, LogicalClock, Multiple-
TimeBase, Object, ObjectToken, Offer, ParameterValue, PhysicalClock, RealValue,
Reference, SignalInstance, StringValue and UnlimitedNaturalValue. Therefore, for
each one of these classifiers the transformation defines the adequate algebraic data
type (a set) for which it is a subset.

Until here, the semantic domain from synchronous fUML is automatically defined by the trans-
formation Embedding - M2 - ASM implementing the ultra deep embedding technique. However,
manually defined algebraic data types and functions are needed to complete the embedded seman-
tic domain covering the following topics: (1) SemanticVisitor, (2) synchronous communications,
(3) statically defined clocks used by the semantic mapping and (4) synchronous agents.

The SemanticVisitors (1) are not embedded (due to a decision, see Section 5.1), however, three key
functions defining the state of an ActivityExecution would be defined by them. The ActivityNode-
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Activation defines the property heldTokens and isRunning, while ActivityEdgeInstance (not indeed
a SemanticVisitor in the meta-model) (pp. 188;((OMG), 2012a)) defines the property offers. In
order to support these functions, a domain for tuples are manually declared, and then the needed
functions are manually defined.

In the case of ActivityNodeActivation, a synonym for the tu-
ple containing a Value and an ActivityNode is defined
FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation, which
defines a set for the tuple. Afterwards, the dynamic functions representing the properties are
manually defined following the same rules used by the transformation Embedding - M2 - ASM.
The following excerpt shows the result of the synonym definition for the tuple (type in Gofer)
and the functions.

type FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation =
(FUML_Semantics_Classes_Kernel_Value, FUML_Syntax_Activities_IntermediateActivities_ActivityNode)

function_ActivityNodeActivation_heldTokens :: Dynamic (
FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation ->
{FUML_Semantics_Activities_IntermediateActivities_Token} )

function_ActivityNodeActivation_isRunning :: Dynamic (
FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation -> Bool )

In the case of ActivityEdgeInstance, a synonym for the tuple containing a Value and an ActivityEdge
is defined FUML_Semantics_Activities_IntermediateActivities_ActivityEdgeInstance. Af-
terwards, the dynamic function representing the property is manually defined following the same
rules used by the transformation Embedding - M2 - ASM. The following extract shows the result.

type FUML_Semantics_Activities_IntermediateActivities_ActivityEdgeInstance =
(FUML_Semantics_Classes_Kernel_Value, FUML_Syntax_Activities_IntermediateActivities_ActivityEdge)

function_ActivityEdgeInstance_offers :: Dynamic (
FUML_Semantics_Activities_IntermediateActivities_ActivityEdgeInstance ->
{FUML_Semantics_Activities_IntermediateActivities_Offer} )

Synchronous communications (2) define how the signals exchanged by active objects are stored.
The standardized semantic domain defines the property eventPool from the class ObjectActivation.
However, once more, it is an alternative to define behavior and structure together, even more, recall
the idea of event pool as a list does not match with the synchronous paradigm (see Section 3.1.3).
Therefore, this thesis defines manually a dynamic function that supports the signals’ storage called
function_fUML_signals. In fact, this dynamic function is a generalization of a functional signal in
the tagged-signal model (see Subsection 2.1.1) supporting all signals in only one dynamic function.
A synonym SignalTag is defined for the following components: (a) the sender active object (it may
be empty when signals come from the environment), (b) the receiver active object (mandatory),
(c) the Classifier of the Value exchanged and the logical time defined by the reactionClk (see
detailed discussion about the MoC of synchronous fUML in Subsection 5.4). The codomain of the
function is defined by the Value exchanged. Additionally, a special signal AbsentSignal is declared
to track causality (supporting a three-valued logic, see Subsection 2.2.2.1) using the static function
function_Instance_Classifier_Signal_absentSignal. See the extract below.

function_fUML_signals :: Dynamic (SignalTag -> SignalValue)

type SignalTag =
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(FUML_Semantics_Classes_Kernel_Value, FUML_Semantics_Classes_Kernel_Value,
FUML_Syntax_Classes_Kernel_Classifier, Int)

type SignalValue = FUML_Semantics_Classes_Kernel_Value

function_Instance_Classifier_Signal_absentSignal :: FUML_Syntax_Classes_Kernel_Classifier
function_Instance_Classifier_Signal_absentSignal = FUML_Syntax_Classes_Kernel_Classifier "AbsentSignal" ...

FUML_Syntax_CommonBehaviors_Communications_Signal

The two logical clocks (3) defined in the Locus, namely reactionClk and logicalClock, depends
on events to be used in the semantic mapping since clocks are only supported for SignalEvents
in synchronous fUML. Therefore, the following static functions are defined, which declare the
existence of events for these clocks (managed by the semantic mapping). Moreover, the reactionClk
is the global logical time concept from the synchronous-reactive MoC (or macro-step counter)
and logicalClk counts how many times the discrete behavior is evaluated - it shall tick at least
one time for each reaction (expressed by the CCSL defined in the extended semantic domain
logicalClk isSporadicOn reactionClk gap 1;). In the case of synchronous fUML, reactionClk
is always equals to logicalClock.

function_Instance_Event_semanticEventForReactionClk ::FUML_Syntax_CommonBehaviors_Communications_Event
function_Instance_Event_semanticEventForReactionClk = FUML_Syntax_CommonBehaviors_Communications_Event

"reactionClk" "reactionClk" FUML_Syntax_Classes_Kernel_VisibilityKind_public
FUML_Syntax_Classes_Kernel_VisibilityKind_public FUML_Syntax_Classes_Kernel_ClassifierEmpty
FUML_Syntax_CommonBehaviors_Communications_SignalEvent

function_Instance_Event_semanticEventForLogicalClk ::FUML_Syntax_CommonBehaviors_Communications_Event
function_Instance_Event_semanticEventForLogicalClk = FUML_Syntax_CommonBehaviors_Communications_Event

"logicalClk" "logicalClk" FUML_Syntax_Classes_Kernel_VisibilityKind_public
FUML_Syntax_Classes_Kernel_VisibilityKind_public FUML_Syntax_Classes_Kernel_ClassifierEmpty
FUML_Syntax_CommonBehaviors_Communications_SignalEvent

Synchronous agents (4) are defined by ASM conceptually, where multiple agents interact con-
currently in a synchronous way. A set of agents is defined by a dynamic function that has as
domain the Values (ActivityExecutions) and codomain a Rule that receives the Value (SCHMID,
2001; BÖRGER; STÄRK, 2003), see the dynamic function function_fUML_Agents in the extract
below. Moreover, a dynamic function for the storage of the current mode of an agent is defined
function_fUML_Agents_mode, and, finally, a function to allow hierarchies of agents is defined
function_fUML_Agents_parent.

function_fUML_Agents :: Dynamic (FUML_Semantics_Classes_Kernel_Value ->
(FUML_Semantics_Classes_Kernel_Value -> Rule ()))

function_fUML_Agents_mode:: Dynamic (FUML_Semantics_Classes_Kernel_Value -> FUML_Status)
function_fUML_Agents_parent :: Dynamic (FUML_Semantics_Classes_Kernel_Value -> FUML_Semantics_Classes_Kernel_Value)

In summary, the most part of the semantic domain is defined by ultra deep embedding using
the same criteria applied for the abstract syntax. The exceptions are: (1) SemanticVisitor, (2)
synchronous communications, (3) statically defined clocks used by the semantic mapping and (4)
synchronous agents. The first three exceptions could be defined in the meta-model and then the
transformation could be improved to cover them, however, this thesis prefers to deal with them as
exceptions. Nonetheless, the (4) synchronous agents could not be defined in the meta-model since
they use in their codomain an element that is part of ASM, namely Rule. Therefore, the embedded
semantic domain is composed of an embedded one and additional parts manually defined to cover
the four exceptions discussed above.
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5.4 Operational Semantics

Once there are formal versions based on algebraic data types for the embedded abstract syntax and
for the embedded semantic domain, the semantic mapping is defined by an explicit function from
the abstract syntax into the semantic domain. However, in an operational semantics, the concept
of state of semantic domain is defined and then a series of transitions regarding the abstract syntax
is described in terms of changes to that state (see Section 2.1). In ASMs, the concept of mutable
state is described by dynamic functions, whereas the series of transitions are defined by the firing
of transition rules (see Subsection 2.2.4). Taking into account the embedded abstract syntax (static
functions) and the embedded semantic domain (dynamic functions), this section presents the main
transition rules that form the operational semantics of synchronous fUML.

The next subsection presents how the abstraction of the execution environment Locus is opera-
tionalized, afterwards, three actions are explored ValueSpecificationAction, SendSignalAction and
AcceptEventAction, and then, the execution of activities is explained. Finally, the initial rule and
the main rule of the ASM mainSyn are presented. In the following, the presence of "..." in the
rules indicates that the rule is not completely shown.

Locus

The embedded semantic domain has three algebraic data types that come from the package Loci
from fUML, namely: Locus, ExecutionFactory and Executor. This subsection shows the main tran-
sition rules defined in order to support their consistent manipulation. Note these three elements
are part of the semantic domain, even though, they have transition rules. These transition rules
do not match the classical notion of a function from abstract syntax into semantic domain since
they are defining transition rules from the semantic domain into the semantic domain.

Locus is an abstraction of the execution environment, moreover, every behavior runs at a
specific locus, even more, objects can only exist at a locus. In other words, it stores all
the existent objects5. Therefore, one can add a value FUML_Semantics_Classes_Kernel_Value
into a locus FUML_Semantics_Loci_LociL1_Locus using the rule operatio_Locus_add. Note
the ASM Rule has exactly the same signature of the fUML standard interpreter given in
Java. This rule changes the state executing an update that changes or defines the value
for the dynamic function function_Value_ExtensionalValue_locus and the parameter v.
Hence, one can query the whole set of existent objects of a given locus using the function
function_Locus_extensionalValues, which searches in the domain of the previous function
dom function_Value_ExtensionalValue_locus for the received parameter locus l. See extract
below.

-- CLASS FUML_Semantics_Loci_LociL1_Locus

-- JAVA: public void add(fUML.Semantics.Classes.Kernel.ExtensionalValue value)
operatio_Locus_add :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Semantics_Classes_Kernel_Value -> Rule ()
operatio_Locus_add l v = function_Value_ExtensionalValue_locus(v) := l

function_Locus_extensionalValues :: FUML_Semantics_Loci_LociL1_Locus -> {FUML_Semantics_Classes_Kernel_Value}
function_Locus_extensionalValues l = mkSet $ filter (\v -> (function_Value_ExtensionalValue_locus v) == l )

$ expr2list $ dom function_Value_ExtensionalValue_locus

5Disregarding Links that are beyond the scope of bUML.
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Still, taking into account Locus, one can instantiate a new object for a given classifier cl
at a given locus l using the rule operatio_Locus_instantiate. Again, the ASM Rule has
exactly the same signature of the fUML standard interpreter given in Java. The rule starts
checking that the classifier is either a kind of Activity or a kind of Class, hence, it takes
from the reserve (ASM) a new Value and puts in the adequate subset (Activity or Class)
(rule_FUML_Semantics_Classes_Kernel_Value_create vt), afterwards, it stores the type of
the newly created object using the dynamic function function_Value_Object_types, and then,
the newly created object is stored at the locus and, finally, returned. This rule uses another rule,
namely operatio_Locus_add, showing how consistency is maintained through the operational
semantics definition. See the extract below.

-- CLASS FUML_Semantics_Loci_LociL1_Locus

-- JAVA: public fUML.Semantics.Classes.Kernel.Object_ instantiate(fUML.Syntax.Classes.Kernel.Class_ type)
operatio_Locus_instantiate :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Syntax_Classes_Kernel_Classifier ->

Rule FUML_Semantics_Classes_Kernel_Value
operatio_Locus_instantiate l cl =

let ct = function_Classifier_type cl in
if ct == FUML_Syntax_Activities_IntermediateActivities_Activity || ct == FUML_Syntax_Classes_Kernel_Class then

let vt = if ct == FUML_Syntax_Activities_IntermediateActivities_Activity then
FUML_Semantics_Activities_IntermediateActivities_ActivityExecution else
FUML_Semantics_Classes_Kernel_Object in

do
nv <- (rule_FUML_Semantics_Classes_Kernel_Value_create vt)
function_Value_Object_types(nv) := {cl}
operatio_Locus_add l nv
result(nv)

else
do

result(FUML_Semantics_Classes_Kernel_ValueEmpty)

The ExecutionFactory supports the creation of executions for activities. One can use the rule
operatio_ExecutionFactory_createExecution to create a newActivityExecution for the Activity
cl using the object c as context. It guarantees the presence of the newly created object at the
locus calling the rule operatio_Locus_add.

-- CLASS FUML_Semantics_Loci_LociL1_ExecutionFactory

-- JAVA: public fUML.Semantics.CommonBehaviors.BasicBehaviors.Execution createExecution(
-- fUML.Syntax.CommonBehaviors.BasicBehaviors.Behavior behavior,
-- fUML.Semantics.Classes.Kernel.Object_ context) {
operatio_ExecutionFactory_createExecution :: FUML_Semantics_Loci_LociL1_ExecutionFactory ->

FUML_Syntax_Classes_Kernel_Classifier -> FUML_Semantics_Classes_Kernel_Value -> Rule FUML_Semantics_Classes_Kernel_Value
operatio_ExecutionFactory_createExecution f cl c =

let l = function_ExecutionFactory_locus f in
let ct = function_Classifier_type cl in

if ct == FUML_Syntax_Activities_IntermediateActivities_Activity then
do

nv <- (rule_FUML_Semantics_Classes_Kernel_Value_create
FUML_Semantics_Activities_IntermediateActivities_ActivityExecution)

function_Value_Object_types(nv) := {cl}
function_Value_Execution_context(nv) := c
operatio_Locus_add l nv
result(nv)

else
do

obe <- (operatio_ExecutionFactory_instantiateOpaqueBehaviorExecution f cl)
result(obe)
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Finally, the Executor from fUML supports evaluation, execution and start of active objects. Never-
theless, in synchronous fUML, it supports only the evaluation because the other features are dealt
in a different way: execution is managed by the synchronous agents and starting active objects is
simply the creation and starting of an activity execution for its classifier behavior. One can use
the rule operatio_Executor_evaluate to evaluate a ValueSpecification vs.

-- CLASS FUML_Semantics_Loci_LociL1_Executor

-- JAVA: public fUML.Semantics.Classes.Kernel.Value evaluate(
-- fUML.Syntax.Classes.Kernel.ValueSpecification specification) {
operatio_Executor_evaluate :: FUML_Semantics_Loci_LociL1_Executor -> FUML_Syntax_Classes_Kernel_ValueSpecification ->

Rule FUML_Semantics_Classes_Kernel_Value
operatio_Executor_evaluate e vs =

case function_ValueSpecification_type(vs) of
FUML_Syntax_Classes_Kernel_LiteralInteger ->

do
nv <- (rule_FUML_Semantics_Classes_Kernel_Value_create FUML_Semantics_Classes_Kernel_IntegerValue)
function_Value_PrimitiveValue_type(nv) := integer
function_Value_IntegerValue_value(nv):= function_ValueSpecification_LiteralInteger_value vs
result(nv)

FUML_Syntax_Classes_Kernel_LiteralNull -> result(FUML_Semantics_Classes_Kernel_ValueEmpty)
...

In summary, the Locus is a fundamental concept in fUML and synchronous fUML, moreover,
the presented transition rules allow a consistent manipulation of objects and executions in the
operational semantics in accordance with fUML.

Actions and Control Nodes

Concerning actions and control nodes, their rules have the expected format for an op-
erational semantics, i.e., they always have an abstract syntax element in the domain of
the transition rules. The abstract syntax element is always together with an ActivityExecu-
tion that is demanding its execution, which means that they allow multiple concurrent ex-
ecutions of the same abstract syntax element in different ActivityExecutions. Furthermore,
this pair ActivityExecution and ActivityNode is defined by the embedded semantic domain
as FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation. A tran-
sition rule is defined for each action and control node supported by synchronous fUML. Finally,
synchronous fUML covers 5 control nodes and 13 actions due to the lack of space the rule for the
action ValueSpecificationAction is completely presented and the actions enabling communication,
namely SendSignalAction and AcceptEventAction, are partially presented (see Section 4.2).

All the signatures of rules for actions and control nodes follow the same pattern
FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation -> Rule ().
They also share the same structure, which is, in fact, inherited from the base semantics. The
reason for the use of similar structure from the base semantics is to enable an easier rewriting
of the defined ASM rules in first-order logic regarding the predicates defined by base semantics,
moreover, the structure enables concurrent execution of the rules due to the fine-grained guards.

The following extract shows the rule that supports the execution of the action ValueSpecifica-
tionAction. It starts checking the following conditions: the abstract syntax element vsa is a Val-
ueSpecificationAction, the activity running vl has vsa, the ValueSpecificationAction has a Val-
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ueSpecification v and the ValueSpecificationAction has an OutputPin r. Afterwards, it checks
whether the ActivityNodeActivation is ready for execution or not, i.e., it has a control token.
Finally, it uses the rule previously presented operatio_Executor_evaluate to evaluate the Val-
ueSpecification, and then a new ObjectToken is taken from the reserve and the dynamic function
function_ActivityNodeActivation_heldTokens has its value changed, which means that the
OutputPin has an ObjectToken with the result of the evaluation.

-- CLASS FUML_Semantics_Actions_IntermediateActions_ValueSpecificationActionActivation
-- FUML_Syntax_Actions_IntermediateActions_ValueSpecificationAction

-- JAVA: public void doAction()
operatio_ValueSpecificationActionActivation_doAction ::

FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation -> Rule ()
operatio_ValueSpecificationActionActivation_doAction (vl, vsa) =

let vsab = (function_ActivityNode_type(vsa) == FUML_Syntax_Actions_IntermediateActions_ValueSpecificationAction) in
let acvsab = function_fUML_activityHasNode (function_fUML_activity vl) vsa in
let v = function_ActivityNode_ValueSpecificationAction_value vsa in
let r = function_ActivityNode_ValueSpecificationAction_result vsa in

-- checking: it is a ValueSpecificationAction, is for the classifier from the value, has a value and has a result
if vsab && acvsab && v /= FUML_Syntax_Classes_Kernel_ValueSpecificationEmpty

&& r /= FUML_Syntax_Activities_IntermediateActivities_ActivityNodeEmpty then

let ex = function_Locus_executor (function_Value_ExtensionalValue_locus vl) in

-- checking: it has token
if function_ActivityNodeActivation_isReady(vl, vsa) then

do
-- evaluate
vc <- (operatio_Executor_evaluate ex v)
-- create object token
ot <- (rule_FUML_Semantics_Activities_IntermediateActivities_Token_create

FUML_Semantics_Activities_IntermediateActivities_ObjectToken)
function_Token_ObjectToken_value(ot):= vc
function_ActivityNodeActivation_heldTokens(vl,r) := {ot}

else
rule_fUML_out $ "operatio_ValueSpecificationActionActivation_doAction - partially evaluated"

else
if vsab && acvsab then

-- stdout
rule_fUML_out $ "operatio_ValueSpecificationActionActivation_doAction - partially evaluated"

else
skip

Action, the Communications Enabler

In synchronous fUML, communication is only allowed using signals exchanged between
active objects and each one of these signals assumes only one value at a given macro-
step. The communication is enabled by two actions: (1) SendSginalAction that running in an
active object sends one signal for a given target object and (2) AcceptEventAction that running in
an active object reads one signal and puts its value in an OutputPin. Moreover, AcceptEventAction
can be stereotyped by NonBlockable, Previous and PrecededBy.

Taking into account SendSignalAction, it fulfills two necessities (a) creating and sending an
instance of a signal to a target active object and (b) broadcasting. Recall SendSignalAc-
tion only allows unicast (one-to-one communication) and UML composite structures is available
in synchronous fUML, among other reasons, to enable broadcasting. The broadcasting is achieved
using a SendSignalAction that sends a signal to a port that is an active object (one-to-one com-
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munication). Hence, there are two options: (1) the port has its running classifier behavior so it
is responsible for the treatment of the signal or (2) the port does not have its running classifier
behavior and, in this case, the semantics searches for all connected active objects to the port (recall
the “constraint 4” in Section 4.2 only two endpoints are allowed for a connector) and performs a
unicast (one-to-one) for each one of them using the same process (recursively defined). Therefore,
the broadcast is reduced to unicast in the semantics of synchronous fUML, what explains the tuple
SignalTag. The tuple SignalTag defines exactly this relationship between sender and receiver for
a kind of signal at a given macro-step (see Section 5.3). Note the user model must create an object
for port, otherwise, the SendSignalAction is impossible since it would not exist a target object.

Now consider that the rule operatio_SendSignalActionActivation_doAction created the signal
to be sent and called the rule rule_fUML_addSignalValue passing the sender object ct, the
receiver object obj, the classifier of the signal sig and the value of the signal o. Afterwards,
the rule rule_fUML_addSignalValue checks whether the new value is compatible with a possible
previously defined value or not. The compatibility constraints are: (1) it is not possible to mix
instances of the absent signal with instances of the classifier of the signal and (2) once there exists
a value for the receiver and the classifier of the signal, the new value must have the same values for
the attributes of a previously defined signal instance. These two constraints consider part of the
SignalTag disregarding only the sender object. In fact, they define operationally the monotonic
behavior needed by the constructive semantics (see Subsection 2.2.2.1). When these constraints are
satisfied, it uses the dynamic function function_fUML_signals to define the SignalValue for the
given SignalTag (see Section 5.3). Finally, it calls the rule rule_fUML_broadcastSignal in charge
of broadcasting taking into account the receiver object (only active objects, without running their
classifier behavior, as value of properties defined by ports are considered for broadcasting). See the
extract below.

rule_fUML_addSignalValue :: (String, FUML_Semantics_Classes_Kernel_Value,
FUML_Semantics_Classes_Kernel_Value, FUML_Syntax_Classes_Kernel_Classifier, FUML_Semantics_Classes_Kernel_Value)
-> Rule ()

rule_fUML_addSignalValue (nn,ct,obj,sig,o) =
-- 1. avoid mixture
-- it has an absent value and it is trying to put a value
-- it has values and it is trying to put an absent value
if (hasab && not oabs) || (hasnab && oabs) then

error("rule_fUML_addSignalValue - Causality problem. It is not allowed to redefine the signal " ++ show sig
++ " by the action " ++ nn)

else
-- 2. avoid different values
if (hascs && not (cos ‘operatio_Value_equals‘ o)) then

error("rule_fUML_addSignalValue - Causality problem. Different values for an existent signal " ++ show sig
++" by the action " ++ nn)

else
do

function_fUML_signals(ct, obj, sig, rt) := o
rule_fUML_broadcastSignal (nn,ct,obj,sig,o)

...

While the action SendSignalAction is the sole action that updates the dynamic function
function_fUML_signals with non-absent values, only the action AcceptEventAction updates this
dynamic function with absent values in order to support the reaction to absence. Despite the absent
value is operationally represented by an instance of the absent signal classifier (see Section 5.3),
the unknown value does not have representation. The unknown value simply means that a given
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SignalTag does not have a SignalValue. The action AcceptEventAction has four key tasks: (1) it
enables an active object to read a received signal, (2) it may cause the suspension of an
activity execution depending on its configuration and the current state of the dynamic function
function_fUML_signals, (3) in some situations, it may define an absent value for a given signal
allowing the reaction to absence and (4) it manipulates the clock of the signal events. In
the sequel, the semantics of the stereotypes Previous and PrecededBy are not presented.

A crucial function for the operational semantics of synchronous languages is the function that
determines if a given signal can be emitted at current macro-step (SCHNEIDER, 2009). Syn-
chronous fUML declares this function, namely function_fUML_signal_CAN_beGenerated, that
receives the current activity execution FUML_Semantics_Classes_Kernel_Value and the classi-
fier for the signal FUML_Syntax_Classes_Kernel_Classifier, and returns a Boolean value in-
dicating whether the signal can be emitted at current macro-step or not. It has an initial defi-
nition (a rudimentary one) that supports the examples, furthermore, it is only used by the rule
operatio_AcceptEventActionActivation_doAction.

Disregarding the stereotypes Previous and PrecededBy, the following extract from the rule
operatio_AcceptEventActionActivation_doAction shows that the rule starts checking if the
signal can be generated at current macro-step. If it can be generated then the activity execution
is suspended with the status FUML_Status_WaitingSignal. Otherwise, if the dynamic function
functions_fUML_signals has a SignalValue for the current active object as receiver, the clas-
sifier of the signal and the current reaction then the clock of the corresponding signal event is
incremented by the rule rule_fUML_incrementEventClock and if there exists only one value the
value is put in theOutputPin. In case of non-existence of values and the application of the stereotype
NonBlockable, an instance of the absent signal is created, updated using the previously discussed
rule rule_fUML_addSignalValue (it may broadcast the absent value) and a value null is put in
the OutputPin. The presence of a value null defined in fUML in an output pin of the AcceptEven-
tAction means that the signal is defined at current macro-step as an absent value (the reaction
to absence). Finally, if there is no value and the stereotype NonBlockable is not applied then the
activity execution is suspended with the status FUML_Status_WaitingSignalBlocked.

...
-- not previous, not using precededBy or it is not the first tick
if not prev && not (prec && function_fUML_isFirstTick l ev) then

-- checking if others can generate the signal
if function_fUML_signal_CAN_beGenerated vl sig then

-- MARKING THAT THIS SIGNAL CAN ARRIVE IN THIS DISCRETE EVALUATION
rule_fUML_activityExecution_suspend vl FUML_Status_WaitingSignal aea

else
-- NOBODY can generate the signal... so
-- it has a value
if length cots > 0 then

let firstO = head cots in
do

-- RETURNING A VALUE
-- marking the occurrence of the event
rule_fUML_incrementEventClock l ev
-- write object token with signals
forall o <- cots do

do
if not ( o ‘operatio_Value_equals‘ firstO) then

error( "operatio_AcceptEventActionActivation_doAction - Causality problem."
++ " Signal defined with different values. " ++ show aea)
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else
do

-- object token
ot <- (rule_FUML_Semantics_Activities_IntermediateActivities_Token_create

FUML_Semantics_Activities_IntermediateActivities_ObjectToken)
function_ActivityNodeActivation_heldTokens(vl,res) := {ot}
function_Token_ObjectToken_value(ot):= o

else
...

-- NONBLOCKABLE
if nonb then

...
-- create an absent signal
o <- (rule_FUML_Semantics_Classes_Kernel_Value_create

FUML_Semantics_CommonBehaviors_Communications_SignalInstance)
function_Value_SignalInstance_type(o) := absig
...
-- store signal without sender
rule_fUML_addSignalValue (function_ActivityNode_NamedElement_name(aea),FUML_Semantics_Classes_Kernel_ValueEmpty,

ct, sig, (function_fUML_storeSignalSupport(vl, aea)))
...

else
-- MARKING THAT THIS SIGNAL WILL NOT ARRIVE IN THIS MACRO-STEP
rule_fUML_activityExecution_suspend vl FUML_Status_WaitingSignalBlocked aea

...

In conclusion, the actions SendSignalAction and AcceptEventAction define how active objects ex-
change signals and the impact of this exchange in activity executions. The next subsection discusses
how the execution of an activity is performed, which possibly fires one or more actions that enables
communication.

Execution of an Activity

There are three types of execution in fUML, the first one is the execution of activities ActivityEx-
ecution, the second one is the execution of classifier behaviors ClassifierBehaviorExecution and
the last one is the execution of opaque behaviors OpaqueBehaviorExecution (e.g., used in order to
support the foundational library). While the execution of activity and opaque behaviors are sup-
ported by synchronous fUML, the execution of classifier behaviors, as defined by fUML, is not since
the execution of classifier behaviors simply means the execution of the corresponding activities.
Finally, the execution of activities is one of the central concepts in synchronous fUML covering
synchronous execution and token flow semantics, therefore, the execution of activities is presented.

As synchronous fUML does not cover complete structured activities and extra structured activi-
ties (see Section 4.2), it does not need activation groups in the semantic domain, ActivityNodeAc-
tivationGroup in the fUML ((OMG), 2012a). Moreover, as synchronous fUML is based on the base
semantics, it does not cover more than one incoming control flow to actions (see “10.4.7.4 Action
to Action, single control flow, optional merge/fork” at page 380 and “10.4.8.4 Action with pins,
one incoming control flow from action, optional fork/merge” at page 380 from ((OMG), 2012a)).
Additionally, synchronous fUML covers, in the operational semantics, only actions and
object nodes with at most one incoming and at most one outgoing edge. Finally,
all actions produce and/or consume only one object token per action’s execution in
synchronous fUML so the ObjectNodes always have upper multiplicity equal to one
(1).
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Recall ASM supports synchronous agents (see Section 2.2.4). Disregarding activities initiated by
the action CallBehaviorAction, all ActivityExecutions are synchronous ASM agents. Synchronous
ASM agents see the same current state (dynamic functions) and they compute updates for the
next state. When all of them conclude their steps, the updates are checked for consistency, and if
they are consistent they define a new state. Otherwise, an error is generated. Therefore, multiple
activity executions can run changing values for a common object, however, the consistency condi-
tion from ASM must be always achieved. In synchronous fUML, there is only one kind of agent
ActivityExecution and a common rule for all agents operatio_Value_Execution_execute.

The rule operatio_Value_Execution_execute shown in the following ex-
tract calls the rule operatio_Value_ActivityExecution_execute. The rule
operatio_Value_ActivityExecution_execute checks if the received value is an Activi-
tyExecution, and then, it uses the iterate operator to run as much as steps until the update set
becomes empty, e.g., if there is an instantaneous non-terminating loop in the activity the rule does
not halt. These two rules define the basic model of activity executions of synchronous
fUML. One step for an activity execution means to run many internal steps (until
a fixed point), moreover, all the activity executions (including those from classifier
behaviors) do one outer step and synchronize allowing the consistency check and the
committing of a new state.

operatio_Value_Execution_execute :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
operatio_Value_Execution_execute v =

do
operatio_Value_ActivityExecution_execute v
operatio_Value_OpaqueBehaviorExecution_execute v

operatio_Value_ActivityExecution_execute :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
operatio_Value_ActivityExecution_execute v =

let vt = function_Value_type(v) in
if vt == FUML_Semantics_Activities_IntermediateActivities_ActivityExecution then

do
-- using iterate to run until pause, accept or termination
iterate (rule_fUML_activityExecution_executeOneStep v)

...

The rule rule_fUML_activityExecution_executeOneStep is responsible for what is commonly
called token flow semantics (BÖRGER; STÄRK, 2003; SARSTEDT; GUTTMANN, 2007; ROMERO

et al., 2013b). Moreover, it centralizes the scheduling of internal actions providing an alter-
native to address the issue of scattered scheduling algorithm (COMBEMALE et al., 2013). The
following extract shows the rule rule_fUML_activityExecution_executeOneStep, it simply
calls other rules specialized in each possible task that defines one internal step. The rule
rule_fUML_activityExecution_fire runs a given enabled Action or ControlNode. The rule
rule_fUML_activityExecution_takeOffer transforms an Offer in a Token at a given Activi-
tyNode. The rule rule_fUML_activityExecution_sendOffer creates new an Offer. These three
rules follows the presented order as priority, which means if it is possible to fire an Action or a
ControlNode then it is fired before the propagation of tokens, afterwards, when there is no node to
fire, the reception of tokens can occur, and, finally, when there is no node to fire and no token to be
received, then a new offer is created. In general, there is no priority between nodes and edges, the
sole exception is the control nodes stereotyped with Pausable. The offer for control nodes stereo-
typed with Pausable are always the last one to be created. The reason is that due to the lack of
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JoinNode in bUML and synchronous fUML it may be the case that a control node stereotyped
with Pausable could be scheduled and fired before the execution of all actions enabled for an outer
step. See the extract below.

rule_fUML_activityExecution_executeOneStep :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
rule_fUML_activityExecution_executeOneStep v =

do
rule_fUML_activityExecution_fire v
rule_fUML_activityExecution_takeOffer v
rule_fUML_activityExecution_sendOffers v
rule_fUML_activityExecution_terminate v
rule_fUML_activityExecution_createInitialControlTokens v

The rule rule_fUML_activityExecution_fire as discussed above runs an enabled ac-
tion or control node. It starts checking if the value v is an activity execution that
is running FUML_Status_Running. Afterwards, it checks if there is an action or a con-
trol node to fire not (null ns). If there is at least one, one of the nodes is se-
lected (without any priority). The node is marked as running using the dynamic function
function_ActivityNodeActivation_isRunning, and all the rules for control nodes and actions
are evaluated concurrently (only one of them causes updates). Finally, if the running node is
stereotyped with Pausable (function_fUML_stereotypedActivityNode Pausable n) the activ-
ity is suspended.

rule_fUML_activityExecution_fire :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
rule_fUML_activityExecution_fire v =

if function_Value_type(v) == FUML_Semantics_Activities_IntermediateActivities_ActivityExecution
&& function_fUML_Agents_mode(v) == FUML_Status_Running then
if not (null ns) then

do
-- marking as running
function_ActivityNodeActivation_isRunning(v,n) := True
-- executing control node
operatio_MergeNodeActivation_fire (v,n)
operatio_FlowFinalNodeActivation_fire (v,n)
operatio_ForkNodeActivation_fire (v,n)
operatio_DecisionNodeActivation_fire (v,n)
operatio_InitialNodeActivation_fire (v,n)
-- executing actions
operatio_ValueSpecificationActionActivation_doAction (v,n)

...

-- check if the node is marked as pausable
if (function_fUML_stereotypedActivityNode Pausable n) then

rule_fUML_activityExecution_suspend v FUML_Status_Paused n
else skip

else skip
else

skip
where

ns = expr2list $ function_fUML_shouldFire v
(vns,n) = head ns

The rule rule_fUML_activityExecution_takeOffer transforms an Offer in a Token at a
given ActivityNode. It starts checking if the value v is an activity execution that is running
FUML_Status_Running. Afterwards, it checks if there is an offer to be taken by an activity node
(not (null ns2)) and there is no action or control node to be fired (null ns). If there is at least
one, one of the nodes is selected (without any priority). Hence, the offer is removed, the token is
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removed from the previous node and added to the next. Recall synchronous fUML covers, in the
operational semantics, only actions and object nodes with at most one incoming and at most one
outgoing edge. This restriction allows the movement of tokens according to the rule below.

rule_fUML_activityExecution_takeOffer :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
rule_fUML_activityExecution_takeOffer v =

if function_Value_type(v) == FUML_Semantics_Activities_IntermediateActivities_ActivityExecution
&& function_fUML_Agents_mode(v) == FUML_Status_Running then

if not (null ns2) && (null ns) then
do

...
-- remove offer
function_ActivityEdgeInstance_offers(v,e2) := {}
forall off <- expr2list(function_ActivityEdgeInstance_offers(v,e2)) do

function_Offer_offeredTokens(off) := {}
-- remove token from previous
function_ActivityNodeActivation_heldTokens(v,nsource) :=

function_ActivityNodeActivation_heldTokens(v,nsource) ‘difference‘ t
-- enabling previous to run again (with other token)
function_ActivityNodeActivation_isRunning(v,nsource) := False
-- add token to the next
function_ActivityNodeActivation_heldTokens(v,n2) := function_ActivityNodeActivation_heldTokens(v,n2) ‘union‘ t

else skip
else

skip
where

ns = expr2list $ function_fUML_shouldFire v
ns2 = expr2list $ function_fUML_shouldTakeOffer v
(vns2,n2) = head ns2
...

The rule rule_fUML_activityExecution_sendOffers creates an Offer. It starts checking if the
value v is an activity execution that is running FUML_Status_Running. Afterwards, it checks if
there is an offer to be created (not (null es)), there is no offer to be taken by an activity node
(null ns2) and there is no action or control node to fire (null ns). If there is at least one, one of
the offers is created (with priority for offers that do not have as target an activity node stereotyped
with Pausable).

rule_fUML_activityExecution_sendOffers :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
rule_fUML_activityExecution_sendOffers v =
if function_Value_type(v) == FUML_Semantics_Activities_IntermediateActivities_ActivityExecution

&& function_fUML_Agents_mode(v) == FUML_Status_Running then
if (not (null es)) && (null ns2) && (null ns) then

create off do
function_Offer_offeredTokens(off) :=

function_ActivityNodeActivation_heldTokens(v, function_ActivityEdge_source(e))
function_ActivityEdgeInstance_offers(v,e) := {off}

else skip
else skip
where

ns = expr2list $ function_fUML_shouldFire v
ns2 = expr2list $ function_fUML_shouldTakeOffer v
es = function_fUML_shouldOfferPrioritized v
(ve,e) = head es

The rule rule_fUML_activityExecution_terminate terminates an activity execution. It starts
checking if the value v is an activity execution that is running FUML_Status_Running. Afterwards,
it checks if there is no offer to be created (null es), there is no offer to be taken by an activity
node (null ns2) and there is no action or control node to fire (null ns). If there is nothing
to be done, it terminates the activity execution. If the activity execution does not have a parent
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agent, it destroys the activity execution. If the activity execution has a parent agent, it marks as
not running so the parent agent can perform the adequate procedure for the terminated child.

rule_fUML_activityExecution_terminate :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
rule_fUML_activityExecution_terminate v =

if function_Value_type(v) == FUML_Semantics_Activities_IntermediateActivities_ActivityExecution
&& function_fUML_Agents_mode(v) == FUML_Status_Running then
-- it terminates when there is nothing to do
if (null es) && (null ns2) && (null ns) then

if function_fUML_Agents_parent v == FUML_Semantics_Classes_Kernel_ValueEmpty then
-- removing object, if it has no parent
operatio_Value_Object_destroy v

else
-- marking as terminated
function_fUML_Agents_mode(v) := FUML_Status_Undef

else skip
else skip
where

ns = expr2list $ function_fUML_shouldFire v
ns2 = expr2list $ function_fUML_shouldTakeOffer v
es = function_fUML_shouldOfferPrioritized v

The rule rule_fUML_activityExecution_createInitialControlTokens creates the initial con-
trol tokens. It starts checking if the value v is an activity execution that is not initialized
FUML_Status_NotInitialized. Afterwards, it creates control tokens for the InitialNodes and all
the actions that does not have incoming and InputPin. Finally, it changes the status of the agent
for running FUML_Status_Running.

rule_fUML_activityExecution_createInitialControlTokens :: FUML_Semantics_Classes_Kernel_Value -> Rule ()
rule_fUML_activityExecution_createInitialControlTokens v =

let vt = function_Value_type(v) in
if function_Value_type(v) == FUML_Semantics_Activities_IntermediateActivities_ActivityExecution

&& function_fUML_Agents_mode(v) == FUML_Status_NotInitialized then
let cl = function_fUML_oneClassifierType v in
let acs = function_fUML_actionsToBeInitiallyTriggered cl ++ function_fUML_initialNodes cl in
do

-- put control token at initial nodes and executable nodes without incomming and without input
forall n <- acs do

nct <- (rule_FUML_Semantics_Activities_IntermediateActivities_Token_create
FUML_Semantics_Activities_IntermediateActivities_ControlToken)

function_ActivityNodeActivation_heldTokens(v,n) := {nct}
-- marking as running
function_fUML_Agents_mode(v) := FUML_Status_Running

else skip

In conclusion, the set of rules presented in this subsection defines the notion of one computational
step for an activity execution, which covers the token flow semantics according to the restrictions
previously stated. Therefore, one step for an activity is indeed the execution of many internal
steps until a fixed point, that is reached by three possible cases: termination, pause (a control
node stereotyped with Pausable was fired) or waits for a signal (AcceptEventAction). Inconsistent
updates and non-convergent behavior (instantaneous non-terminating loops) are errors.

Initial Rule

The initial rule rule_fUML_init determines the valid initial states of the ASM mainSyn (see
Subsection 2.2.4). It has two main goals: (1) instantiate and configure a locus and (2) create an
agent for an activity called main that must exist in the embedded version of a user-defined model.
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The first goal (instantiate and configure a locus) is shown in the extract be-
low by the retrieve from the reserve of a Locus create l do, an ExecutionFactory
create f do, an Executor create ex do and a MultipleTimeBase create mtb do.
Using these newly created elements the locus l is configured using the dynamic
functions function_Locus_executor and function_Locus_factory, which are de-
fined in the embedded semantic domain. Additionally, the clocks of the Locus
are configured: a clock of type FUML_Semantics_Extensions_Clock_LogicalClock
is retrieved from the reserve and associated with the statically previously
defined event function_Instance_Event_semanticEventForReactionClk, a
clock of type FUML_Semantics_Extensions_Clock_LogicalClock is retrieved
from the reserve and associated with the statically previously defined event
function_Instance_Event_semanticEventForLogicalClk and, lastly, a clock of type
FUML_Semantics_Extensions_Clock_PhysicalClock is retrieved from the reserve defining
the PhysicalClk available in the semantic domain with unit as seconds. The configuration of a
locus and its associated elements are simple but long so only a part of it is shown in the extract
below.

The second goal (create an agent) is performed using the locus and associated elements previ-
ously instantiated and configured, specifically, it uses the execution factory f to create an ex-
ecution for the activity main without a context (empty value) using the previous defined rule
operatio_ExecutionFactory_createExecution. An error is generated if there is no main avail-
able. Afterwards, the newly created ActivityExecution is defined as an agent that when executed
runs the previously shown rule operatio_Value_Execution_execute. Finally, the new agent has
its mode defined as not initialized in order to allow the creation of its initial control tokens.

rule_fUML_init :: Int -> Float -> Bool -> Rule ()
rule_fUML_init rt ds ea =

if emptyDom function_fUML_Agents then
let res = function_fUML_getResolutionPhysicalClk in
do

create l do
create f do

create ex do
create mtb do

-- locus’ setup
function_Locus_executor(l):= ex
function_Locus_factory(l):= f
-- factory’s setup
function_ExecutionFactory_locus(f):= l
-- executor’s setup
function_Executor_locus(ex):= l
...

‘seq‘

let l = function_fUML_locus in
let f = function_Locus_factory l in
let reactionClk = function_Locus_reactionClock l in
let reactionPeriod = function_fUML_Clock_getPeriod reactionClk in
do

-- create an execution for the main (MANDATORY NAME)
ex <- (operatio_ExecutionFactory_createExecution f main FUML_Semantics_Classes_Kernel_ValueEmpty)
-- create agent
function_fUML_Agents(ex):= operatio_Value_Execution_execute
-- setting mode
function_fUML_Agents_mode(ex) := FUML_Status_NotInitialized
...
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rule_fUML_initSyn :: Rule ()
rule_fUML_initSyn = rule_fUML_init 0 0.0 False

The rule rule_fUML_initSyn is used for the initialization of the machine mainSyn since its pa-
rameters define that there is no evolution of physical time in synchronous fUML (completely
independent of physical time).

Main Rule

Heretofore, it is described: (1) a formal embedded semantic domain described by algebraic data
types (see Section 5.3), (2) transition rules to consistently manipulate the abstraction for a place
of executions Locus (see Section 5.4), (3) transition rules for the actions including the actions
that are responsible for communications and that can have a direct impact on the activity exe-
cutions (see Section 5.4), (4) transition rules for the execution of activities as independent syn-
chronous agents (see Section 5.4), and, finally, (5) a transition rule that instantiate and configure
a Locus as well as create the initial agent for the activity main available in an embedded user-
defined model (see Section 5.4). The main transition rule glues all these pieces defining the
meaning of one macro-step for synchronous fUML.

Commonly, the meaning of one macro-step of synchronous languages takes the form of a pseudo-
code, e.g., page 103 from (SCHNEIDER, 2009) and page 84 from (BAUER, 2012). Nevertheless, in
synchronous fUML, due to the use of the ASM formalism, the meaning of one macro-step defined
by the main rule has exactly the same form of the other previously defined transition rules using
the same algebraic data types available in the embedded semantic domain. Moreover, usually, a
macro-step is composed of the following tasks: reading all inputs, computing all outputs w.r.t. the
internal state and updating the internal state for the next macro-step (SCHNEIDER, 2009; BAUER,
2012). Nonetheless, the main rule of synchronous fUML does not read inputs since the dynamic
function function_fUML_signals is available to establish a possible bridge between the external
environment and the operational semantics of synchronous fUML (if applicable), furthermore, the
main rule does not update the internal state for the next macro-step because it is not allowed
writings to the next macro-step. Therefore, the main rule of synchronous fUML computes all the
outputs w.r.t. the internal state.

The following extract shows the main rule rule_fUML_mainSyn from the ASM mainSyn, which
defines the meaning of one macro-step (see Definition 2.7). The ASM mainSyn defines the oper-
ational semantics of synchronous fUML. The rule begins checking whether there exists at least
one agent or not. It checks the domain of the dynamic function function_fUML_Agents de-
fined in the embedded semantic domain. Afterwards, it prepares for a macro-step calling the
rule rule_fUML_prepareReaction. The rule rule_fUML_prepareReaction changes the status
of all paused agents to running, additionally, it generates an event for the reactionClk, which
results in a new instant with date equals to the previous instant plus one. Subsequently, it
calls the rule rule_fUML_prepareDiscreteStep, which generates an event for the logicalClk.
Hence, the central part of the rule is reached. The combination of the operators iterate and
multiDeterm has the following combined effect: multiDeterm - all synchronous agents (activ-
ity executions) viewing the same state run one step (defined by the previously discussed rule
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operatio_Value_Execution_execute), and then, the computed update sets of all agents are
checked about the consistency, hence, if they are consistent the state is updated; and iterate
- if the state is updated the multiDeterm runs again, otherwise, a fixed point is reached and the
iteration terminates. The next rule rule_fUML_checkDiscreteStepsSync is responsible to syn-
chronize all the clocks, which means that newly increased instants are now the current instants.
Finally, the rule rule_fUML_garbageCollector cleans the embedded semantic domain removing
unused instances of the algebraic data types.

-- MAIN RULE
rule_fUML_mainSyn :: Rule ()
rule_fUML_mainSyn =

if not (emptyDom function_fUML_Agents) then
-- (R) REACTION
-- (RA) prepare reaction
rule_fUML_prepareReaction
‘seq‘
-- (D) DISCRETE
-- (DA) prepare a discrete step
rule_fUML_prepareDiscreteStep
‘seq‘
(
-- (DB) it tests: discrete behavior evaluation should be done
if function_fUML_executeDiscreteSteps l then

-- (DC) evaluate discrete behavior until fix point
iterate (multiDeterm function_fUML_Agents)

else
skip

)
‘seq‘
-- (DD) synchronize time bases
rule_fUML_checkDiscreteStepsSync
‘seq‘
-- garbage collector
rule_fUML_garbageCollector

else
skip

where
-- locus
l = function_fUML_locus

Taking into account the transition rules for the actions SendSignalAction and AcceptEventAction
as well as the transition rules that support the execution of activities (agents), the above described
combination of iterate and multiDeterm describes a constructive set of rules to incrementally
compute the outputs for a so-far empty set of SignalValues (for the newly incremented reaction-
Clk). This set of rules performs a fixpoint iteration that is based on an evaluation of the transition
rules where the signals are endowed with two additional values, the unknown value represented by
the lack of a SignalValue for a given SignalTag and the absent value represented by an instance
of the absent signal. These rules then execute, on the one hand, all the control nodes and actions
that do not depend on SignalValues regardless what values will finally replace the preliminary
unknown values, and on the other hand, the rules constructively suspend activity executions that
cannot be executed regardless what values will finally replace the preliminary unknown values.

In conclusion, the main rule orchestrates the execution of agents in such a way that the
constructive semantics of synchronous languages is achieved so synchronous fUML
exhibits the synchronous-reactive MoC. Additionally, the fixpoint iteration covers
only communication, the computation is performed based on data dependencies, fur-
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thermore, while communication allows only one value for a signal at a macro-step,
the computation allows multiple values for an object or a property of an object at a
macro-step.

Model of Computation

Synchronous fUML exhibits the synchronous-reactive MoC (see Subsection 2.2.2.1) so it applies
the constructive semantics for synchronous processes defined by activity executions for classifier
behaviors of active objects and it should be unequivocally described by: (1) the tag set T = N>0

with the usual numerical order (Tsem ⊂ T is the set of all tags used by the semantics of synchronous
fUML), (2) the set of values Vb = V ∪ {�,⊥} and (3) a set of k functions, one for each signal, sk :
T → Vb. Additionally, ∀t 6∈ Tsem ⊆ T , s(t) = ⊥ and ∀t1, t2 ∈ Tsem, t1 ≤ t2, s(t2) 6= ⊥ ⇒ s(t1) 6= ⊥,
which means that once a signal is defined for t2 the signal for t1 shall be previously defined.

Nevertheless, synchronous fUML does not define k functions sk one for each signal in its operational
semantics. Operationally, it defines one function that supports all receiving processes (active objects
in synchronous fUML, Ar ⊆ A) and all possible kinds of signal C (user-defined signals) so the
domain of such general function would be Ar × C × T , which would lead to the following function
gs : (Ar×C×T )→ Vb. In this case, a partial function application with a fixed receiving process ar
and a fixed kind of signal c would lead to partial(gs, ar, c) : T → Vb, which is the element of the set
sk for the process ar and the kind of signal c. However, as discussed in Section 5.3 the domain of
the dynamic function functions_fUML_signals has the sending process also so the final domain
is As×Ar ×C ×T , where As ⊆ A. Once more, a partial function application with a fixed sending
process as, a fixed receiving process ar and a fixed kind of signal c leads to the respective element
of the set sk. Therefore, the dynamic function defined in the embedded semantic domain is:

Toper = (As ×Ar × C × T )

function_fUML_signals : Toper → Vb
partial(function_fUML_signals, as, ar, c) : T → Vb

(5.1)

where: as is a sending active object (it may be empty when signals come from the environment),
ar is a receiving active object (mandatory), c is the classifier of a UML Signal exchanged between
sender and receiver, t ∈ T is an instant of the time base of the reactionClk, and vb ∈ Vb is an
instance of the classifier of the UML Signal exchanged between sender and receiver, or an instance
of the absent signal (�) or undefined (⊥).

The reason for the expanded operational domain of the dynamic function is partly explained by
the generality (receiving active object and kind of signal). The addition of the sending active object
is explained for two reasons: (1) in the possible next versions, composition of received signals could
be allowed - this feature is available in Esterel (pp. 49; (BERRY, 2000)), where valued signals can
be combined by an associative and commutative function, furthermore, this may be a common
requirement (ROMERO et al., 2013a) - and (2) the consistency check of the semantics of ASM would
cause system errors if it detects inconsistent updates for the same receiving active object, kind of
signal and macro-step counter, however, these errors would be harder to track so the operational
semantics prefers to deal with this issue using its rules allowing better error messages in case of
causality errors.
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However, the last addition can easily turn a functional signal in one non-functional because
multiple senders can send different values for the same receiver, kind of signal and macro-step
counter. Therefore, the following axiom is defined in the current version of the operational
semantics.

Axiom 5.2. Only one value is defined for a receiving active object, a kind of signal and an instant
so a signal is always functional in synchronous fUML povided that the model is constructive.

∀(as1, ar1, c1, t1) ∈ Toper,

∀(as2, ar2, c2, t2) ∈ Toper,

(ar1 = ar2 ∧ c1 = c2 ∧ t1 = t2)⇒

function_fUML_signals(as1, ar1, c1, t1) = function_fUML_signals(as2, ar2, c2, t2)

(5.2)

Axiom 5.2 is enforced by the transition rules rule_fUML_addSignalValue and
operatio_AcceptEventActionActivation_doAction in the operational semantics.

Therefore, synchronous fUML exhibits the synchronous-reactive MoC using a general version of
the tag set, which indeed characterizes the multiform notion of time. Moreover, the processes are
defined by the running classifier behaviors (activities) of active objects that run synchronously due
to the mainSyn rule (see Section 5.4).

Finally, the general notion of clock defined based on the presence or not of a signal is not followed by
synchronous fUML (see Subsection 2.2.2.1). The reason is that the logical clocks defined according
to MARTE (see Subsection 2.2.3.5) are based on SignalEvents (a UML SignalEvent has a reference
to a UML Signal) in synchronous fUML, which means that they only tick when there is, at least,
one AcceptEventAction referring the SignalEvent at a given macro-step. This establishes that the
same UML Signal can have different clocks with different speeds due to different SignalEvents used
in AcceptEventActions. Note MARTE4fUML is available in the semantic domain of synchronous
fUML, however, there is no syntactical element to declare user-defined clocks and constraints
between them (in synchronous fUML, all SignalEvents are clocks in the sense of MARTE).

5.5 Concluding Remarks

In this technical chapter, it is presented how and why the standardized abstract syntax and se-
mantic domain are extended likewise how they are automatically embedded through the technique
ultra deep embedding into the ASM formalism. Afterwards, the main transition rules that define
the operational semantics are presented and discussed including the rule rule_fUML_mainSyn that
defines the meaning of one macro-step in synchronous fUML. Finally, the model of computation is
explored showing that the synchronous-reactive MoC is exhibited by synchronous fUML.

Although the proof of conservativeness regarding bUML was not achieved “it is possible to prove
formally that the extended fUML is compliant with fUML” since the base semantics given by fUML
revealed inconsistent (ROMERO et al., 2014b), the formal treatment pursued together with the strict
use of bUML likewise the structure of the base semantics for the ASM rules (see Subsection 5.4) re-
vealed this inconsistency likewise other issues in the specification published by OMG (see Appendix
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B ). Once these issues are addressed by OMG this hypothesis can be re-evaluated.

The conclusion is that synchronous fUML, a research language, is a synchronous language so it
exhibits the synchronous-reactive MoC, furthermore, it is formally defined by one ASM reusing
the abstract syntax and the semantic domain from fUML regarding bUML. Although embedded
user-defined models can be directly simulated by the operational semantics, this is not the goal of
the formal semantics. The goal is to evaluate the feasibility of such novel deterministic semantics
for fUML and its properties. Moreover, a well-formed user-defined model is one that has behaviors
that only depend on the structural and behavioral elements defined in the embedded abstract
syntax (it can use more than the embedded abstract syntax but this should be only used for
visualization). Lastly, a well-behaved user-defined model must be in accordance with the following
definition.

Definition 5.3 (Well-behaved user-defined model for synchronous fUML). A well-behaved user-
defined model regarding the operational semantics of synchronous fUML must fulfill the following
conditions:

• A macro-step computation consists of only finitely many actions, which rules out in-
stantaneous non-terminating loops;

This would prevent the evaluation of other rules with exception of those called by
operatio_Value_Execution_execute so a macro-step would never terminate;

• It does not have behaviors which conflict about writings on existent properties or cre-
ation of new properties of objects;

This would cause an error due to the detection of inconsistent update sets (ASM);

• It is constructive;

Non-constructive models are not covered by the operational semantics of syn-
chronous fUML, which is based on the constructive semantics.

Remark 5.1 (Restrictions from hardware/software viewpoint). A well-behaved user-defined model
for synchronous fUML does not satisfy the usual restrictions for a real-time system implementa-
tion defined regarding the hardware/software viewpoint. For the hardware/software viewpoint, the
usual restrictions are: (1) avoidance of dynamic features, represented in fUML by the actions Cre-
ateObjectAction and DestroyObjectAction, (2) avoidance of recursion, represented in synchronous
fUML by the possibility of the usage of the action CallBehaviorAction in a recursively manner,
(3) avoidance of instantaneous loops, in synchronous fUML, they are allowed provided that they
terminate and (4) avoidance of unbounded data types, e.g., arrays must have an upper bound.
Consequently, the memory boundedness and the limited usage of computation resources are not
necessarily achieved by a model describing the system view. Note those restrictions are fundamental
for the hardware/software viewpoint, while they may be too restrictive for the system viewpoint,
furthermore, they can be taken into account in the hardware/software views.

In conclusion, this chapter presents evidences that “it is possible to use the unconstrained semantics
areas from fUML, namely time and concurrency, to define a synchronous extension of fUML with

118



formal semantics described by Abstract State Machines” so the hypothesis is valid. Moreover, the
ASM mainSyn is available as free software as part of this thesis (ROMERO, 2014b).
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6 HYBRID fUML - AN INTRODUCTION

This chapter starts analyzing the state of the art of hybrid extensions of synchronous languages
(see Section 3.2) with the following theorem.

Theorem 6.1 (Reviewed hybrid extensions of synchronous languages are not synchronous lan-
guages). Hybrid Quartz and Zélus do not fulfill essential and sufficient features of synchronous
languages (see Definition 2.8).

Proof. To prove that Theorem 6.1 is true, it is sufficient to find one example that violates one of
the three essential and sufficient features of synchronous languages (see Subsection 2.2.2). Taking
into account the feature of parallel composition as the conjunction of associated macro-steps, the
following example is suggested: consider the BouncingBall modeled using Hybrid Quartz shown in
Fig. 3.1, then it has the following synchronous streams of signals up to the third macro-step1:

signal macro-step 1 macro-step 2 macro-step 3
initialPosition1 10 0 0
position1 10 ≈ −0.66 ≈ −0.66
velocity1 0 ≈ −14.71 ≈ 7.35

then compose another independent process but duplicating the signals (the processes are
independent) and using a different initial position equals to 2 for the second process, then the
resulting program has the following synchronous streams of signals up to the third macro-step:

signal macro-step 1 macro-step 2 macro-step 3
initialPosition1 10 0 0
position1 10 ≈ 7.76 ≈ 7.76
velocity1 0 ≈ −6.86 ≈ −6.86
initialPosition2 2 0 0
position2 2 ≈ −0.23 ≈ −0.23
velocity2 0 ≈ −6.86 ≈ 3.43

As the position1 and velocity1 change after the parallel composition with another component that
does not interact with the first, it is not the case that the parallel composition is the conjunction
of behaviors. This instability under parallel composition is rooted in the interaction of discrete and
continuous behavior, where the zero-crossings determine the end/begin of a macro-step in Hybrid
Quartz so new processes “consuming” less time change the behavior of the others. Therefore,
Hybrid Quartz is not a synchronous language. In addition, due to the similar operational semantics
about the interaction of discrete and continuous behaviors, in which zero-crossings determine the
end/begin of a macro-step, Zélus is not a synchronous language. In other words, their semantics
do not provide cycle accuracy.

1All data were collected from the simulator (GROUP, 2014), in addition, a manual correction was
made for the consumption of one macro-step between continuous evolution and discrete transitions
(see Footnote 3).
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Remark 6.1 (Hybrid Quartz). The Theorem 3.10 from (BAUER, 2012) (pp. 96) defines conditions on
which a subset of Hybrid Quartz programs is stable under parallel composition. It uses as a basis the
notion of urgent semantics for timed transition systems (see Subsection 2.3.2) in which the trace
of independent programs are refined by parallel composition, nevertheless, the continuous time
used by timed transition systems does not match the abstract notion of time in the synchronous
languages. This is the reason for a different result.

Remark 6.2 (Zélus). The Section 4. from (BOURKE; POUZET, 2013) (pp. 118) defines that the MoC
of Zélus (see Subsection 3.2.2.2) is the same as that of other formalisms like hybrid automaton (see
Subsection 2.3.2), and then concerns itself with modular composition. However, the composition of
hybrid automaton under the urgent semantics for timed transition systems are based on the notion
of continuous time that does not match the abstract notion of time in the synchronous languages.

One can argue that even independent continuous behaviors (as the ones used in the proof above)
are not independent in respect of physical time, hence, there is no satisfactory solution for such
composition regarding the essential and sufficient features of the synchronous languages. In spite of
that one can turn the composition of two bouncing balls in a sampled-data system (OGATA, 2009;
ÅSTRÖM; WITTENMARK, 2011) - in this case, only the values assumed in the sampled instants
are relevant, e.g., sample period equals 500 milliseconds, and, consequently they should compose
satisfactorily since the time horizon is the same for every ball (independent or composed) -, however,
with the urgent semantics for timed transition systems the interpretation of the model still does
not fulfill the essential and sufficient features of synchronous languages. The reason is the way that
the time horizon are handled (one more zero-crossing).

Consider the following table that shows the synchronous streams for the parallel composition of
three components: two independent BouncingBalls (the initial conditions are: one ball has initial
position 10 and another has initial position 2, i.e., equal to those in the previous analyzed tables)
and a timer defined by a variable with derivative one and a discrete transition that resets the
variable each 500ms.

signal macro-step 1 macro-step 2 macro-step 3 macro-step 4
initialPosition1 10 0 0 0
position1 10 ≈ 8.89 ≈ 8.89 ≈ 7.76
velocity1 0 ≈ −4.90 ≈ −4.90 ≈ −6.86
initialPosition2 2 0 0 0
position2 2 ≈ 0.89 ≈ 0.89 ≈ −0.23
velocity2 0 ≈ −4.90 ≈ −4.90 ≈ −6.86
time 0 500 0 200

Analyzing the synchronous stream above, the position and velocity of the ball are sampled at
instants that are not desired by the sampled-data system (e.g., the instant 700ms). Indeed, mono-
periodic sampled-data systems is easily supported by synchronous languages due to the association
of a fixed amount of physical time for every macro-step (BERRY, 2000). The following table shows
the synchronous streams of a theoretical hybrid synchronous language, where independent mono-
periodic sampled-data components can be successfully composed (using the same initial conditions
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used above and sample period 500 milliseconds):

signal macro-step 1 macro-step 2 macro-step 3
initialPosition1 10 0 0
position1 10 ≈ 8.89 ≈ 5.34
velocity1 0 ≈ −4.90 −9.81
initialPosition2 2 0 0
position2 2 ≈ 0.89 ≈ 0.43
velocity2 0 ≈ −4.90 ≈ 0.49
time 0 500 1000

Note an arbitrary finite number of bouncing balls with different initial conditions can be composed
easily using this theoretical hybrid synchronous language. Furthermore, even though a zero-crossing
occurs between the macro-step 2 and 3 (the bouncing ball with initial position equals two), the
signal time determines that this zero-crossing must be accordingly computed but the continuous
evolution shall proceed until the pre-defined time horizon.

Now recall that there are two common patterns to stop a continuous evolution: zero-crossings
and time horizons (BENVENISTE et al., 2011). Although time horizons can be translated in zero-
crossings, time horizons are known a priori and then they offer a constructive semantics since
independently of how many concurrent components exist and how many zero-crossings occur the
amount of physical time consumed by a macro-step is fixed and known. While zero-crossings are
known a posteriori due to their inherent variability, they define a non-constructive semantics (pp.
63; pp. 81; (BAUER, 2012)). One can interpret, “a priori” as input (what perfectly fits with the
abstract notion of time from synchronous language (BOURKE; SOWMYA, 2009)) and “a posteriori”
as a signal that is emitted at a macro-step (something occurs in a continuous behavior). Moreover,
time horizons are for time-triggered systems, as zero-crossings are for event-triggered systems.
Therefore, the translation of a time-horizon into a zero-crossing for a given component has two
consequences: (1) it turns a time-triggered component into an event-triggered component and
(2) the resultant event-triggered component does not know anymore from the inputs how much
physical time is consumed by a macro-step - in the urgent semantics for timed transition systems
the minimum physical time for zero-crossings satisfaction is used to disambiguate the possible
multiple zero-crossings.

Still, regarding time horizons, if they are treated as inputs that define uniquely the amount of
physical time consumed for a given macro-step, then only harmonic time horizons - defined by
integers multiple of the shortest time horizon - are valid. Otherwise, a contradiction arrives, e.g.,
a macro-step receives a signal “5 seconds” and another “3 seconds” (meaning that the macro-step
should compute the continuous evolutions until 3 and 5), hence, it is not possible to satisfy both
inputs in the same macro-step. However, if a time horizon is translated into a zero-crossing, such
issue does not occur, at first impression, because one can apply the urgent semantics for timed
transition systems and picks up the first zero-crossing. On the other hand, if a macro-step shall
have the amount of physical time consumed defined in a unique way, one has to decide explicitly
what is the zero-crossing that uniquely defines the amount of physical time consumed (in the
event-triggered systems, the physical time consumed by a macro-step is not fixed). Note a zero-
crossing can be satisfied in a macro-step firstly, and not necessarily in another, therefore, the
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unique definition, as defined above, is a modeling’s choice (this is the example shown above using
Hybrid Quartz, the first-macro was stopped by the timer, while the third macro-step was stopped
by the BouncingBall with initial position 2).

In summary, the preference of zero-crossings as the fundamental mechanism to stop continuous
evolution has deep impacts on the semantics as well as on the modeling, and then the following
conjecture is defined:

Conjecture 6.2. A hybrid synchronous language shall provide a semantics where the amount
of physical time consumed by each reaction (macro-step) is uniquely defined by its
inputs or its emitted signals, moreover, likewise synchronous languages, signals exchanged be-
tween synchronous processes shall be uniquely defined at every reaction (macro-step).
The semantics shall support: (1) time-triggered models - based on time horizons described by
inputs that define a priori the unique amount of physical time for a given reaction (macro-step);
and (2) event-triggered models - based on zero-crossings, a unique way to define the amount
of physical time consumption of a reaction (macro-step) based on its emitted signals shall be
provided by the modeler.

In accordance with Conjecture 6.2, a hybrid synchronous language determines a unique way to
define the physical time consumption for every macro-step, and then the macro-steps can be
totally ordered as on the synchronous languages. Consequently, the essential and sufficient features
of synchronous languages are fulfilled (see Section 7.3 for a detailed investigation). However, not
all models have semantics according to the above conjecture, e.g., a model that has continuous
evolution and is event-triggered may not define a unique way to determine the physical amount of
time for a given macro-step (the presence of a zero-crossing does not anymore determine the end
or the beginning of a macro-step mandatorily). Therefore, Definition 6.3 is stated, and a model
has semantics, according to Conjecture 6.2, if the model is an enichronous model.

Definition 6.3 (Enichrony). From the Greek (enimeros - aware and khronos - time).
A model is enichronous if and only if either the physical time for each reaction can be uniquely
deduced from the input clocks (in time-triggered systems) or the physical time for each reaction
can be uniquely defined through the monitoring of clocks during the discrete behavior processing
(in event-triggered systems).

The above definition means that a clock tree shall exist either between the input signals associated
with physical time or between the emitted signals used to define the physical time consumption.
These clock trees have always the reactionClk as root and they are defined by sub-clocking.
Moreover, these relationships are defined by the modeler, who should consider the following
corollaries since they declare two important characteristics of the language and models defined
according to Conjecture 6.2.

Corollary 6.4. Incompatibility of the approaches. A hybrid synchronous model cannot be time-
triggered and event-triggered.

Proof. Taking into account Conjecture 6.2, Corollary 6.4 is a consequence of it: the amount of
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physical time consumed in each macro-step is uniquely defined in a hybrid synchronous language.
Assume a hybrid synchronous model that is time-triggered and event-triggered, hence, a given
macro-step consumes a known fixed amount of physical time and a unique variable amount of
physical time. This is a contradiction.

Corollary 6.5. Condition of composability and approaches. An event-triggered component does
not support nested time-triggered components.

Proof. Taking into account Conjecture 6.2, Corollary 6.5 is a direct consequence from Corollary 6.4.
Assume a hybrid synchronous model where an event-triggered component is composed of one time-
triggered component, hence, a given macro-step consumes a known fixed amount of physical time
defined by the time-triggered component and a unique variable amount of physical time defined by
the event-triggered component containing the time-triggered component. This is a contradiction.

The corollaries 6.4 and 6.5 have a profound impact on the binary relation “composition” of a hybrid
synchronous language (see Conjecture 6.2) since they define a relation � between two composable
components such that the following compositions are definable ttc � ttc, ttc � etc and etc � etc

where ttc is a time-triggered component and etc is an event-triggered component. Therefore, a
composition of two time-triggered components, if defined, produces a time-triggered component
(ttc � ttc), a composition of one time-triggered component and one event-triggered component, if
defined, produces a time-triggered component (ttc � etc), and a composition of two event-triggered
components, if defined, produces an event-triggered component or a time-triggered component
(etc � etc). The composition of one time-triggered component and one event-triggered component
such that it results in an event-triggered component is not definable due to Corollary 6.5.

Based on Conjecture 6.2, the next sections present an overview of the prototyped hybrid syn-
chronous language (hybrid fUML). Afterwards, the pragmatics is explored by means of examples.
Event-triggered and time-triggered systems are explored, including an example where an event-
triggered component is composed with a time-triggered component (timed Basketball). The goal
of the next sections is to provide a quick overview of how models are defined using the syntax
(syntactics) and what are their interpretations regarding the proposed operational semantics.

6.1 Language’s Decisions and Requirements

Synchronous fUML defines a synchronous language where instantaneously active objects interact
using signals in a deterministic manner (see Chapter 4). It offers a good basis for information
modeling, however, a hybrid system shall model material and energy additionally. For example, a
ball has information (for an observer2, e.g., the material’s type and a measure of its speed according
to a metric system), it is a material thing (e.g., it has mass and shape) and it can hold energy (e.g.,
kinetic energy). While information can be modeled using synchronous fUML easily, the material
and energy cannot be modeled appropriately.

2Information requires some sort of material and energy to be perceived so it has a physical
representation, however, this discussion is beyond the scope of the present thesis.
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Regarding control systems, implicit DAEs support material and energy modeling as well as reuse of
models (see Subsection 2.3.3). The implicit DAEs are the most general pure continuous behavior
reviewed in Subsection 2.3.1. However, commonly, controllers are discrete because the control’s
computation occurs at certain instants, using computer algorithms. If someone chooses to consider
that the converters from the continuous world to the discrete world (analog/digital) and the con-
verters from the discrete world to the continuous world (digital/analog) are modeled together with
the continuous behavior, then only discrete behaviors are observed in the system at certain instants.
Moreover, these discrete models consider (at least ideally) that the computation does not consume
physical time so the discrete output for a given discrete input is computed instantaneously (see
Section 2.4).

Therefore, a good compromise to model control systems can be achieved by the use of implicit DAEs
encompassed by discrete behaviors executed instantaneously. Recall that (ALBERT, 2004; ÅSTRÖM;

WITTENMARK, 2011) argued that this viewpoint is sufficient, in the most cases, for sample-data
systems and extracts better results from a discrete controller (see Section 2.4). Moreover, this
approach fits to a synchronous language, like synchronous fUML, since computations are only
performed at certain instants. Finally, these conclusions can be generalized for hybrid systems.

The above discussion and Conjecture 6.2 lead to the following design decisions for hybrid fUML,
a hybrid synchronous language:

a) Continuous behavior is modeled using implicit DAEs (like Modelica (MODELICA, 2012));

b) Every continuous behavior (or a set of continuous behaviors) is encompassed by a dis-
crete component, defined by an active object from synchronous fUML;

Only values resulted from the discrete behaviors are used to define signals (signals
exist only at certain instants);

c) Continuous behavior evaluation does not depend on the control flow state of discrete
behaviors, i.e., when time evolves the enabled continuous behaviors (based on the state
of the owning active object) shall be evaluated;

d) Physical time is globally synchronized (like Modelica (MODELICA, 2012), Hybrid
Quartz (BAUER, 2012) and Zélus (BENVENISTE et al., 2014));

e) Zero-crossings define a global logical clock (like Hybrid Quartz (BAUER, 2012) and
Zélus (BENVENISTE et al., 2014)), however, only a subset of these zero-crossings deter-
mines the end/begin of a macro-step;

f) The evaluation of discrete behavior is based on the synchronous fUML operational
semantics;

g) Concerning controllers, it shall enable instantaneous processing of inputs and generation
of the ouputs at the same macro-step (no delayed effect).

As a direct consequence from (a), there is no novelty defining semantics (static and dynamics) for
continuous behaviors because the standard mathematical definition is applied, e.g., the necessary
but not sufficient condition of the number of variables must be equal to the number of equations.
On the other hand, the interaction of continuous and discrete behavior over physical time is the
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central question about semantics of hybrid synchronous languages, and then the following high-level
requirements are defined for hybrid fUML:

a) It shall enable modeling (syntax) of continuous behavior, discrete behavior, and tem-
poral concerns;

b) The syntax of the continuous behaviors shall be implicit DAEs;

It shall enable the definition of continuous libraries à la Modelica;

The syntax shall be defined by a subset of Modelica (MODELICA, 2012);

c) The syntax of the discrete behaviors shall be defined by synchronous fUML with the
necessary extensions;

d) The syntax of temporal concerns shall be defined by a subset of CCSL defined by
MARTE ((OMG), 2011a);

e) It shall provide an operational semantics for interpretation of models focusing on the
interaction of discrete and continuous behaviors over time3;

f) The model of computation shall be the synchronous-reactive;

The operational semantics shall give semantics for constructive models;

The operational semantics shall give semantics for enichronous models;

A central concept in the semantics of hybrid fUML is the macro2-step, which is informally defined
as follows.

Definition 6.6 (Macro2-step (see Section 7.3)). For each reaction, an iteration is started. In each
iteration, synchronous discrete behavior is executed and the signals are broadcasted (a macro-step,
see Definition 2.7), hence, continuous behaviors for each active object are executed (DAEs’ nu-
merical solving) until the satisfaction of one or more zero-crossings, afterwards, the iteration is
restarted. At some point, the limit for the consumption of physical time is reached (a property of
enichronous models, see Definition 6.3), and then a special signal defined by the semantics is broad-
casted Edge. One more macro-step takes place and then the macro2-step terminates. Therefore, a
macro2-step computation consists of only finitely many macro-steps computation intertwined with
DAEs’ numerical solving.

6.2 Syntactics

This section provides an overview of the syntax of hybrid fUML so the examples presented in
sequel can be explored and explained (see Section 7.1 for details).

Hybrid fUML is an extension of Synchronous fUML so all the syntax of synchronous fUML are
inherited by the hybrid fUML. In addition, a syntactical element is copied from the UML super-
structure ((OMG), 2011b), constraint. A Constraint is a condition or restriction, and it is the basic
building block to define equations, group of equations, domains, and clock constraints. Equations or

3DAEs, used in the examples, are solved by a manually defined code using the Euler forward
method.
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groups of equations are allowed to have a restricted subset of Modelica textual syntax - derivative
operator, multiplicative operator, additive operator, and simple equality equations (pp. 81; (MOD-

ELICA, 2012)) -, in such a way, that only DAEs can be defined (it is not possible to define discrete
behavior in these constraints, e.g., initial conditions or conditional equations). Domains have also a
restricted subset of Modelica textual syntax, namely relational operators (except equality operator,
due to the use of zero-crossings) and Boolean operators.

The profile from the synchronous fUML is extended with stereotypes focused on clocks, on contin-
uous behavior and on the interaction of continuous and discrete behaviors.

The stereotypes focused on clocks are imported from MARTE ((OMG), 2011a), namely Clock
and ClockConstraint. They support the definition of relations between the clocks of the model
(SignalEvents stereotyped with Clock) and clocks provided by the semantics. The semantics pro-
vides two public clocks reactionClk and physicalClk that together with the idealClk (provided by
MARTE) shall be used to define an enichronous model. A subset of the CCSL is available, e.g.,
isPeriodicOn for time-triggered systems.

The continuous behavior package is a subset of the SysMLModelica profile ((OMG), 2012b) plus
the stereotype ContinuousDomain. For example: the stereotype ModelicaEquation defines that
a constraint is a set of Modelica equations, while the stereotype ContinuousDomain is used to
constrain a ModelicaEquation that is enabled when a boolean scalar Modelica expression holds.

Finally, two stereotypes are dedicated to precisely define interaction points of discrete and
continuous behaviors. One defines a condition that determines when a continuous evolution shall
be interrupted in order to proceed with discrete behaviors (DiscreteDomain), while the other
defines that a given discrete behavior can only proceed after all possible continuous evolution are
performed at current macro2-step (Edge). DiscreteDomain constrains a discrete behavior (without
any kind of parameter) so when its boolean scalar Modelica expression is satisfied (a zero-crossing),
the continuous evolution freezes and the constrained discrete behavior is evaluated. In other
words, the DiscreteDomains define jumpe in hybrid automata, whereas the constrained discrete
behaviors are the resete (see Section 2.3.2). The stereotype for ReadStructuralFeatureAction called
Edge is defined to support the interaction of continuous and discrete behaviors in such a way that
the action blocks the activity until it can read the value assumed at the final physical time for a
given macro2-step.

Definition 6.7 (Pattern sample-then-output). Sample-then-output is a recurrent pattern in the
models defined by a hybrid synchronous language as well as in control (ALBERT, 2004; OGATA,
2009; ÅSTRÖM; WITTENMARK, 2011). It means that a component that has continuous evolution,
i.e., DAEs, retrieves the result of the continuous evolution using readings stereotyped with Edge,
and then the final state (sample) is broadcasted for other components. Afterwards, at the same
macro2-step and without physical time consumption, an output is generated based on the received
sample. Moreover, if there is a closed-loop the component defining the continuous evolution uses
the stereotype Previous in its receptions with an initial predefined value, in order to achieve con-
structiveness.

Table 6.1 shows the introduced elements in hybrid fUML. With exception of Constraint and its

128



Table 6.1 - Meta-classes extended by hybrid fUML through stereotypes.

meta-class Synchronous Hybrid Available
fUML fUML stereotypes

in hybrid fUML
Kernel
Class X X ModelicaConnector
Property X X ModelicaValueProperty
Constraint × X ContinuousDomain,

DiscreteDomain,
ModelicaEquation,
ClockConstraint

Common Behaviors
SignalEvent X X Clock
Composite Structures
Connector X X ModelicaConnection
Port X X ModelicaPort
Intermediate Actions
ReadStructuralFeature_ X X Edge
ValueAction

stereotypes, the introduced elements are stereotypes to be applied in elements already defined by
synchronous fUML, which means that the semantics of these elements are modified in hybrid fUML
only when an introduced stereotype is applied.

6.3 Semantics

This section provides an informal overview of the operational semantics of hybrid fUML to enable
the understanding of the examples (see Section 7.3 for details).

Fig. 6.1 shows the abstract LTS for the operational semantics of hybrid fUML. Hybrid fUML en-
compasses the basic model of execution from the urgent semantics of timed transitions systems (see
definitions 2.14 and 3.2) with an external macro-step called macro2-step (see Definition 6.6).
Macro2-step defines the constructive semantics for one reaction through a fixpoint between the
interaction of continuous and discrete behaviors, furthermore, at the fixpoint, all signals should
be defined, otherwise the system is not constructive. If there is no fixpoint, the system is not
constructive.

Consider an event-triggered enichronous model, the semantics can be roughly explained by a search
for a fixpoint in the macro2-step. Therefore, the following steps are done and monitored until a
fixpoint :

a) The discrete behaviors are performed using the constructive semantics (a macro-step)
defined by synchronous fUML.

The actions ReadStructuralFeatureAction stereotyped with Edge only return value
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when the signal Edge is present, otherwise they block the control flow.

b) Once a fixpoint is reached, the semantics checks if some of the signals that uniquely
defines the physical time is present.

If yes, the semantics defines a special signal called Edge.

If no, nothing.

c) Afterwards, the continuous behaviors starts:

All enabled continuous behaviors are collected. The conditions for the collection of
a continuous behavior are: there is an instance of the object that defines the continuous
behavior, its (parent) owning object is alive and its continuous domain (if existent)
holds;

It checks if there is no discrete domain (jumpe in the hybrid automaton, see Defi-
nition 2.11) enabled and Edge is absent.

If yes, it proceeds the continuous evolution (where each active object has a set of
DAEs elaborated through flattening), moreover, it monitors the discrete domains and
the continuous domains. When a zero-crossing is detected, it stops the evolution.

If no, nothing.

Figure 6.1 - The abstract LTS defined by the hybrid fUML’s MoC.

Now, consider a time-triggered enichronous system, the semantics is similar (the differences are
highlighted in the below text). The following steps are done and monitored until a fixpoint:

a) The discrete behaviors are performed using the constructive semantics (a macro-step)
defined by synchronous fUML.

The actions ReadStructuralFeatureAction stereotyped with Edge only return value
when the signal Edge is present, otherwise they block the control flow.

b) Once a fixpoint is reached in the macro-step, the semantics checks if some of the signals
that uniquely defines the physical time is present at the first tick of the global
logical clock.
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If yes, the semantics checks if they (may be more than one) are compat-
ible, and then it defines a time horizon.

If no, it checks if the time horizon was reached by the continuous be-
haviors, if yes the semantics defines a special signal called Edge, otherwise,
nothing.

c) Afterwards, the continuous behaviors starts:

All enabled continuous behaviors are collected. The conditions for the collection of
a continuous behavior are: there is an instance of the object that defines the continuous
behavior, its (parent) owning object is alive and its continuous domain (if existent)
holds;

It checks if there is no discrete domain (jumpe in the hybrid automaton, see Defi-
nition 2.11) enabled and Edge is absent.

If yes, it proceeds the continuous evolution (where each active object has a set
of DAEs elaborated through flattening) until the time horizon, further, it monitors
the discrete domains and the continuous domains. When a zero-crossing is detected, it
stops the evolution.

If no, nothing.

In the operational semantics, each evaluation of a macro2-step ticks the reactionClk, each evaluation
of a macro-step ticks the logicalClk, and, finally, the evolution of physical time is measured in
seconds by the physicalClk.

6.4 Pragmatics

The following sections explore the pragmatics of the language presenting meaningful small ex-
amples. It begins presenting how continuous libraries can be defined à la Modelica. Afterwards,
event-triggered systems are explored, and, finally, time-triggered are evaluated.

6.4.1 Libraries

This subsection shows that continuous libraries can be defined in hybrid fUML. Moreover,
satisfying the requirement the syntax shall be defined by a subset of Modelica (MODELICA,
2012), hybrid fUML reuses a part of the profile SysML-Modelica ((OMG), 2012b) and, con-
sequently, can reuse parts of the standard library from Modelica. The reuse is restricted to
models that are described by DAEs in the Modelica standard library, e.g., the component
Modelica::Mechanics::Translational::Components::Mass.

Example 24 (Mass, a reusable continuous component, modeled using hybridfUML.). Fig. 6.2
shows the components defined to support the BouncingBall example. If a transformation from
Modelica to SysML is available, one will be able to import these elements. Nonetheless, they are
defined manually. Moreover, Modelica (MODELICA, 2012) uses two different connectors instead
one RealConnector, namely RealInput and RealOutput. In addition to the Modelica definitions,
a ContinuousDomain is defined for the component Mass. It guarantees that the equations will
only be evaluated when the continuous domain holds. As in Modelica, the property value from
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Figure 6.2 - The (pure) continuous components defined to support BouncingBall.

RealConnector is marked as discrete, which means that it is treated as a constant during the
evaluation of a possible DAE with it. Moreover, the property force in Flange is a flow so all the
elements connected with it shall sum to zero (it supports the third Newton’s law, the sum of all
forces acting at a specific point is zero). Note this model does not have behavior in hybrid fUML
since it does not have active objects, therefore, it defines reusable components that must be put in
context to exhibit behavior.

6.4.2 Event-Triggered Systems

Taking into account event-triggered systems, two examples are shown. The first one is the classical
BouncingBall modeled as an enichronous system using hybrid fUML and the components defined
in Example 24. In this simple case, every macro2-step is associated with one clock that ticks when
the ball hits the floor defining univocally a variable consumption of physical time. The BasketBall
is a controlled system of the type on-off, and then two signals are used to define the enichronous
system.

The examples are presented by their diagrams, which are grouped in three categories: structure,
discrete behavior and temporal concerns. Structure defines all the structural aspects of the
example, including classes, composite structures, equations and domains. Moreover, composite
structures are used to model relationships between elements used from the continuous library as
well as the relationships between active objects. Discrete behavior applies activities to model all
sort of behaviors, which are mainly divided in: classifier behaviors and behaviors triggered by
discrete domains (transfer functions). Temporal concerns establish the relationships between the
clocks provided by the semantics(reactionClk and physicalClk) and the clocks of the models. In
the case of event-triggered systems, the main relation is subclocking expressed in CCSL using
isCoarserThan.

Example 25 (BouncingBall modeled using hybrid fUML.). This example models the same sys-
tem described in Example 10 and defined using Modelica (see Example 17), Hybrid Quartz (see
Example 20) and Zélus (see Example 21). It is an event-triggered system where the end of each
macro2-step is defined by the presence of the clock of a signal emitted when the ball hits the floor.
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Structure

Regarding the structure, Fig. 6.3 shows the class diagram for the system.

Figure 6.3 - The structure of BouncingBall modeled using hybrid fUML and library’s com-
ponents.

The main points are:

a) The system is modeled with an active class, Plant, which has the attributes rest-
Coef, gravitationalForce and output, two parts (reused from the library, namely Mass
and Force), and three behaviors: actBouncingBallReviewedEventClassifierBehavior, act-
BouncingBallReviewedEventConstructor, and actHitTheFloor.

b) The active class has a ModelicaEquation without domain, which means that it is added
to the DAEs always. The equation states that the gravitationalForce from the Plant
shall be used to define the value of the part Force.

c) actBouncingBallReviewedEventClassifierBehavior is the behavior in charge of the
state’s management of the active class, however, the bouncing ball does not have a
state and then this behavior maintains an active object alive (running) only.

d) actBouncingBallReviewedEventConstructor is responsible for constructing the objects
needed as well as for defining the initial conditions. Due to the terseness of fUML, this
behavior is large even for simple examples like this one.

e) actHitTheFloor defines the state transfer function when the mass hits the floor. It is
constrained by the DiscreteDomainForHitTheFloor, which is stereotyped with Discrete-
Domain. The expression defined by this constraint is evaluated during the continuous
evolution, and when the boolean scalar expression is satisfied, the continuous evolution
freezes. In addition, this behavior emits a signal called HitTheFllor that can be used
by other component and it is referenced by the CCSL defining enichrony (see Fig. 6.7).

Fig. 6.4 shows the composite structure that defines the relationship between the part Force and
Mass. It uses a connector stereotyped with ModelicaConnection, which enables the generation of
the complementary equations.
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Figure 6.4 - The structure of the library’s use in the BouncingBall modeled using hybrid
fUML.

The final set of DAEs, generated by the operational semantics for this example, are described by the
equations 6.1a to 6.1h. When the continuous evolution must proceed, the operational semantics
identifies active objects that have ContinuousDomains enabled. Considering the attribute mass
from Mass equals one (it is initialized as one in the actBouncingBallReviewedEventConstructor),
the MassDynamics (see Fig. 6.2) from Mass is identified, which leads to the equations 6.1a,
6.1b, 6.1c and 6.1d. Afterwards, the equations defined in the active object without domain are
selected 6.1e, then the composite structure 6.4 is navigated collecting the equations for connected
instances 6.1f (again, actBouncingBallReviewedEventConstructor creates an instance of Force).

Finally, still using the composite structure shown in Fig. 6.4, additional equations are generated
using the semantics of Modelica for potential connections (they are equals, Equation 6.1g), and
flow connections (sum to zero, Equation 6.1h). During the solving of the generated equations,
the discrete variables are treated as constants (mass.mass and gravitationalAcceleration), which
satisfies the necessary condition: number of variables equals to number of equations.

der(mass.velocity) = mass.acceleration (6.1a)

der(mass.position) = mass.velocity (6.1b)

mass.mass ∗mass.acceleration = mass.flange_a.force (6.1c)

mass.flange_a.position = mass.position (6.1d)

gravitationalForce.force.value = gravitationalAcceleration (6.1e)

gravitationalForce.flange.force = −gravitationalForce.force.value (6.1f)

mass.flange_a.position = gravitationalForce.flange.position (6.1g)

mass.flange_a.force+ gravitationalForce.flange.force = 0 (6.1h)

Discrete Behavior

The classifier behavior from the Plant is shown in Fig. 6.5. It calls the activity actBouncingBall-
ReviewedEventConstructor to create elements and to define the initial conditions, and then starts
an infinity loop to keep the instantiated active object alive (if there is no active object alive, the
interpretation of a given model ends). Note the infinity loop is not instantaneous, otherwise the fix-
point does not exist in the macro-step. Therefore, the DecisionNode is stereotyped with Pausable,
which indicates that activity is evaluated once in every macro2-step.

The activity actHitTheFloor shown in Fig. 6.6 is called during a macro2-step, when its Discrete-
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Figure 6.5 - The classifier behavior for the Plant.

Domain holds. In this case, the discrete behavior is executed changing the value of the attribute
velocity (the action AddStructuralFeatureValueAction_velocity) in the part mass using the result
of vel′ = vel × −restCoef . During the discrete behavior, it is not allowed to use equations so
vel′ = vel × −restCoef is described by actions calling discrete libraries, e.g., Neg returns the
received real number multiplied by -1, * returns the result of the multiplication of two received
real numbers.

Furthermore, this activity sends the signal HitTheFloor to the output (described in the activity
by the action SendHitTheFloor). Note HitTheFloor is a pure signal, which allows its emission in
the same macro2-step without problems (for example due to a composition), nevertheless, this is
not the case for signals with attributes. In the last case, the emissions in a given macro2-step shall
have the same values for all attributes since a signal is uniquely defined at a macro2-step.

Temporal concerns

Lastly, the CCSL shown in Fig. 6.7 defines that the system is enichronous. It defines that for
each tick of the reactionClk there exists a tick from the clock of the event HitTheFloorSignalEvent
(they coincide). The semantics interprets this relationship as a definition of a uniquely variable
consumption of physical time for each macro2-step, therefore, when there exists a tick of the clock
HitTheFloor, the Edge is defined (no more continuous evolution, and one more macro-step).

Table 6.2 shows the synchronous streams for this example. It shows the value of selected variables
at end of macro2-step since these variables can assume more than one value during the evaluation
of a given macro2-step, whereas signals can have just one value for a entire macro2-step. The
clocks are computed using the definitions 2.3 and 2.4.

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates actBouncingBallReviewedEventClassifierBehavior, then it determines
the equations as discussed above and solves them until the satisfaction of the DiscreteDomain-
ForHitTheFloor, hence, a new evaluation of a macro-step is started, now the actBouncingBallRe-
viewedEventClassifierBehavior is paused and the activity actHitTheFloor is enabled. The activity
actHitTheFloor changes the value of velocity and generates the signal HitTheFloor. Afterwards,
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Figure 6.6 - The behavior of the activity hitTheFloor.

Figure 6.7 - The clock constraint defining the BouncingBall as an enichronous system.

the semantics detects the related event, and then defines the Edge. Once more, a macro-step is
evaluated but there is no activity to be run and then the macro2-step ends.

Example 26 (BasketBall modeled using hybrid fUML.). Recall the BasketBall modeled as an
event-triggered system with two events (see Example 18) is roughly described as follows. When
the BouncingBall (from Example 25) has its kinetic energy close to zero an event happens “turn
on”, and the processing of this event defines a value for the external force actuator in the plant so
the velocity is changed if the DAEs are solved. Consequently, it is mandatory to define a “turn off”
that can be based on the kinetic energy so if velocity is greater than an error the force actuator
should be turned off.

Note the hybrid plant to be controlled is the BouncingBall presented in the previous example,
an event-triggered system, furthermore, the controller is designed as an event-triggered system
(based on two events “turn on” and “turn off”). Therefore, according to Corollary 6.4 the type of
systems are compatible, and, in addition, it is possible to define the resultant composition as a
time-triggered system or an event-triggered system (see Corollary 6.5). This example models the
resultant composition as an event-triggered system.
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Table 6.2 - Synchronous streams for BouncingBall using hybrid fUML.
Source: hybrid fUML’s simulator

macro2-step 1 macro2-step 2 macro2-step 3
variables
mass.mass 1 1 1
gravitationalAcceleration -9.81 -9.81 -9.81
mass.position ≈ −0.10 ≈ −0.02 ≈ −0.02
mass.velocity ≈ 7.06 ≈ 3.53 ≈ 1.81
signals
HitTheF loor true true true
clocks
clock(HitTheF loor) true true true
currentT ime(HitTheF loor) 1 2 3
currentT ime(reactionClk) 1 2 3

Structure

Regarding the structure, Fig. 6.8 shows the class diagram for the system. The main differences
from the previous example are the presence of the system PlantController, the presence of the
controller Controller and new signals, namely plantInRange, plantOutRange and ControlForce.

Figure 6.8 - The structure of BasketBall modeled using hybrid fUML and library’s com-
ponents.

The system is modeled with three active classes:

a) PlantController - it models the closed-loop, and it has two parts the Plant and the
Controller.

b) Plant - it has the attributes restCoef, gravitationalForce, controlForceValue and clos-
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eToTop, three parts (instances from the library, namely mass, gravitationalForce and
controlForceValue), and five behaviors: actClassifierBehavior, actConstructor, actHit-
TheFloor, actEmitInRange and actEmitOutRange.

The attributes restCoef and gravitationalForce are the same from the previous
example.

The attribute controlForce defines the control force applied to the plant, it is defined
as equals to value of the part controlForce so a value different from 0 changes the solution
from the DAEs.

The attribute closeToTop is defined to avoid repeated executions of the activities
that detect the events “on” and “off”.

The parts mass and gravitationalForce are the same from the previous example.

The part controlForce defines a force actuator inside the plant.

actClassifierBehavior is the behavior in charge of the state’s management of the
active class. In this case, the behavior receives the control signal and changes the value
from its attribute controlForceValue.

actConstructor is responsible for constructing the objects needed as well as for
defining the initial conditions.

actHitTheFloor is the same from the previous example, it defines the state transfer
function when the mass hits the floor. It is constrained by the DiscreteDomainForHit-
TheFloor, which is stereotyped with DiscreteDomain. The expression defined by this
constraint is evaluated during the continuous evolution, and when the boolean scalar
expression is satisfied, the continuous evolution freezes. In addition, this behavior emits
a signal called HitTheFllor that can be used by other component.

actEmitInRange it defines the state transfer function when the BouncingBall has
its velocity and position close to the predefined error. It assigns true for the attribute
closeToTop and sends the signal PlantInRange (“turn on”).

actEmitOutRange it defines the state transfer function when the BouncingBall has
its velocity and position close to the predefined error and to the top. It assigns false for
the attribute closeToTop and sends the signal PlantOutRange (“turn off”).

c) Controller - it has one behavior controllerClassifierBehavior, which receives PlantIn-
Range or PlantOutRange and, accordingly, the signal ControlSignal is sent to the plant.

Fig. 6.9 shows the composite structure that defines the relationships between the parts Forces and
Mass. It uses two connectors stereotyped with ModelicaConnection, which enables the generation
of the complementary equations (in the same way described in the example above).

Fig. 6.10 shows how Plant and Controller interact. It is a classical closed-loop, where the events of
Plant, namely PlantInRange and PlantOutRange, are received by the Controller, afterwards, the
controller computes the ControlSignal and sends to the Plant. Regarding synchronous languages,
this loop shall be broken using a Previous stereotype (the gray ports are conjugated so they emit
signals, whereas the white ports receive signals).
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Figure 6.9 - The composite structure of the library’s usage in BasketBall modeled using
hybrid fUML.

Figure 6.10 - The composite structure of the BasketBall modeled using hybrid fUML.

Discrete Behavior

Concerning the behavior of the system, Fig. 6.11 shows the behavior for the activity plantInRange.
It changes the value of the attribute closeToTop to disable the DiscreteDomainForInRange, and
emits the signal PlantInRange.

The activity controllerClassifierBehavior from the Controller, shown in Fig. 6.12, uses two Ac-
ceptEventActions stereotyped with NonBlockable in parallel to test the current state of the plant,
hence, defines the adequate control force, then sends to the Plant, and finally pauses (using the
stereotype Pausable in the DecisionNode). Due to the constructive semantics, even though the ac-
cept actions are stereotyped with nonblockable, they only return value when there is an available
value different from the absent or there is no chance for the emission of those signals. As there are
activities that can generate those signals during a macro2-step, these actions holds the execution
of the controller until the definition of the Edge in the semantics. Therefore, the determination of
the control force occurs when there is no more chance for physical time consumption in the current
macro2-step. Furthermore, the controller behavior is instantaneous, which means the state of the
plant is received, processed by discrete behavior and sent at the same macro2-step.

Note if in a given macro2-step the signals PlantInRange and PlantOutRange are both absent, the
controller dies (its classifier behavior ends) because both control tokens go to the FlowFinalN-
ode4. Moreover, the presence of both signals in the same macro2-step generates a nondeterministic

4This issue can be resolved by changes in the model, e.g., establishing a priority.
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Figure 6.11 - The behavior of the activity plantInRange.

behavior. Fortunately, the situation where both signals are present at the same macro2-step is guar-
anteed by a combination of the model and the semantics taking into account the CCSL defined in
Fig. 6.14 because once one of these signals are defined no more continuous evolution occurs (the
physical time consumption is variable but uniquely defined), and then it is impossible to satisfy at
the same macro2-step the domains DiscreteDomainForInRange and DiscreteDomainForOutRange.
Nevertheless, if someone changes the CCSL, e.g., due to the needs of a composition, it can be the
case that the system is not constructive because the emission of different ControlSignals occurs at
the same macro2-step.

The actClassifierBehavior from Plant, shown in Fig. 6.13, instantiates the pattern Sample-then-
output (see Definition 6.7) since, in order to achieve constructiveness, it uses the stereotype Previ-
ous, with an initial value as 0 for the control force, in the action AcceptEventAction_controlForce
and it stereotypes the reading actions of the attributes from the parts (CBReadStructuralFeature-
Action_p and CBReadStructuralFeatureAction_v) with Edge. The main effects achieved are: (1)
the composition with the controller is constructive, (2) the control force used for the initial value
problem is defined by the previous controller execution (or 0 in the first activation of the plant)
and it holds during the DAEs solving and (3) when the edge is defined the values of position and
velocity are sampled.

Note the plant breaks if the previous macro2-step did not execute the controller because the null
value is returned by the accept action, and then the next read action breaks5.

Temporal concerns

Finally, Fig. 6.14 shows the CCSL that defines the system as an enichronous one. One method to
relate two independent clocks is through subclocking so the CCSL defines two subclocks from the
reactionClk one for each clock related to the events. The semantics interprets these relationships as

5Therefore, the model should be enhanced to remove this issue (see Fig. 6.21 for one solution
based on changing the model).
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Figure 6.12 - The classifier behavior for the Controller.

a definition of a uniquely variable consumption of physical time for each macro2-step, therefore, if
after a macro-step there exists the clock PlantInRange or PlantOutRange, the Edge is defined (no
more continuous evolution, and one more macro-step). Note the model and this CCSL together
avoid the nondeterministic case where both clocks are present in the same macro2-step, while it
does not enforce that a tick from reactionClk should tick one of its subclocks (which can cause the
permanent interruption of the controller, it dies in this case).

Table 6.3 shows the synchronous streams for this example, using the same convention presented
previously.

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates actClassifierBehavior that defines the value for controlForce using the
previous signal from the controller or zero for its first activation and it blocks on the reading of the
values for the mass achieved at the edge. In the same macro-step, the controller is evaluated and
it blocks on the accept actions for the plant state. Therefore, a fixpoint is reached in the macro-
step finishing it. Afterwards, the semantics determines the equations as discussed above and solve
them until the satisfaction of the DiscreteDomainForInRange, DiscreteDomainForOutRange or
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Figure 6.13 - The classifier behavior for the Plant and a possible description using Alf.

DiscreDomainForHitTheFloor. In case of DiscreDomainForHitTheFloor, the continuous evolution
is frozen, a new macro-step is evaluated, and then the activity actHitTheFloor can evolve changing
the value of velocity and sending the signal HitTheFloor. Hence, the continuous evolution is un-
frozen until the satisfaction of one DiscreteDomain. At some point, the semantics detects a clock
related to the reactionClk, and then defines the edge. Once more, a macro-step is evaluated, which
let the plant classifier behavior emit the plant state and the controller emit the control force.

Note during the third macro2-step it occurs a zero-crossing in the plant (DiscreDomainForHitThe-
Floor), it is processed and the macro2-step continues until the presence of one of the clocks related
to the reactionClk, furthermore, the behavior’s of the controller is instantaneous, i.e., its output is
available in the same macro2-step. Therefore, the zero-crossings detected in the plant or in other
possible composed components do not change the semantics of the plant/controller composition.

Lastly, due to the magnitude of the control force the system is extremely sensitive to the step size
used in the numerical approximation of the DAEs so the marginal stability shown in the numerical
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Figure 6.14 - The clock constraints defining the BasketBall as an enichronous system.

Table 6.3 - Synchronous streams for BasketBall using hybrid fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass.mass 1 1 1
gravitationalAcceleration -9.81 -9.81 -9.81
controlForce -24254 0 -24254
mass.position 10 ≈ 10 ≈ 10
mass.velocity 0 ≈ −24.26 ≈ 0
Signals
PlantInRange true � true
P lantOutRange � true �
ControlForce true true true
ControlForce.force −24254 0 -24254
Clocks
clock(ControlForce) true true true
currentT ime(ControlForce) 1 2 3
clock(PlantInRange) true false true
currentT ime(PlantInRange) 1 1 2
clock(PlantOutRange) false true false
currentT ime(PlantOutRange) 0 1 1
currentT ime(reactionClk) 1 2 3

results above is coupled with the step 0.001s received by the semantics as a parameter for the
forward Euler approximations, which in turn leads to the graph shown in Fig. 2.19.

6.4.3 Time-Triggered Systems

Regarding time-triggered systems, three examples are shown. The treatment of the DAEs and
continuous evolution are the same from the previous examples, while the difference is how to
determine the consumption of physical time. The first example is the BasketBall, a turn on-off
controller, modeled as a time-triggered system. Afterwards, the SpringMassDamper, a proportional
controller, is modeled using a mono-periodic behavior and, finally, using a multi-periodic behavior.

Example 27 (BasketBall modeled using hybrid fUML as a time-triggered system.). Recall the
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BasketBall modeled as a time-triggered (see Example 18) is roughly described as follows. The
controller periodically checks the kinetic energy of the hybrid plant (matching the dynamics of the
system), when it is below a threshold the force actuator is “turned on”, otherwise it is “turned off”.

Note the plant to be controlled is the BouncingBall presented in the previous examples, an event-
triggered system, furthermore, the controller is a time-triggered system (a periodic controller based
on samples). Therefore, according to Corollary 6.4 the types of systems are incompatible, and,
consequently, Corollary 6.5 determines that the only possible resultant composition is a time-
triggered system.

Structure

From the description above and starting from the structure of the previous example (see Fig. 6.8),
one can remove the signals PlantInRange and PlantOutRange as well as the elements defined to
support their emission, what leads to the class diagram shown in Fig. 6.15.

Figure 6.15 - The structure of timed BasketBall modeled using hybrid fUML and library’s
components.

All the reminiscent elements in the structure of the timed BasketBall are the same from the previous
version, the differences are: the controller behavior and the CCSL defined.

Discrete Behavior

The controller is changed to receive the plant state (blocking read) instead of PlantInRange or
PlantOutRange, hence, the kinetic energy is checked using discrete behavior applying the same
previous conditions described in the DiscreteDomains, then the control force is emitted, and,
lastly, the activity pauses (DecisionNode stereotyped by Pausable). Fig. 6.16 shows the controller
behavior.

Recall the plant instantiates the pattern sample-then-output so the controller receives the plant
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state only after the continuous evolution was performed and the system is at the edge.

Figure 6.16 - The classifier behavior for the Controller and a possible representation using
Alf.

Temporal concerns

Finally, the CCSLs shown in Fig. 6.17 define that the system is enichronous. As a time-triggered
system, it defines that physicalClk is the discretization of idealClk by 0.001 seconds, then it declares
a logical clock that ticks for each tick from the physicalClk (isPeriodicOn physicalClk period 1 ),
and, finally, it equalizes the reactionClk with the newly declared clock. The semantics interprets
these relationships as a definition of a fixed consumption of physical time for each macro2-step,
which means each macro2-step consumes 0.001 seconds in its continuous evolution (if there is no
DAEs to be solved, the semantics generates an error because time is expected to evolve but there
is no DAEs to be solved).

Table 6.4 shows the synchronous streams for this example, using the same convention presented
previously except for the exhibition of the physicalClk.

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates actClassifierBehavior that defines the value for controlForce using the
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Figure 6.17 - The clock constraint defining the timed BasketBall as an enichronous system.

Table 6.4 - Synchronous streams for timed BasketBall using hybrid fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass.mass 1 1 1
gravitationalAcceleration -9.81 -9.81 -9.81
controlForce -24254 0 0
mass.position 10 ≈ 10 ≈ 9.97
mass.velocity 0 ≈ −24.26 ≈ −24.27
Signals
ControlForce true true true
ControlForce.force −24254 0 0
Clocks
clock(ControlForce) true true true
currentT ime(ControlForce) 1 2 3
currentT ime(reactionClk) 1 2 3
physicalClock 0 0.001 0.002

previous signal from the controller or zero for its first activation and it blocks on the reading of
the values for the mass achieved at the edge. In the same macro-step, the controller is evaluated
and it blocks on the accept action for the plant state. Therefore, a fixpoint is reached in the
macro-step finishing it. Afterwards, the semantics determines the equations as discussed above
and solve them until the satisfaction of the DiscreteDomainHitTheFloor or the elapsed time equals
to 0.001 seconds. In case of DiscreDomainForHitTheFloor, the continuous evolution is frozen, a
new macro-step is evaluated, and then the activity actHitTheFloor can evolve changing the value
of velocity and sending the signal HitTheFloor. Hence, the continuous evolution is unfrozen until
the satisfaction of the DiscreteDomainHitTheFloor or the elapsed time equals to 0.001 seconds.
At some point, the physicalClk reaches the time horizon and then it defines the edge. Once more,
a macro-step is evaluated, which let the plant classifier behavior emit the plant state, and the
controller emit the control force.

Note the first macro2-step does not consume physical time because the semantics is defined to
solve the DAEs using the interval between the previous tick of the reactionClk and the current
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one (at the first macro2-step there is no previous tick). Recall this interval is used for numerical
approximations, while the macro2-step is executed instantaneously from an external viewpoint.

The model defines that plant and controller run in lock-step so the issues about the presence or
absence of events generated by the plant are removed (from the event-triggered version), while
the controller is always executed based on the current plant state. Therefore, the zero-crossings
detected in the plant or in other possible composed components do not change the semantics of the
plant/controller composition even if someone changes the CCSL (maintaining as a time-triggered
system). Nonetheless, a small change in the periodicity leads to an utterly different numerical
results as discussed in the previous example. Moreover, the collection of the signal PlantState for
the period 0.001 seconds generates the same graph shown in Fig. 2.19.

Finally, this is the simplest form to deal with physical time in synchronous languages (see Subsec-
tion 3.1.4), in which each macro-step consumes a fixed amount of physical time.

Example 28 (SpringMassDamper modeled using hybrid fUML.). Recall Example 19, in which a
continuous plant (SpringMassDamper) is controlled by a discrete proportional controller.

The physical time consumption was defined by events or by a relation with the reactionClk (the
simplest form to deal with physical time in synchronous languages (see Subsection 3.1.4)) until
now. This example introduces an elaborated technique used in synchronous languages to deal with
physical time, which is the reception of signals meaning time (see Subsection 3.1.4). For example,
each Tick means one second. While previous techniques do not need external collaboration to
proceed, the one introduced in this example needs one or more behaviors that generate the signals
meaning time so, in order to support simulation, the system is closed (the external behavior is
modeled inside the system).

Differently from synchronous languages, the semantics of a hybrid synchronous language deals with
those signals (meaning time) retrieving the time horizon for a mandatory continuous evolution (it
shall have at least one active object with DAEs enabled). Note the hybrid synchronous semantics
of those signals does not conflict with the abstract notion of time from the synchronous languages
(multiform of time, see Subsection 2.2.2) since when those signals are present the semantics’s
physical time evolves synchronously with the external one, whereas when they are absent there is
no physical time advancement in this type of time-triggered system. As a result, it is possible to
process a macro2-step containing only pure discrete behaviors without any impact on the hybrid
behavior (triggered by events generated outside of the closed model), and the notion of different
(real-time) rates of execution for discrete behaviors emerges (see next example).

Structure

Fig. 6.18 shows the structure of the system. The system is modeled with three active classes:
SpringMassDamperPlantController, Plant, and Controller. The main points are:

a) SpringMassDamperPlantController models the closed-system, and its parts (Plant and
Controller) interaction is better described using the composite structure diagram shown
in Fig. 6.19. Its classifier behavior SpringMassDamperPlantControllerClassifierBehavior
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generates the signals meaning time to enable simulation.

b) Plant has the same set of variables and equations (continuous behavior described in
PlantDynamics) from the Modelica model in Fig. 2.20. Additionally, there is the Plant-
DynamicsDomain, which reflects the transformation from the explicit assumption (as-
sert) into the domain for the set of equations. Furthermore, it has two behaviors: Plant-
ClassifierBehavior and PlantConstructor. The latter one instantiates the properties and
initial values. PlantClassifierBehavior is the behavior in charge of the state’s manage-
ment of the active class, and is examined later. Note this plant uses equations, while
the previous ones use libraries.

c) Controller uses constants embedded in the discrete behavior, additionally, the discrete
variables are modeled as signals. ControllerClassifierBehavior is the behavior in charge
of the state’s management of the class, and is examined later.

d) PlantStateSignal is the signal that contains the discrete data about the velocity (vd in
the Modelica model).

e) ControlSignal contains the control force (u in the Modelica model).

f) Tick is the signal to be received by the Controller for each activation.

Figure 6.18 - The structure of SpringMassDamper modeled using hybrid fUML.

Fig. 6.19 shows the classical interaction between plant and controller for a discrete controller,
including the signal tick (Fig. 6.19 uses the gray color to indicate that a port is conjugated). The
exception is that tick is not received by the plant containing sensors and actuators since the plant
is defined to be flexible (this is elaborated hereafter).
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Figure 6.19 - The composite structure of SpringMassDamper modeled using hybrid fUML.

Discrete Behavior

Fig. 6.20 shows the SpringMassDamperPlantControllerClassifierBehavior, which is in charge of
sending a Tick signal to the Controller (CSendTick). In addition, it uses the stereotype Pausable
in two control nodes (JoinNode and DecisionNode). The join node stereotyped in the beginning
of the behavior pauses the behavior without the generation of a Tick, and, consequently, it is
possible to analyze the semantics for a time-triggered system without the reception of a signal
meaning time. The semantics of the behavior is simple, the Tick signal is present only in the even
macro2-steps (see Table 6.5).

Figure 6.20 - The classifier behavior for the SpringMassDamperPlantController.

The plant classifier behavior is shown in Fig. 6.21. Once again, it instantiates the pattern Sample-
then-output (see Definition 6.7) because, in order to achieve constructiveness, it uses the stereotype
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Previous, with an initial value as 0 for the control force, in the action PAcceptEventAction_con-
trolSignal and it stereotypes the reading action (PBReadStructuralFeatureAction_velocity_Edge)
with Edge. The main effects achieved are: (1) the composition with the controller is constructive,
(2) the control force used for the initial value problem is defined by the previous controller execu-
tion (or 0 in the first activation of the plant) and it holds during the DAEs solving and (3) when
the edge is defined the value of velocity is sampled.

However, differently from the previous presented behavior (see Fig. 6.13), it uses a condition to
check if the controller ran in the previous macro2-step. If the controller ran in the previous macro2-
step the control force is retrieved from the signal, otherwise there is no change in the control force
and the value holds during a possible continuous evolution until the edge. This condition avoids
an error when the controller did not run in the previous macro2-step, and it enables broadcasting
the sampled plant state even in the absence of the control signal. Therefore, this plant is flexible
attending different temporal demands for the updated sample plant state.

Figure 6.21 - The classifier behavior for the Plant and a possible description using Alf.
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Fig. 6.22 shows the ControllerClassifierBehavior, which awaits for a Tick (blocking read, it returns
value different from null only), then it awaits the plant state, hence, the proportional control law
is performed (force = (2− velocity)) and the signal is sent.

Nevertheless, what makes this controller different is its time-triggered nature. Due to the waiting
for a signal meaning time, it only runs when there is an updated sampled plant state that matches
its temporal requirements. These temporal requirements remain abstract in the behavior (CCSLs
define what it really means).

Figure 6.22 - The classifier behavior for the Controller.

Temporal concerns

Lastly, the CCSLs shown in Fig. 6.23 define that the system is enichronous. As a time-triggered
system it defines that physicalClk is the discretization of idealClk by 0.01 seconds, it declares a
logical clock that ticks with a period of 100 ticks from the physicalClk (isPeriodicOn physicalClk
period 100 ), and then it equalizes the clock from the SecondSignalEvent with the newly declared
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clock. Afterwards, it determines that the newly declared clock is a subclock from the reactionClk.

The semantics interprets these relationships as a definition of a fixed known consumption of physical
time for each tick from the clock SecondSignalEvent in a macro2-step, which means a macro2-step
may consume 1 second in its continuous evolution (if there is no DAEs to be solved, the semantics
generates an error because time is expected to evolve but there is no DAEs to be solved).

Figure 6.23 - The clock constraints defining the SpringMassDamper as an enichronous
system.

Table 6.5 shows the synchronous streams for this example including the physicalClk. Additionally,
Fig. 6.24 shows the continuous and discrete values produced by the hybrid fUML’s simulator and
OpenModelica ((OSMC), 2014).

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates PlantClassifierBehavior that defines the value for controlForce when
there exists previous signal from the controller or zero for its first activation and it blocks on the
reading of the velocity achieved at the edge. In the same macro-step, the controller is evaluated and
it blocks on the accept action for the Tick. Also, the SpringMassDamperPlantControllerClassifier-
Behavior pauses in the join node. Therefore, a fixpoint is reached in the macro-step finishing it.
Afterwards, the semantics detects that it is evaluating a time-triggered system and there is neither
direct relationship between reactionClk and physicalClk or a clock related to the reactionClk and
physicalClk, therefore, the semantics define the edge without consumption of physical time. Once
more, a macro-step is evaluated, which let the plant classifier behavior emit the plant state, the
controller behavior is still blocked by the absence of the Tick. At some point, the SpringMass-
DamperPlantControllerClassifierBehavior emits the Tick, and then the semantics detects it and
defines a time horizon of 1 second for the current macro2-step. Afterwards, the semantics deter-
mines the equations as discussed above and solve them until the elapsed time equals to 1 seconds
and then it defines the edge. The edge allows the plant classifier behavior to emit the updated sam-
pled plant state, which is instantaneously received and processed by the controller broadcasting
the control force.

As explained before, the first Tick received by the system does not generate continuous behavior
evaluation (shown in Fig. 6.24 by three ticks of the reactionClk in the value 0 from the physicalClk)
since the continuous behavior is evaluated from the previous tick to the current one.

152



Table 6.5 - Synchronous streams for SpringMassDamper using hybrid fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass 1 1 1
springConstant 1 1 1
dampingCoefficient 0.1 0.1 0.1
controlForce 0 0 2
position 1 1 1
velocity 0 0 0
Signals
SecondSignalEvent � true �
ControlSignal � true �
ControlSignal.force ⊥ 2 ⊥
PlantStateSignal true true true
P lantStateSignal.velocity 0 0 0
Clocks
clock(SecondSignalEvent) false true false
currentT ime(SecondSignalEvent) 0 1 1
clock(ControlSignal) false true false
currentT ime(ControlSignal) 0 1 1
clock(PlantStateSignal) true true true
currentT ime(PlantStateSignal) 1 2 3
currentT ime(reactionClk) 1 2 3
physicalClk 0 0 0

Fig. 6.24 shows that the numerical results from the hybrid fUML’s simulator match those generated
by OpenModelica ((OSMC), 2014). Moreover, it shows how the physicalClk evolves in function of the
reactionClk and of the SecondSignalEvent. Note the PlantStateSignal is generated, at least, twice for
a given SecondSignalEvent due to its behavior that always broadcast the updated sampled data for
every macro2-step, whereas the ControlForceSignal is uniquely defined for each SecondSignalEvent.

Example 29 (A multi-periodic SpringMassDamper modeled using hybrid fUML.). Taking into
account Example 28 in which a hybrid plant (SpringMassDamper) is controlled by a discrete
proportional controller. The current example is aimed to explore how the notion of different (real-
time) rates of execution for discrete behaviors are supported by hybrid fUML.

Regarding the previous example and in order to evaluate multi-periodicity in a hybrid synchronous
language, in which only harmonic periods - defined by integers multiple of the shortest period - are
valid, one can define an observer that checks if the control force emitted by the controller is in a
predefined range.

Therefore, the previous example is extended with an observer. The observer is a time-triggered
component that is performed two times slower than the controller, and it checks if the control
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Figure 6.24 - Simulation data comparing a Modelica’s simulator and hybrid fUML’s sim-
ulator.
Source: ((OSMC), 2014) (integration method: Euler, integration step size:
0.01).

force is less than 10 then it emits a new signal ControllerIsOutOfRange. Hence, without changes in
the continuous behavior of the system and analyzing Fig. 6.24, the signal ControllerIsOutOfRange
shall be emitted in each macro2-step where the observer behavior runs.

Structure

Fig. 6.25 shows the structure for the system. The structural differences from the previous example
are the additions of an active class for the Observer as well as its classifier behavior and the signal
emitted by it, namely ControllerIsOutOfRange.

Also, the active objects are connected accordingly. The composite structure shown in Fig. 6.26 de-
termines how the communication between the active objects is established as well as between the
system and the environment. Likewise synchronous languages, hybrid fUML supports the substi-
tution of the behavior SpringMassDamperPlantControllerClassifierBehavior by external writings
in the input ports, now, explicitly defined in the model.

Therefore, one can compose the system plugging other components to the input ports or the
output ports (conjugated ports - output ports - are indicated by the gray color). Still, regarding
the composite structure shown in Fig. 6.26, it is the first example that uses broadcasting explicitly
since the control signal is sent to the plant and to the observer instantaneously.

Discrete Behavior

Fig. 6.27 shows the extended version for the SpringMassDamperPlantControllerClassifierBehavior.
This behavior creates the ports to interact with the environment, namely SCreateObjectAction_-
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Figure 6.25 - The structure of multi-periodic SpringMassDamper modeled using hybrid
fUML.

Figure 6.26 - The composite structure of multi-periodic SpringMassDamper modeled using
hybrid fUML.

second, SCreateObjectAction_2seconds and SCreateObjectAction_alarm.

Afterwards, it consumes tree macro2-steps in its internal loop, the first macro2-step is consumed
by the join node stereotyped with Pausable, the second one emits the signal Tick for the ports
secondPort and 2SecondsPorts (those signals are broadcasted to the controller and the observer
respectively) and, finally, it emits the signal Tick for the port secondPort. Therefore, the expected
semantics for the system’s behavior is that in one macro2-step the state of the system is not
changed, subsequently, the controller, the plant and the observer may change the state of the
system at a macro2-step, and the next macro2-step only may change the state of the system for
the controller and the plant.
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Figure 6.27 - The classifier behavior for the SpringMassDamperPlantController.

Fig. 6.28 shows the ObserverClassifierBehavior, it has the typical structure of a time-triggered
component, i.e., it awaits the signal meaning time OAcceptEventAction_2Seconds, and then it
awaits the signals to be processed OAcceptEventAction_controlSignal. With the control signal, it
checks the predefined range, and if it is not in the range a signal is sent to its output port.

Temporal concerns

Lastly, the CCSLs shown in Fig. 6.29 are defined ensuring that the multi-periodic SpringMass-
Damper is an enichronous system. They are an extension of the previous ones (see Fig. 6.23),
in which a logical clock with period 200 is defined and equalized to the 2SecondsSignalEvent in
ClockConstraint2Seconds, and a tree is explicitly declared in the ClockConstraintReactionClk using
subclocking. The tree has as root the reactionClk, its child is SecondSignalEvent, which has as child
the 2SecondsSignalEvent.

The semantics interprets these CCSLs allowing two types of macro2-steps: (1) a pure discrete one
that ticks only reactionClk and (2) a hybrid one that ticks the reactionClk and the SecondSig-
nalEvent. In addition, when the SecondSignalEvent ticks the 2SecondsSignalEvent may tick only
when its period is respected. For example, at 1 second, if the system receives a 2SecondsSignalEvent
the semantics generates an error since it does not respect the period defined so the indirect rela-
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Figure 6.28 - The classifier behavior for the Observer.

tionship between the clocks SecondSignalEvent and 2SecondsSignalEvent shall be respected.

Figure 6.29 - The clock constraint defining the multi-periodic SpringMassDamper as an
enichronous system.
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Table 6.6 shows the synchronous streams for this example including the physicalClk. As the Spring-
MassDamperPlantControllerClassifierBehavior defines two hybrid macro2-steps instead of one in
the previous example, the results are shifted left so the third macro2-step contains continuous
evolution. At the end of the third macro2-step the physicalClk has 1 second as value.

Table 6.6 - Synchronous streams for multi-periodic SpringMassDamper using hybrid
fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass 1 1 1
springConstant 1 1 1
dampingCoefficient 0.1 0.1 0.1
controlForce 0 0 2
position 1 1 ≈ 1.44
velocity 0 0 ≈ 0.80
Signals
SecondSignalEvent � true true
ControlSignal � true �
ControlSignal.force ⊥ 2 ≈ 1.19
2SecondsSignalEvent � true �
ControllerIsOutOfRange � true �
PlantStateSignal true true true
P lantStateSignal.velocity 0 0 ≈ 0.80
Clocks
clock(SecondSignalEvent) false true true
currentT ime(SecondSignalEvent) 0 1 2
clock(ControlSignal) false true true
currentT ime(ControlSignal) 0 1 2
clock(2SecondsSignalEvent) false true false
currentT ime(2SecondsSignalEvent) 0 1 1
clock(ControllerIsOutOfRange) false true false
currentT ime(ControllerIsOut . . .) 0 1 1
clock(PlantStateSignal) true true true
currentT ime(PlantStateSignal) 1 2 3
currentT ime(reactionClk) 1 2 3
physicalClk 0 0 1

Note the clock of PlantStateSignal is equally fast as the reactionClock, which is a consequence of its
flexible behavior. In fact, one can use static analysis of the composite structure shown in Fig. 6.25
to infer that the only interesting rate of execution of the plant behavior is the execution’s rate of
the active class connected to it, namely the controller, and then define its execution’s rate as the
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same of the controller6.

6The operational semantics of hybrid fUML does not do this kind of inference, which is com-
monly found in synchronous declarative languages (BENVENISTE et al., 1991; HALBWACHS et al.,
1992).
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7 HYBRID fUML - THE DESCRIPTION OF THE LANGUAGE

This chapter presents the main extracts from the formal description of the language hybrid fUML,
which is informally introduced in the previous chapter. Hybrid fUML is defined through the ap-
plication of the ultra deep embedding technique using the transformation Embedding - M2 - ASM,
previously presented in Section 5.1, and extended versions of the meta-models of synchronous
fUML. Therefore, the meta-models of synchronous fUML (abstract syntax and semantic domain)
are extended to support DAEs’ modelling and evaluation. These hybrid fUML meta-models are
ultra deeply embedded describing the algebraic data types for the abstract syntax and semantic
domain of hybrid fUML. Moreover, the transition rules defined for synchronous fUML are reused
or extended by hybrid fUML. In summary, hybrid fUML is built upon the formal description of
synchronous fUML discussed in Chapter 5.

Section 7.1 presents the introduced elements in the abstract syntax of hybrid fUML. Section 7.2
shows the additions in the semantic domain of hybrid fUML. Afterwards, the significative ex-
cerpts of the operational semantics (the semantic mapping defined using ASM) are shown. Finally,
concluding remarks are shared.

7.1 Abstract Syntax

The requirement “it shall enable modeling (syntax) of continuous behavior, discrete behavior, and
temporal concerns” shall be balanced with the compactness concern of fUML ((OMG), 2012a).
As discrete behavior is supported by synchronous fUML, it is automatically supported by hybrid
fUML since hybrid fUML is built upon synchronous fUML. Continuous behaviors, i.e., equations,
are described in SysML using Constraints owned by ConstraintBlocks ((OMG), 2012c), furthermore,
they are described using Constraints stereotyped with ModelicaEquation in SysMLModelica pro-
file ((OMG), 2012b). Similarly, temporal concerns are defined by Constraints in MARTE ((OMG),
2011a). Therefore, the common abstract syntax element that supports continuous behaviors
and temporal concerns is Constraint that is part of the hybrid fUML abstract syntax.

Concerning equations defined by Constraints, it is a requirement for the hybrid fUML a syntactical
way to compose these equations, which is stated by the following requirement “it shall enable the
definition of continuous libraries à la Modelica”. In order to satisfy this requirement, two options,
at least, are available, namely parametrics diagram from SysML and UML composite structures.
Parametrics diagrams could demand additional elements in the abstract syntax, whereas UML
composite structures are already part of the abstract syntax of synchronous fUML. In addition,
taking into account SysMLModelica profile ((OMG), 2012b), only block definition diagrams (BDD;
a diagram based on the UML class diagram ((OMG), 2012c)) and internal block diagrams (IBD;
a diagram based on the UML composite structure diagram ((OMG), 2012c)) are applied since
parametrics diagrams offered a low-level description of the equations that could be made invisible
to the modeler (pp. 90;((OMG), 2012b)). In conclusion, UML composite structure already
part of the abstract syntax from synchronous fUML and, consequently hybrid fUML,
assumes two possible interpretations: communication between active objects (discrete)
and composition of equations (continuous).

As UML composite structure assumes two possible interpretations, it is needed an alternative to
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disambiguate them. Therefore, part of the SysMLModelica profile ((OMG), 2012b) is copied to
the profile of hybrid fUML. These stereotypes are used by the operational semantics of hybrid
fUML for the composition of equations to be solved in a continuous evolution. Table 6.1 lists
the stereotypes copied from SysMLModelica profile, namely ModelicaConnector, ModelicaValue-
Property, ModelicaEquation, ModelicaConnection and ModelicaPort. Also, the evaluation of these
stereotypes can lead to the creation of new equations for potential (or across) properties and flow
(or through) properties. Thus, Properties shall be stereotyped with ModelicaValueProperty, which
has two meta-properties: flowFlag that admits only the values flow or none, and variability that
admits the values constant, parameter, discrete and continuous. These meta-properties are the only
available in hybrid fUML.1

Still, taking into account equations defined by Constraints, UML constraint is a condition or re-
striction expressed in a machine readable language. In hybrid fUML, the operational interpretation
is neither pre, post nor invariant conditions; i.e., they are not verification goals. Lastly, the concrete
syntax to define a specification of a Constraint stereotyped with ModelicaEquation is a subset of
Modelica (MODELICA, 2012) satisfying the following requirement “the syntax shall be defined by
a subset of Modelica”. The subset allowed is composed of: derivative operator der, multiplicative
operator *, additive operator + and simple equality equations =. A consequence of such restrictive
subset is that only DAEs can be defined2. The abstract syntax of hybrid fUML is not augmented
in order to support the subset of Modelica concrete syntax.

Additionally, Constraints support temporal concerns when stereotyped with ClockConstraint from
MARTE ((OMG), 2011a). The stereotype is not copied to hybrid fUML profile since there is no
modification in it. The subset of CCSL’s concrete syntax is composed of the following expressions
and relations: discretizedBy, isCoarserThan, isPeriodicOn and =. Once more, the abstract
syntax of hybrid fUML is not augmented in order to support this subset of CCSL concrete syntax.
One more stereotype from MARTE is available in the abstract syntax of hybrid fUML Clock
that can be only used in SignalEvent due to the synchronous fUML definition about clocks (see
Section 5.4).

The design decision “continuous behavior evaluation does not depend from the control flow state
of a given discrete behavior, i.e., when time evolves the enabled continuous behaviors (based on
the state of its active object) shall be evaluated” together with the explicit separation of the
syntactical elements that support discrete (activities) and continuous (equations) behaviors lead
to the necessity of alternatives to define how those behaviors are intertwined in the operational
semantics. Taking into account hybrid automaton (see Section 2.3.2), the elements that define the
interaction are invv (the domain of validity of the control mode) and jumpe (the condition for the
evaluation of the resete and perhaps to move for another control mode). These two concepts from
hybrid automaton lead to two last stereotypes for the Constraint in the abstract syntax of hybrid
fUML, namely ContinuousDomain and DiscreteDomain. The ContinuousDomain (not present in
(BAUER, 2012)) plays an important role in hybrid fUML likewise in the design and analysis of
hybrid systems since it is usually the geometry of ContinuousDomains and DiscreteDomains that
produces the rich dynamical phenomena in a hybrid system (pp. 30; (GOEBEL et al., 2009)).

1It excludes the value stream for the flowFlag likewise other meta-properties, e.g., causality.
2Other operators and functions should be part of the subset in a non-research language.
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DiscreteDomain is used to constrain an activity that runs concurrently with other behaviors of an
active object when its Boolean scalar Modelica expression is satisfied - it is one way to freeze a con-
tinuous evolution (zero-crossing). ContinuousDomain is used to constrain a ModelicaEquation that
is enabled when its Boolean scalar Modelica expression is satisfied. Specifically, ContinuousDomain
does not define an invariant for a control mode (hybrid automaton) but a domain of validity for
an equation or a set of equations. Domains have also a restricted subset of Modelica concrete syn-
tax, namely relational operators (except equality operator, due to the use of zero-crossings) and
Boolean operators. The abstract syntax of hybrid fUML is not augmented in order to support the
subset of Modelica concrete syntax.

Regarding enichronous models (see Definition 6.3) and interaction of continuous and discrete be-
haviors, a common use case for hybrid fUML is to read a value assumed by a property of an object
when the continuous evolution is finished, i.e., there is no chance of new continuous evolutions at
current macro2-step. In order to support this use case, the action ReadStructuralFeatureValueAc-
tion has the stereotype Edge in hybrid fUML. If a ReadStructuralFeatureValueAction is stereotyped
with Edge, it blocks the activity execution until the finish of continuous evolutions and then the
value at the “edge” is returned by the action.

The formal version of the profile for hybrid fUML is composed of three algebraic data types that
define the known stereotypes, their known tags and the possible values for the tags. See the excerpt
below for an extract of the formal version of the profile, which is manually defined (it is not defined
by ultra deep embedding).

data Stereotype = Pausable | Previous | PrecededBy | NonBlockable | Edge |
ModelicaConnection | ModelicaConnector | ModelicaEquation | ModelicaValueProperty | ModelicaPort |
DiscreteDomain | ContinuousDomain |
ClockConstraint | Clock | StereotypeUndef

data StereotypeTag = FlowFlag | Variability | InitialValue | StereotypeTagUndef

data StereotypeTagValue = Flow | None | Continuous | Discrete | Parameter | Constant | StereotypeTagValueUndef

At this point, the meta-model called extendedfUMLAbstractSyntax is extended with
Constraint (see Section 5.2). Using this meta-model and the parameters key classifiers
and target classifiers of the transformation Embedding - M2 - ASM, the abstract
syntax of hybrid fUML is formally defined by algebraic data types taking into account
bUML.

The parameter key classifiers for Embedding - M2 - ASM has the following values for hybrid fUML:
ActivityEdge, ActivityNode, Classifier, ConnectorEnd, Constraint, Event, Feature, InstanceSpeci-
fication, Parameter, Slot, Trigger and ValueSpecification. Therefore, for each one of these classifiers,
one algebraic data type (a set) is defined by the transformation. The following extract shows part
of the algebraic data type generated as a result of the ultra deep embedding of Constraint in the
abstract syntax of hybrid fUML.

data FUML_Syntax_Extensions_Classes_Kernel_Constraint = FUML_Syntax_Extensions_Classes_Kernel_Constraint
String
FUML_Syntax_Classes_Kernel_ValueSpecification
String
FUML_Syntax_Classes_Kernel_VisibilityKind
FUML_Syntax_Classes_Kernel_VisibilityKind | FUML_Syntax_Extensions_Classes_Kernel_ConstraintEmpty
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function_Constraint_specification :: FUML_Syntax_Extensions_Classes_Kernel_Constraint ->
FUML_Syntax_Classes_Kernel_ValueSpecification

function_Constraint_specification (FUML_Syntax_Extensions_Classes_Kernel_Constraint xmiId specification1 name2
visibility3 visibility4) = specification1

function_Constraint_NamedElement_name :: FUML_Syntax_Extensions_Classes_Kernel_Constraint -> String
function_Constraint_NamedElement_name (FUML_Syntax_Extensions_Classes_Kernel_Constraint xmiId specification1 name2

visibility3 visibility4) = name2

Additionally, the parameter target classifiers for Embedding - M2 - ASM has the following
values for hybrid fUML: AcceptEventAction, Activity, AddStructuralFeatureValueAction, CallBe-
haviorAction, Class, ClearStructuralFeatureAction, Connector, ConnectorEnd, Constraint, Con-
trolFlow, CreateObjectAction, DataType, DecisionNode, EncapsulatedClassifier, FlowFinalNode,
ForkNode, FunctionBehavior, InitialNode, InputPin, InstanceSpecification, InstanceValue, Literal-
Boolean, LiteralInteger, LiteralNull, LiteralReal, LiteralString, LiteralUnlimitedNatural, MergeN-
ode, ObjectFlow, OutputPin, Parameter, Port, PrimitiveType, Property, ReadSelfAction, Read-
StructuralFeatureAction, Reception, RemoveStructuralFeatureValueAction, SendSignalAction, Sig-
nal, SignalEvent, Slot, StartObjectBehaviorAction, StructuredClassifier, Trigger and ValueSpecifi-
cationAction. Therefore, for each one of these classifiers, the transformation defines the adequate
algebraic data type (a set) for which it is a subset.

Recall the transformation Embedding - M1 - ASM defines members of the sets defined by the
embedded abstract syntax as well as their relationships. These members form the embedded user-
defined model and are possible inputs for the operational semantics defined in the sequel. The
following extract shows the signature of functions generated by this transformation regarding the
algebraic data type ActivityNode and its relationships with the stereotypes available in hybrid
fUML.

function_ActivityNode_AppliedStereotype :: FUML_Syntax_Activities_IntermediateActivities_ActivityNode ->
{Stereotype}

function_ActivityNode_InverseAppliedStereotype :: Stereotype ->
{FUML_Syntax_Activities_IntermediateActivities_ActivityNode}

function_ActivityNode_EnumerationValueForAppliedStereotype ::
FUML_Syntax_Activities_IntermediateActivities_ActivityNode -> Stereotype -> StereotypeTag -> StereotypeTagValue

function_ActivityNode_ValueSpecificationForAppliedStereotype ::
FUML_Syntax_Activities_IntermediateActivities_ActivityNode -> Stereotype -> StereotypeTag ->
FUML_Syntax_Classes_Kernel_ValueSpecification

In conclusion, the formal version of the abstract syntax of hybrid fUML is defined by the ultra
deep embedding of the extendedfUMLAbstractSyntax performed by the transformation Embedding
- M2 - ASM with the above specified parameters for key classifiers and target classifiers. Note
there is no manual intervention in the embedded abstract syntax or in the embedded user-defined
model indirectly produced based on the same parameters by the transformation Embedding - M1
- ASM.

7.2 Semantic Domain

Recall hybrid fUML encompasses implicit DAEs by synchronous active objects. Thus, independent
of the strategy to store computed values for continuous properties during a continuous evolution
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(intermediate values), each continuous property assumes one value at the beginning of the contin-
uous evolution and one value at the end of the continuous evolution (determined by a zero-crossing
or a time horizon). Therefore, in hybrid fUML, continuous properties shall assume more than one
value at a macro-step. A property can assume more than one value at a macro-step in synchronous
fUML, consequently, in hybrid fUML. This guarantees that extensions or changes are not needed in
the already defined semantic domain from synchronous fUML in order to support continuous prop-
erties. The reason is that synchronous fUML deals with computation as a different phenomenon
from the communication.

Constraints, per se, do not demand additional elements in the semantic domain. Nevertheless,
ContinuousDomains together with the generation of equations based on UML composite structures
lead to the necessity of an element to store the set of equations for an active object since they are
dynamically defined. This dynamicity is rooted in the avoidance of explicit enumeration of discrete
states (see hybrid automaton in Subsection 2.3.2) and the dynamical nature of fUML. In addition,
the dynamicity is a challenge for a static semantics of hybrid fUML. Therefore, an element called
SystemOfEquations is defined in the semantic domain of hybrid fUML. It has as properties an
active object and a set of constraints.

At this point, the meta-model extendedfUMLSemanticDomain is extended with Syste-
mOfEquations. Using this meta-model and the parameters key classifiers, target classifiers and
generateSemantics of the transformation Embedding - M2 - ASM, the semantic domain of hybrid
fUML is formally defined by algebraic data types taking into account bUML.

The parameter key classifiers of Embedding - M2 - ASM has the following values for the semantic
domain of hybrid fUML: Clock, ExecutionFactory, Executor, FeatureValue, Instant, Locus, Multiple-
TimeBase, Offer, ParameterValue, SystemOfEquations, TimeBase, Token and Value. Therefore,
for each one of these classifiers one algebraic data type (a set) is defined by the transformation.

The following extract shows the algebraic data type for the classifier SystemOfEquations, the
FUML_Semantics_Extensions_Equation_SystemOfEquations. SystemOfEquations does not have
subsets so the extraction of the ASM reserve is made using the class Create. Afterwards, two
functions are declared. The first one is a dynamic function that returns the owning active object of
the SystemOfEquations. The last dynamic function returns the set of Constraints currently defining
the SystemOfEquations.

data FUML_Semantics_Extensions_Equation_SystemOfEquations = FUML_Semantics_Extensions_Equation_SystemOfEquations
Int | FUML_Semantics_Extensions_Equation_SystemOfEquationsEmpty

instance Create FUML_Semantics_Extensions_Equation_SystemOfEquations where
createElem i = FUML_Semantics_Extensions_Equation_SystemOfEquations i

function_SystemOfEquations_object :: Dynamic ( FUML_Semantics_Extensions_Equation_SystemOfEquations ->
FUML_Semantics_Classes_Kernel_Value )

function_SystemOfEquations_constraint :: Dynamic ( FUML_Semantics_Extensions_Equation_SystemOfEquations ->
{FUML_Syntax_Extensions_Classes_Kernel_Constraint} )

Additionally, the parameter target classifiers of Embedding - M2 - ASM has the following values
for the embedded semantic domain of hybrid fUML: ActivityExecution, BooleanValue, ControlTo-
ken, DataValue, DiscreteTimeBase, ExecutionFactory, Executor, FeatureValue, IntegerValue, Junc-
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tionInstant, Locus, LogicalClock, MultipleTimeBase, Object, ObjectToken, Offer, ParameterValue,
PhysicalClock, RealValue, Reference, SignalInstance, StringValue, SystemOfEquations and Un-
limitedNaturalValue. Therefore, for each one of these classifiers the transformation defines the
adequate algebraic data type (a set) for which it is a subset.

In summary, the semantic domain of hybrid fUML is defined by ultra deep embedding without any
manual intervention using the same criteria applied for the synchronous fUML. Note clocks are
available in the semantic domain of synchronous fUML likewise additional properties in the Locus
to manage these clocks.

7.3 Operational Semantics

Taking into account the embedded abstract syntax (static functions) and the embedded semantic
domain (dynamic functions), this section presents the main transition rules that form the
operational semantics of hybrid fUML described by the ASM mainHyb. Moreover, mainHyb
reuses the transition rules that support the ASM mainSyn, which defines synchronous fUML.

Regarding the decision that physical time is globally synchronized (see Section 6.1), a Locus has one
and only one physicalClk. The physicalClk may be configured by a user-model using a CCSL, specifi-
cally, the combination of a clock expression referencing the clock idealClk provided by the MARTE
library Clock c is idealClk discretizedBy 0.01; with a clock relation c = physicalClk;
determines the discretization step for the chronometric clock physicalClk in a Locus unequivocally.
Note, by definition, the physicalClk is discrete and is measured in seconds. Therefore, if a system
needs more than one physicalClk, it could be supported by more than one Locus provided that
there would exist a communication medium between these Loci.

As this thesis is not focused on the DAEs numerical solving, the cornerstone of hybrid fUML is
the capability to support enichronous models, which is achieved mainly due to three facts: (1)
it treats the concept of macro-step from synchronous fUML as a micro-step, (2) it defines the
concept of macro2-step that encompasses finitely many macro-steps from synchronous fUML and
continuous evolutions, and (3) a special signal broadcasted by the semantics Edge indicates that the
macro2-step should be terminated and continuous evolutions are not anymore allowed at current
macro2-step.

Although Edge is conceptually a signal, it is not directly received by active objects
as a signal. It is managed by the operational semantics using the dynamic function
function_Locus_physicalClkIsOnEdge of a Locus (see below).

function_Locus_physicalClkIsOnEdge :: Dynamic ( FUML_Semantics_Loci_LociL1_Locus -> Bool )

When this function has value true for a given Locus, it determines that it is forbidden additional
continuous evolutions at the current macro2-step, or, equivalently, the physicalClk of the Locus can-
not have more instants at the current macro2-step. Moreover, in the case of value true, it unblocks
two types of actions: ReadStructuralFeatureValueActions stereotyped with Edge and AcceptEven-
tActions stereotyped with NonBlockable. The former action is unblocked since the Locus is at an
Edge and the value of the property cannot change due to continuous evolution at the macro2-step.
The latter is unblocked because it is, for sure, that it is the last macro-step to be evaluated at the
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macro2-step, consequently, if the signal is not present and cannot be emitted, it is absent. Note
the decision of absence shall be postponed until the edge to ensure constructiveness, moreover, the
static semantics is a challenge.

Still, regarding Edge, it defines that a macro2-step is to be finished, while the domains, namely Dis-
creteDomain and ContinuousDomain, determines one alternative to stop a continuous evolution,
indeed, they are defined by zero-crossings. During continuous evolutions, these zero-crossings are
monitored, if a discrete domain is satisfied, the continuous evolution stops and a new macro-step
starts. If a continuous domain does not hold anymore or a continuous domain becomes satisfied then
a new SystemOfEquations shall be determined for the active object, afterwards, the continuous evo-
lution continues. With this approach, zero-crossings define a global discrete time (see Section 6.1).

Locus, defined in synchronous fUML, is completely reused in hybrid fUML. The execution of
activities has minor differences regarding edge. The next subsection presents the impact of the
introduction of edges in actions, and then, it is discussed how the discrete domains start new
activities, afterwards, it is presented the continuous domains and the handling of a rudimentary
numerical solver. Finally, the initial rule and the main rule of the ASM mainHyb are presented. In
the following, the presence of "..." in the rules indicates that the rule is not completely shown.

Actions and Control Nodes

Concerning actions and control nodes, actions, with exception of ReadStructuralFeatureValueAction
and AcceptEventAction, and control nodes are reused in hybrid fUML.

ReadStructuralFeatureValueAction is extended to suspend an activity execution in the case of
the presence of the stereotype Edge (function_fUML_stereotypedActivityNode Edge ra) and
function_Locus_physicalClkIsOnEdge equals to false. See extract below.

operatio_ReadStructuralFeatureActionActivation_doAction ::
FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation -> Rule ()

operatio_ReadStructuralFeatureActionActivation_doAction (vl, ra) =
...
-- waits until the edge if it is a read for edge and timeedge is defined
if (function_fUML_stereotypedActivityNode Edge ra) &&

not (function_Locus_physicalClkIsOnEdge (function_Value_ExtensionalValue_locus vl)) then
-- MARKING THAT THIS NODE IS WAITING EDGE
rule_fUML_activityExecution_suspend vl FUML_Status_WaitingEdgeValue ra

...

The application of the stereotype Edge in actions ReadStructuralFeatureValueAction is very com-
mon in instances of the pattern sample-then-output (see Definition 6.7) since the values assumed
by properties should be read at the edge (sample) and then they are broadcasted using signals.

Action, the Communications Enabler

The constructive semantics determines that a signal should be declared absent only when there is
no chance of its emission. Therefore, the action AcceptEventAction is extended to declare a signal
absent only if it is the last macro-step for a macro2-step, in other words, macro2-step is at the
edge. Otherwise, it suspends the activity execution. See extract below. Note the edge checking is
done only if there is no chance of the emission of the signal at current macro-step, denotated by
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the function function_fUML_signal_CAN_beGenerated.

operatio_AcceptEventActionActivation_doAction ::
FUML_Semantics_Activities_IntermediateActivities_ActivityNodeActivation -> Rule ()

operatio_AcceptEventActionActivation_doAction (vl, aea) =
...
-- not previous, not using precededBy or it is not the first tick
if not prev && not (prec && function_fUML_isFirstTick l ev) then

-- checking if others can generate the signal
if function_fUML_signal_CAN_beGenerated vl sig then

-- MARKING THAT THIS SIGNAL CAN ARRIVE IN THIS DISCRETE EVALUATION
rule_fUML_activityExecution_suspend vl FUML_Status_WaitingSignal aea

else
-- NOBODY can generate the signal... so
-- it has a value
if length cots > 0 then

...
else

if not (function_Locus_physicalClkIsOnEdge (function_Value_ExtensionalValue_locus vl)) then
-- MARKING THAT THIS SIGNAL DOES NOT ARRIVE IN THIS DISCRETE EVALUATION
rule_fUML_activityExecution_suspend vl FUML_Status_WaitingSignalTempBlocked aea

else
-- NONBLOCKABLE
if nonb then

...

DiscreteDomains and Activity Executions

Once a continuous evolution is started, in hybrid fUML, it can be interrupted by two conditions:
(1) in time triggered-systems, the time horizon is reached or (2) zero-crossings for one or more do-
mains (DiscreteDomains and ContinuousDomains) are detected. DiscreteDomains interrupt the
continuous evolution to start a new macro-step, while ContinuousDomains interrupt the contin-
uous evolution to determine new SystemOfEquations for all alive active objects, afterwards, the
continuous evolution proceeds.

A new macro-step triggered by the holding of one or more DiscreteDomains means that their con-
strained activities shall be executed at the new macro-step. Therefore, activity executions with the
appropriate active objects as context are instantiated and run as a concurrent synchronous agent.
Note these activity executions run concurrently and synchronously with the classifier behavior of
the respective active objects so they must define consistent update sets, otherwise, the model is
not well-behaved according to synchronous fUML (see Definition 5.3). In other words, they cannot
modify or create the same set of properties (writings), concurrently.

The following transition rule is used to retrieve from all alive active objects their discrete do-
mains (function_fUML_retrieveDiscreteObjectAndConstraintEnabled). Afterwards, another
rule rule_fUML_evaluateDomainAndStartAgent is called to evaluate the DiscreteDomain c in the
context of an active object ao.

rule_fUML_evaluateDiscreteDomains :: Rule()
rule_fUML_evaluateDiscreteDomains =

if (function_fUML_objectsWithStereotypeForEvaluation DiscreteDomain) /= {} then do
-- for all active objects, retrieve all its constraints, and evaluate
forall (ao,c) <- function_fUML_retrieveDiscreteObjectAndConstraintEnabled do

rule_fUML_evaluateDomainAndStartAgent ao c
else skip
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The rule_fUML_evaluateDomainAndStartAgent is shown below. It starts checking if the Discrete-
Domain is constraining an Activity and its ValueSpecification is satisfied taking into account the
active object as context. In the case of holding of the checking, it uses the Locus of the active
object to retrieve the ExecutionFactory and then it creates a new execution for the activity with
active object as context operatio_ExecutionFactory_createExecution f elact vl.

rule_fUML_evaluateDomainAndStartAgent :: FUML_Semantics_Classes_Kernel_Value ->
FUML_Syntax_Extensions_Classes_Kernel_Constraint -> Rule ()

rule_fUML_evaluateDomainAndStartAgent vl c =
if (length el) /= 0 && function_Classifier_type(elact) == FUML_Syntax_Activities_IntermediateActivities_Activity

&& (function_fUML_evaluateBooleanExpression vl strspec) then
do

-- create an agent for the discrete domain
ex <- (operatio_ExecutionFactory_createExecution f elact vl)
-- create agent
function_fUML_Agents(ex):= operatio_Value_Execution_execute
-- setting mode
function_fUML_Agents_mode(ex) := FUML_Status_NotInitialized

else
skip

where
f = (function_Locus_factory (function_Value_ExtensionalValue_locus vl))
spec = function_Constraint_specification c
strspec = function_ValueSpecification_LiteralString_value spec
el = expr2list $ function_Constraint_constrainedElement_Classifier(c)
elact = head $ el

In summary, DiscreteDomains have two purposes: (1) to stop a continuous evolution (zero-
crossing) and (2) to instatiate new activity executions. These activity executions are treated as
another agent so they take part of the fixpoint iteration of a macro-step. Note, as they are agents,
they can use all the features that a classifier behavior can use, e.g., the stereotype Pausable
in control nodes, the stereotype NonBlockable in AcceptEventAction, etc. . . Furthermore, they
are executed concurrently which means that two or more DiscreteDomains trigger the activity
executions without any order, in other words, there is no sequence between these executions.

ContinuousDomains and DAEs

In hybrid fUML, the SystemOfEquations are defined for each alive active object, moreover, they
are formed collecting all enabled ModelicaEquations for each alive active object. These Modeli-
caEquations form DAEs. The conditions for the collection of a ModelicaEquation are: there is an
instance of the object that defines the ModelicaEquation, its (parent) owning object is alive and its
continuous domain (if existent) holds. Therefore, the continuous domain is a condition to a con-
strained ModelicaEquation be part of the SystemOfEquations. However, it is possible the existence
of equations without continuous domain and then always enabled. For example, timed BasketBall
(see Example 27), in which the ModelicaEquation PlantDynamics defines equations that equates
discrete properties with continuous properties defined in the library. In this case, the domain of
validity of such equations are the entire state space.

The transition rule rule_fUML_defineEquations is responsible for the definition of the Syste-
mOfEquations for each active object (see below). It starts removing all SystemOfEquations. Af-
terwards, for each active object forall ao <- (expr2list function_fUML_activeObjects), it
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creates a new SystemOfEquations. The equations are collected using static functions with different
purposes. The function function_fUML_retrieveEquationsForConnectors generates equations
for connectors as well as collects equations not guarded by domains but connected by connectors.
The function function_fUML_retrieveEquationsForPortsNotConnected generates equations for
ports which have properties of type flow that are not connected so they are equals 0 (sum to zero).
The function function_fUML_retrieveEquationsForEnabledObjects retrieves equations with-
out domain or with domain enabled. All these equations are stored in the semantic domain in a
SystemOfEquations for a given alive active object. This is the initial definition of the flattening
process for hybrid fUML, well-known in Modelica (pp. 57; (MODELICA, 2012)). However, it has the
scope of an active object. Note there is no checking, in the current semantics, about the
unique solvability of the resulting SystemOfEquations.

rule_fUML_defineEquations :: Rule()
rule_fUML_defineEquations =

-- (CB) checking if it is at the edge
if not (function_fUML_isOnEdgePhysicalClock pc) then

-- checking: exist continuous domain and not discrete domain
if function_fUML_existsContinuousDomainEnabled && not function_fUML_existsDiscreteDomainEnabled then

-- clearing equations
forall se <- (expr2list (dom function_SystemOfEquations_object)) do

function_SystemOfEquations_object(se):= FUML_Semantics_Classes_Kernel_ValueEmpty
function_SystemOfEquations_constraint(se):= {}

‘seq‘
-- creating new equations
forall ao <- (expr2list function_fUML_activeObjects) do

if length (function_fUML_retrieveContinuousObjectAndConstraintEnabledForActive ao) > 0 then
create sofe do

function_SystemOfEquations_object(sofe) := ao
function_SystemOfEquations_constraint(sofe) := mkSet ( (function_fUML_retrieveEquationsForConnectors ao) ++

(function_fUML_retrieveEquationsForPortsNotConnected ao FUML_Semantics_Classes_Kernel_ValueEmpty
FUML_Syntax_Classes_Kernel_FeatureEmpty) ++

(function_fUML_retrieveEquationsForEnabledObjects ao) )
else skip

else skip
else skip

where
l = function_fUML_locus
pclk = function_Locus_physicalClock l
pc = function_Clock_timeBase pclk

The rule rule_fUML_computeEquations computes numerical solutions using the forward Euler
method regarding the initial conditions provided by the properties of the corresponding active
object (initial value problem). It starts checking if the Locus is not at the edge, then it checks if
there is SystemOfEquations to be solved and there is no DiscreteDomain enabled. Afterwards, it
numerically solves the equations and advance the physicalClk accordingly. Note discrete properties
are dealt as constants during the numerical solving, i.e., they cannot change their values during
continuous evolutions.

rule_fUML_computeEquations :: Rule()
rule_fUML_computeEquations =

-- (CB) checking if it is at the edge
if not (function_fUML_isOnEdgePhysicalClock pc) then

-- checking: exist continuous domain and not discrete domain
if function_fUML_existsContinuousDomainEnabled && not function_fUML_existsDiscreteDomainEnabled then

if not $ emptyDom function_SystemOfEquations_constraint then
do

-- compute equations
...
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-- advance physicalClock
...

else skip
else skip

else skip
...

In conclusion, ContinuousDomains are used in two ways: (1) to select equations that is part of
the SystemOfEquations at a given instant of the physicalClk and (2) to determine when these
SystemOfEquations shall be redefined, i.e., they act as zero-crossings which define the domain of
validity for equations. In addition, the second use defines a condition to interrupt a continuous
evolution, to determine a new SystemOfEquations for each alive active object and to resume the
continuous evolution.

Remark 7.1 (SystemOfEquations and DAE solvers). Hybrid fUML supports the use of multiple
DAE solvers, with different integration methods and/or integration step size, one for each active
object since each SystemsOfEquations can be computed independently provided that the final phys-
ical time is the same for all active objects. When using a single integration method and a single step
size, the choice of these parameters for a single solver is governed by the SystemOfEquations that
demands the smaller step size. The SystemsOfEquations provides a way to define different parame-
ters for different solvers, which can improve the overall precision and time required for the numerical
solving (BENVENISTE et al., 2012). Finally, the transition rule rule_fUML_computeEquations is the
rule to be changed for the integration of a DAE solver.

Remark 7.2 (Domains and DAE solvers). In the case of the substitution of the rudimentary nu-
merical solving used in the mainHyb by one DAE solver, the Domains shall be pre-processed
evaluating the possible discrete variables (stereotyped with ModelicaValueProperty and variability
equals to discrete) before the call to the DAE solver. Once the discrete variables are evaluated,
only continuous variable are present in the domains and then they define zero-crossings that can
be sent to the DAE solver for monitoring.

Initial Rule

The ASM mainHyb reuses the transition rule rule_fUML_init from synchronous fUML (see Sec-
tion 5.4) for the initialization of the ASM defining the valid initial states (see Subsection 2.2.4). In
the ASM mainHyb, four initial rules are available:

a) rule_fUML_initSim - used for simulation of models, it assumes that the model is a
time-triggered model (clock constraints are not mandatory in the model) and each
macro2-step consumes per (period) times ds (discretization step) seconds;

b) rule_fUML_initTimed - used for time-triggered models, it assumes that the model has
clock constraints defining the model as an enichronous model using the strategy in which
every macro2-step consumes a fixed amount of physical time (see Subsection 3.1.4), e.g.,
it is used for Example 27;

c) rule_fUML_initTimed2 - used for time-triggered systems, it demands that the model
has clock constraints defining the model as an enichronous model, and the model or
the environment generates signals to be received by the model related somehow with
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the physicalClk. It uses the strategy in which a macro2-step does not consume neces-
sarily a fixed amount of physical time. The consumption depends on the presence of
signals related with physicalClk (see Subsection 3.1.4), e.g., it is used for Example 28,
Example 29 and Example 30;

d) rule_fUML_initEvent - used for event-triggered systems, it demands that the model
has clock constraints defining the model as an enichronous model and the model or the
environment generates signals to be received by the model related somehow with the
reactionClk, e.g., it is used for Example 25 and Example 26. Additionally, it requires a
discretization step.

Taking into account Corollary 6.5, event-triggered models may be evaluated using the ASM
mainHyb initialized for time-triggered models provided that the model is still constructive. For
example, the Example 25 can be evaluated using the following initial rule and parameters
rule_fUML_initSim 500 0.01, which means that each macro2-step has a fixed duration of 5
seconds. Note this is only possible since the events emitted by the example HitTheFloor are equal
at a macro2-step, otherwise, the model would be non-constructive for the given physical time
consumption at a macro2-step. 3

These rules are shown in the extract below.

-- SIMULATION
rule_fUML_initSim :: Int -> Float -> Rule()
rule_fUML_initSim per ds = rule_fUML_init per ds True

-- TIMED MODE
rule_fUML_initTimed :: Rule()
rule_fUML_initTimed = rule_fUML_init 0 0.0 True

-- TIMED MODE ADVANCED BY THE MODEL
rule_fUML_initTimed2 :: Rule()
rule_fUML_initTimed2 = rule_fUML_init 0 0.0 False

-- EVENT MODE
rule_fUML_initEvent :: Float -> Rule()
rule_fUML_initEvent ds = rule_fUML_init (-1) ds True

Main Rule

Heretofore, synchronous fUML is extended covering: (1) an extension of the formal embedded
semantic domain described by algebraic data types (see Section 7.2), (2) transition rules for the
actions extended by hybrid fUML including the actions that are responsible for communications
and that can have a direct impact on the activity executions (see Section 7.3), (3) transition rules
for the DiscreteDomain and the instantiating of activity executions as independent synchronous
agents (see Section 7.3), (4) transition rules for the definition of SystemOfEquations for each
alive active object regarding ContinuousDomains and for their rudimentary numerical solving (see
Section 7.3), and, finally, (5) initial rules that reusing the initial rule defined by synchronous fUML
configure a Locus for a specific type of model supported by hybrid fUML (see Section 7.3). The
main transition rule glues all these pieces defining the meaning of one macro2-step

3As this example exhibits the Zeno behavior, indeed, its evaluation as a time-triggered behavior
defines an ill-behaved user-defined model, however, the goal here is to exemplify the initial rules.
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for hybrid fUML. Likewise synchronous fUML (see Section 5.4), the main rule of hybrid fUML
computes all the outputs w.r.t. the internal state.

The following extract shows the main rule rule_fUML_mainHyb from the ASM mainHyb, which
defines the meaning of one macro2-step (see Definition 6.6). The ASM mainHyb defines the
operational semantics of hybrid fUML. The rule begins checking whether there exists at least
one agent or not. It checks the domain of the dynamic function function_fUML_Agents de-
fined in the embedded semantic domain. Afterwards, it prepares a macro2-step calling the rule
rule_fUML_prepareReactionHyb.

The rule rule_fUML_prepareReactionHyb calls the rule rule_fUML_prepareReaction from syn-
chronous fUML and defines that the function_Locus_physicalClkIsOnEdge is false for the Locus
at the macro2-step. Later, an iteration is started (RB). The iteration RB is the cornerstone of the
main rule of hybrid fUML since it defines the search for a fixed point between the interaction of
discrete and continuous behaviors at a macro2-step.

In the scope of the iteration RB, the rule rule_fUML_prepareDiscreteStepHyb calls the
rule rule_fUML_prepareDiscreteStep from synchronous fUML, afterwards, it calls the rule
rule_fUML_evaluateDiscreteDomains (discussed above in Subsection 7.3) instantiating syn-
chronous agents in the case of DiscreteDomains enabled.

Hence, the computation of one macro-step is done using the same rules of synchronous fUML. The
combination of the operators iterate and multiDeterm has the following effect: multiDeterm
- all synchronous agents (activity executions) viewing the same state run one step (defined by
synchronous fUML, see Section 5.4), and then, the computed update sets of all agents are checked
about the consistency, hence, if they are consistent the state is updated; and iterate - if the
state is updated the multiDeterm runs again, otherwise, a fixed point is reached and the iteration
terminates.

The next rule rule_fUML_checkDiscreteStepsHyb is responsible to check the available signals at
the macro2-step. In addition to the synchronization of the logical clocks of the Locus, it has two
purposes:

a) for time-triggered models, it checks if the present signals are related with the physicalClk,
if they are, it checks whether they are consistent with each other or not. If they are
consistent, all the instants for the physicalClk are computed until the time horizon.

The first timed signal (related with physicalClk by clock constraints) detected by
semantics does not generate continuous behavior evaluation since the computed time
horizon is zero seconds (0s), i.e., continuous behaviors are evaluated from the
previous tick to the current one. For example, consider a time-triggered model with
the reactionClk consuming 2 seconds, the first tick of reactionClk corresponds to the
time horizon zero seconds (0s), the second one corresponds to the time horizon of two
seconds (2s), which means that, at the second macro2-step, the continuous evolutions
are performed for the interval (0,2].

b) for event-triggered models, it defines whether the edge is reached or not. If
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a signal related with reactionClk is present, it changes the dynamic function
function_Locus_physicalClkIsOnEdge to true.

Subsequently, another iteration (CA) starts, this iteration is responsible to control the definition of
equations performed by the rule rule_fUML_defineEquations and their computation performed
by the rule rule_fUML_computeEquations (both, previously discussed in Section 7.3). Lastly, the
rule rule_fUML_checkEdge checks if, for a time-triggered model, the edge is reached based on the
pre-computed time horizon. In this case, it changes the function_Locus_physicalClkIsOnEdge to
true, furthermore, it call the rule rule_fUML_garbageCollector from synchronous fUML. There-
fore, the iteration CA is responsible to numerically solve the SystemsOfEquations until one or more
DiscreteDomains hold or, for a time-triggered models, the edge is reached.

Once the iteration RB reaches a fixed point, the rule
rule_fUML_checkContinuousEvolutionForReaction checks whether the physicalClk is
synchronized, which means that all expected continuous evolutions were done.

rule_fUML_mainHyb :: Rule()
rule_fUML_mainHyb =

if not (emptyDom function_fUML_Agents) then
-- (R) REACTION
-- (RA) prepare reaction
rule_fUML_prepareReactionHyb
‘seq‘
-- (RB) iteration to support the search for a fixpoint between the interaction of continuous and discrete behaviors
iterate (

-- (D) DISCRETE
-- (DA) prepare a discrete step
rule_fUML_prepareDiscreteStepHyb
‘seq‘
(

-- (DB) it tests: discrete behavior evaluation should be done
if function_fUML_executeDiscreteSteps l then

-- (DC) evaluate discrete behavior until fix point
iterate (multiDeterm function_fUML_Agents)

else skip
)
‘seq‘
-- (DD) check result from discrete computation
rule_fUML_checkDiscreteStepsHyb
‘seq‘
-- (C) CONTINUOUS
-- (CA) iteration
iterate (

-- (CB) define system of equations for each active object
rule_fUML_defineEquations
‘seq‘
-- (CC) compute the system of equations for each active object
rule_fUML_computeEquations
‘seq‘
-- (CD) check the at the edge
rule_fUML_checkEdge
)

)
‘seq‘
-- (RC) check result from continuous computation
rule_fUML_checkContinuousEvolutionForReaction

else skip
where

l = function_fUML_locus
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In conclusion, the main rule orchestrates the interaction of macro-steps computed as in
synchronous fUML and continuous evolutions until a fixed point. Additionally, the
fixpoint iteration covers communication between alive active objects and synchronous
numerical solving of independent SystemsOfEquations composed of DAEs.

Model of Computation

The tagged-signal model (LEE; SANGIOVANNI-VINCENTELLI, 1998) for the hybrid fUML is defined
as follows. Time-triggered models could be supported by the tag set TtimeTriggered = N>0×N>0×
Q≥0 because the physicalClk can be only defined by discretization discretizedBy, however, this
tag set would not support event-triggered models that are not based on discretization (at least,
ideally). Thus, let T = N>0 × N>0 × R≥0 be the tag set, where the first N>0 represents the
macro2-step counter (reaction counter, the reactionClk publicly available from the semantics of
hybrid fUML), the second N>0 represents the global logical step counter (macro-step counter, the
logicalClk privately defined in the semantics of hybrid fUML) and R≥0 represents the physical
time4.

This tag set is called ultra-dense time and it is equipped with a lexical ordering on T : (n11 , n21 , r1) ≤
(n12 , n22 , r2)⇔ n11 < n12 ∨ (n11 = n12 ∧ (n21 < n22 ∨ (n21 = n22 ∧ r1 ≤ r2)). Then, let Toper ⊂ T
be the discrete set5 of tags used by the operational semantics of hybrid fUML (defined at discrete
instants by the actions SendSignalAction and AcceptEventAction, or by input signals). Let V be
the set of all possible values for all the data types defined by hybrid fUML, and Vb = V ∪ {�,⊥}
be the set of values plus the absent value and the unknown value. Then a function defines a signal
s:

s : T → Vb (7.1)

Furthermore, ∀t 6∈ Toper, s(t) = ⊥ and ∀t1, t2 ∈ Toper, t1 ≤ t2, s(t2) 6= ⊥ ⇒ s(t1) 6= ⊥, which means
that once a signal is defined for t2 the signal for t1 shall be previously defined. The set of all signals
S is defined by P(T × Vb).

The following axiom is a keystone in the ultra-dense time applied for hybrid fUML.

Axiom 7.1. If a signal is defined more than once at a given macro2-step (n1) then its signal value
shall be the same.

∀(n11 , n21 , r1) ∈ Toper,

∀(n12 , n22 , r2) ∈ Toper,

n11 = n12 ⇒ s(n11 , n21 , r1) = s(n12 , n22 , r2)

(7.2)

Axiom 7.1 expands the definition that signals shall be uniquely defined at a macro-step in the
synchronous-reactive MoC to the newly defined outer macro2-step.

Now, recall the tag set of the synchronous-reactive MoC is one composed only of the natural num-

4It is the physicalClk only in the case of time-triggered models.
5A discrete set is one that is order isomorphic to the natural numbers.
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bers (see Subsection 2.2.2.1) so let Tsyn = N>0. Then the surjective order-embedding6 presented
in Equation 7.3 defines that Toper is order-isomorphic to Tsyn.

f : Toper → Tsyn
f(n1, n2, r1) = n1

(7.3)

Equipped with Axiom 7.1 and Equation 7.3 the following theorem is proved.

Theorem 7.2. The set of k functional signals sk : Toper → Vb are equally described by the set of
k functional signals sak : Tsyn → Vb.

Proof. Axiom 7.1 guarantees that it is possible to safely abstract from the macro-step counter (n2)
and the physical-time (r) maintaing the signals sak functionally defined without any loss of signal
values. Moreover, the order isomorphism, described in Equation 7.3, defines that the event order
for the signals sk is maintained in sak. Therefore, the set of k functional signals sk are equally
described by sak. q.e.d.

Theorem 7.2 means that the ultra-dense time offers an abstraction of physical time that
precisely matches the multiform of time from synchronous languages. In other words,
taking into account the consumption of physical time at a macro2-step for an enichronous model,
it is possible to define physical time in a homogeneous way for all components at all reactions,
consequently, it is possible to abstract from the physical time (multiform of time).

In addition, Theorem 7.2 guarantees that the operational tag set from synchronous fUML can be
safely used by hybrid fUML provided that Axiom 7.1 is respected, however, the operational meaning
of this axiom simply means that the actions SendSignalAction and AcceptEventAction shall not
enable multiple values of one signal at a given reactionClk (macro2-step), which is a requirement for
synchronous fUML also (see Axiom 5.2). Therefore, this axiom is guaranteed by the operational
semantics of synchronous fUML. Consequently, the dynamic function and transition rules that
support the signals’ storage in synchronous fUML are the same needed by hybrid fUML.

As hybrid fUML is an extension of synchronous fUML, it inherits the same notion of process,
which is defined by activity executions for classifier behaviors of active objects (see Subsection 5.4),
furthermore, it reuses the dynamic function that supports the signals’s storage, therefore, it is a
conservative extension of synchronous fUML, i.e., any user-defined model that is well-behaved w.r.t.
the operational semantics of synchronous fUML is well-behaved w.r.t. the operational semantics
of hybrid fUML, generates the same outputs for same inputs using always one macro2-step.

Fig. 6.1 shows the abstract LTS for the model of computation of the hybrid fUML, which highlights
that the discrete transitions are indeed evaluated as macro-steps in synchronous fUML using the
constructive semantics, then a set of DAEs are collected and solved until the detection of one or
more zero-crossings, these two kinds of evaluations run until a fixpoint regarding a limit for physical

6A surjective order-embedding covers all the elements in the codomain and it preserves order-
ings.
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time consumption (a property of enichronous models, see definition 6.3), and then, a special signal
defined by the semantics is broadcasted Edge. One more macro-step takes place and then the
macro2-step terminates.

In conclusion, as hybrid fUML exhibits the synchronous-reactive MoC, it inherits the
formal properties of this MoC.

7.4 Concluding Remarks

In this technical chapter, it is presented how and why the abstract syntax and semantic domain of
synchronous fUML are extended. Afterwards, the main transition rules that define the operational
semantics are presented and discussed including the rule rule_fUML_mainHyb that defines the
meaning of one macro2-step in hybrid fUML. Finally, the model of computation is explored
showing that the synchronous-reactive MoC is exhibited by hybrid fUML. The following definition
declares the types of models supported by hybrid fUML.

Definition 7.3 (Types of user-defined models supported by hybrid fUML.). The types of user-
defined models supported by hybrid fUML are the following. Note there is no support for pure
continuous models since it is always necessary, at least, one active object to encompass the DAEs.

• Discrete - the operational semantics supports pure discrete behaviors, e.g., the Vend-
ingMachine 23;

• Hybrid - the operational semantics supports enichronous models with DAEs encom-
passed by active objects. These models can be classified into:

Event-triggered models (see Definition 2.17) - in which the reactionClk and clock
of signals of the model have relationships, which may be coincidence or subclocking.
For example, BouncingBall 25 and BasketBall 26. The following extract shows a clock
constraint from BasketBall 26 in which subclocking is used to define the relationship
between the clock of signals and the reactionClk.

Clock c1;
Clock c2;

c1 isCoarserThan reactionClk;
c2 isCoarserThan reactionClk;
c1 = PlantInRangeEvent;
c2 = PlantOutRangeEvent;

Time-triggered models (see Definition 2.16) - in which the reactionClk and the
physicalClk have relationships, which may be coincidence or subcloking. These models
can be further classified into:

Strictly time-triggered model - the reactionClk has a relationship of coin-
cidence with a clock derived from the physicalClk so every macro2-step consumes
a fixed amount of physical time. For example, timed BasketBall 27. The follow-
ing extract shows a clock constraint from timed BasketBall 27 in which coincidence is
used to define the relationship between the clock c derived from physicalClk and the
reactionClk.
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Clock c;
c isPeriodicOn physicalClk period 1;
c = reactionClk;

Loosely time-triggered model - the reactionClk have relationships of sub-
clocking with clocks of signals for which other relationships are defined with physical-
Clk. Therefore, it may exist macro2-steps that do not consume physical time.
This occurs at a macro2-step in which no signal related with reactionClk is present. For
example, mono-periodic SpringmassDamper 28, multi-periodic SpringmassDamper 29
and InvertedPendulum 30. The following extract shows a clock constraint from Spring-
massDamper 28 in which subclocking is used to define the relationship between the
reactionClk and a clock of a signal SecondSignalEvent related with physicalClk.

Clock c;
c isPeriodicOn physicalClk period 100;
c = SecondSignalEvent;
c isCoarserThan reactionClk;

A well-formed user-defined model is one that has behaviors that only depend on the structural and
behavioral elements defined in the embedded abstract syntax (it can use more than the embedded
abstract syntax but this should be only for visualization). Lastly, a well-behaved user-defined
model shall be in accordance with the following definition.

Definition 7.4 (Well-behaved user-defined model for hybrid fUML.). A well-behaved user-defined
model regarding the operational semantics of hybrid fUML must fulfill the following characteristics:

• It is a well-behaved user-defined model for synchronous fUML (see Definition 5.3)

• It is an enichronous model (see Definition 6.3);

• A macro2-step computation consists of only finitely many macro-steps and

In time-triggered models, this computation always consumes at least one instant
of the physicalClk;

In event-triggered models, this computation consumes zero physical time if one of
the signals that defines the physical time consumption is present in the input signals,
or it always consumes an amount of the physical time notwithstanding infinitesimal;

It rules out ill-formed models and time-triggered models that exhibit the Zeno
behavior. Note event-triggered models with Zeno behavior may be well-behaved (e.g.,
Example 25 in which the BouncingBall model emits a signal when it hits the floor, and
this signal is used to determine the physical time consumption at a macro2-step) so
this is a slightly relaxed version of the liveness assumption of hybrid automaton (see
Definition 2.12).

In fact, hybrid fUML is a synchronous language since it has the essential and sufficient
features (see Definition 2.8), which are:
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a) Programs progress via an infinite sequence of macro2-steps - the operational semantics
of hybrid fUML defines the semantics for a macro2-step that encapsulate finitely many
macro-steps;

b) In a macro2-step, decisions can be taken on the basis of the absence of signals - as
presented in the Subsection 4.2 the action AcceptEventAction stereotyped with Non-
blockable enables the reaction to absence;

c) Communication is performed via instantaneous broadcast - provided that a model is well-
behaved, the parallel composition is given by the conjunction of associated
macro2-steps;

In conclusion, this chapter presents evidences that “once there exists a formal synchronous exten-
sion of fUML, it is possible to extend it in order to enable modeling and deterministic cycle-accurate
simulation of hybrid systems” since hybrid fUML is defined based on synchronous fUML. It enables
modeling of hybrid systems and, as a synchronous language, it enables deterministic cycle-accurate
simulation. Therefore, the hypothesis is valid. Additionally, evidences of the validity of the sec-
ondary hypothesis, “it is possible to reuse Modelica concrete syntax for the description of DAEs
for hybrid plants”, are shown. Finally, the ASM mainHyb is available as free software as part of
this thesis (ROMERO, 2014b).
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8 EVALUATION AND DISCUSSION

Although the pragmatics of hybrid fUML was explored in Section 6.4, until now hybrid fUML has
not been evaluated against the reviewed modeling languages, namely Modelica, Hybrid Quartz and
Zélus (see Section 3.2). The comparison of hybrid fUML with the reviewed languages is the main
goal of this chapter. Section 8.1 evaluates hybrid fUML focusing on the pragmatics of the language
using quantitative metrics, afterwards, Section 8.3 discusses the related works drawing relations
with hybrid fUML.

8.1 Evaluation Regarding Pragmatics

Recall pragmatics of programming/modeling does not admit the same kind of formal analysis ap-
plied for syntactics or semantics, furthermore, it is not established during the definition of the
language, on the contrary, it evolves with its use (GABBRIELLI; MARTINI, 2010). As a consequence,
languages recently defined as Hybrid Quartz and Zélus are difficult to be used as a reference lan-
guage for pragmatics’ evaluation. For this reason, one of them is enough for an initial evaluation,
and Hybrid Quartz as an imperative synchronous language is similar to hybrid fUML (see Con-
jecture 4.3). Consequently, Modelica, Hybrid Quartz and hybrid fUML are compared based on an
example related to space engineering.

Syntactics and semantics are intertwined with their use during the system’s modeling so they cannot
be separated from the pragmatics, e.g., when modeling a discrete system using a synchronous
language, it is fundamental to be aware of the macro-steps so as not to miss signals and to design
a constructive (from semantics) system perhaps using the construct previous (from syntactics) to
avoid causality loops (see Section 2.2.2).

Moreover, empirical studies are difficult in software engineering and systems engineering due to the
large number of factors to be controlled and the high demand of efforts. Therefore, the following
evaluation is made as an exploratory research. Another related issue is the metrics to be used in
such exploratory research. There is no consensus about metrics of system, model or code complexity
and size (MONPERRUS et al., 2007). (MONPERRUS et al., 2007) advocated that counting metrics such
as number of classes and source lines of code (SLOC), despite its simplicity, offer an objective way
to measure and compare models.

In summary, this section presents an exploratory research considering counting metrics (quanti-
tative) for syntactical comparison of an example related to space engineering. The quantitative
comparison also includes semantical comparisons.

Example 30 (InvertedPendulum (OGATA, 2009; ROMERO et al., 2012; ROMERO; SOUZA, 2012;
ROMERO; FERREIRA, 2012a).). The inverted pendulum is a model of the attitude control for satel-
lite launch vehicles at their departure. The objective of the attitude control problem is to keep the
vehicle in a vertical position. The uniqueness of an inverted pendulum, due to its natural insta-
bility, provides various research in areas of systems, control and hardware/software. Furthermore,
the inverted pendulum is a classic hybrid system, since it is composed of continuous behavior
(stabilization of the pendulum in the vertical axis) and discrete behavior (mode switching).
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This example considers the following requirements and assumptions regarding an inverted pendu-
lum mounted on a cart: there are requirements to control angle and angular velocity of the rod as
well as to control position and velocity of the cart, the state of the system can be fully observed,
the cart and the pendulum only move to right and left so it is a two-dimensional problem; the cart
and the pendulum are not affected by friction; the center of gravity of the pendulum’s rod is at its
geometric center; and its inertia momentum is zero (0). Consequently, the system can be described
according to Eq. 8.1 after its linearization (OGATA, 2009).

x =


position

velocity

angle

angularV elocity

 , x ∈ R4 (8.1a)

f1(t) := Mlẋ4 = (M +m)gx3 − u (8.1b)

f2(t) := Mẋ2 = u− gmx3 (8.1c)

where: M = 2 is the mass of cart, m = 0.1 is the mass of the rod, l = 0.5 is the length of the rod,
g = −9.81 is the Earth’s gravitational acceleration and u is the control force.

There are two modes of the required proportional controller: (1) fine mode - used when the pen-
dulum is stabilized demanding less effort, its proportional constant K was defined by the tech-
nique of pole placement and the result is Kfine = {0.1020408, 0.4081633, 26.63102, 4.2040816}
and (2) coarse mode - used when the pendulum is not well-stabilized demanding more effort,
its proportional constant K was defined by the technique of pole placement and the result is
Kcoarse = {417.95918, 208.97954, 613.55954, 136.4898}. In fact, the different Ks demand different
sample periods, however, the example is based on the fast rate (FORGET et al., 2008a) equals to
0.05 seconds defined by Kcoarse. Such choice simplifies the discrete behaviors since only one sample
period is defined. In addition, the controller is responsible for the local control enabling the mode
switching, which is performed based on the presence of the signal ModeChange (received from the
environment in the models defined using Hybrid Quartz and hybrid fUML).

Table 8.1 shows the models for InvertedPendulum using Modelica, Hybrid Quartz and hybrid
fUML1. The controllers (in each language) have two modes determined by the variable modeFine.
When modeFine is true, Kfine is used to compute the control force u, otherwise Kcoarse is used. At
this point, these models should be self-explained. Furthermore, hybrid fUML needs the additional
descriptions shown in Fig. 8.1. Finally, this thesis does not consider a textual representation for the
structure defined by a hybrid fUML model, consequently, only the UML class diagram is available
for comparison, while possible Alf representations are used to enable behavioral comparison based
on textual notations (see Remark 2.2).

1Note these models can be defined differently even using the same language.
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//PlantClassifierBehavior
//@pausable
do {
//@previous initValue=new ControlSignal( force => 0 )
accept(ctl:ControlSignal);
this.force = ctl.force;
//@edge
p = this.position;
//@edge
v = this.velocity;
//@edge
a = this.angle;
//@edge
av = this.angularVelocity;
this.controller.ReceptionPlantState(
new PlantStateSignal(
position => p,
velocity => v,
angle => a,
angularVelocity => av ));

} while(true);

//PlantConstructor
massCart = 2;
massRod = 0.1;
lengthRod = 0.5;
position = 0;
velocity = 0;
angle = 0.1;
angularVelocity = 0;

Figure 8.1 - Additional discrete behaviors and clock constraints for InvertedPendulum
modeled using hybrid fUML.

Syntactical Comparison

Table 8.1 shows the syntactical quantitative metrics collected from the models of InvertedPendulum.

The first structural counter (Number of models, modules or classes) shows that Modelica uses two
models (Plant and Controller). Hybrid Quartz should use two similar modules plus one that should
define the parallel composition of Plant and Controller summing up three modules, however, the
simulator (GROUP, 2014) did not work with parallel composition of flows, and then, the Plant and
Controller were manually composed in the module called FlattenedPlantController. Once more, an
example where syntactics and semantics are combined in the pragmatics. Hybrid fUML models the
three basic components (plant, controller and system) and all the signals exchanged (4 signals).
Number of variables does not count macros or constants, in particular, hybrid fUML uses more
variables to define properties of the signals.

The syntactical quantitative metrics related to equations shows that Modelica and hybrid fUML use
the same number, more specifically, the same set of equations, whereas Hybrid Quartz use ODEs
defining two additional equations one of them to control the sampling period, drv(t) <- 1.0;.
Clock constraints are used only by hybrid fUML (disregarding sample(0, 0.05) in Modelica as a
clock constraint).

Regarding SLOC, Modelica and Hybrid Quartz use similar number of lines to describe the same
problem, nevertheless, hybrid fUML uses more lines of code. Hybrid fUML uses more lines of code
due to three main reasons: (1) it does not provide syntactical sugar to initialize variables (see the
behavior PlantConstructor), (2) it uses two lines to describe an action with extended semantics,
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e.g. //@nonblockable accept is an annotation mandatory to determine its semantics, and (3) it
does not provide syntactical sugar to digital/analog and analog/digital conversions, which are done
by the active objects handling signals.

In summary, Modelica is the mature language requiring less lines of code and supporting DAEs (see
Subsection 2.3.1 for the reasons why DAEs are desired). Hybrid Quartz uses similar lines of code
but it does not support DAEs, it mixes ODEs and discrete behaviors, and it does not offer built-in
support to timed-triggered systems forcing the definition of an additional variable and a equation
likewise hybrid automaton. Concerning time-triggered systems, Modelica supports sample and
Clock in Modelica 3.3. (MODELICA, 2012), while hybrid fUML supports clock constraints. Finally,
hybrid fUML does not offer syntactical sugar at all requiring more lines of code and structural
elements to be defined, nevertheless, it supports DAEs in active objects.

Table 8.2 - Syntactical quantitative metrics from the models for InvertedPendulum.

Modelica Hybrid Quartz Hybrid fUML
Structural counters
Number of models, modules or classes 2 2 7
Number of variables 11 9 14
Number of ODEs 0 6 0
Number of DAEs 4 0 4
Number of Clock Constraints 0 0 2
Source lines of code (SLOC) 43 41 57

Semantical comparison

Two quantitative metrics for semantics are selected: (1) error in the simulation for the same inte-
gration method and step size, and (2) number of macro-steps needed for a “reaction”. As Modelica
does not have the concept of macro-step, it cannot support the second metric. Moreover, Hybrid
Quartz simulator (GROUP, 2014) has an issue that does not allow the simulation of the model 2,
and, consequently, it cannot support the first metric.

Concerning the first metric error in the simulation for the same integration method and step size,
Fig. 8.2 shows that the numerical results from the hybrid fUML’s simulator match those generated
by a Modelica simulator ((OSMC), 2014).

Specifically, the root mean square (RMS) of the error, assuming the Modelica simulator as reference,
for the coarse mode is 0.00003708 and for the fine mode is 0.00000228. Note hybrid fUML simulator
only provides the integration method forward Euler, while the Modelica simulator ((OSMC), 2014)
provides other methods. Nevertheless, the error provides empirical evidence that the semantics

2It is related to the issue previously cited Footnote 3, in which macro-steps are not well inter-
preted in the occurrence of active flows.
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Figure 8.2 - The simulation data comparing a Modelica’s simulator and the hybrid fUML’s
simulator for InvertedPendulum.
Source: ((OSMC), 2014) (integration method: Euler, integration step size: 0.05)

provided by the hybrid fUML simulator is sound for this example.

Finally, Hybrid Quartz and hybrid fUML can be compared regarding the concept of “reaction”,
provided in Hybrid Quartz by macro-steps and in hybrid fUML by macro2-steps. In the Hybrid
Quartz model, two reactions are needed for each iteration of the while(true){, the first begin/end
of a macro-step is at the statement flow{} until (true); and the second one is the at the end of
the second flow until (cont(t) >= 0.05);. On the contrary, hybrid fUML always reacts with one
macro2-step. This fact has profound impacts in the composition of behaviors and in the pragmatics
since Hybrid Quartz has an internal physical time without any relation to the external physical
time (no relation to macro-step). Therefore, it is impossible to use the number of macro-steps to
define a “cycle” as it is usually done for pure discrete systems described by synchronous languages
(see detailed discussion in Subsection 8.3.2.2.1). Table 8.1 summarizes the results.

Table 8.3 - Semantical quantitative metrics from the models for InvertedPendulum.

Modelica Hybrid Quartz Hybrid fUML
“Reactions” to apply control not defined 2 1
RMS of error Kfine reference not available 0.00000228
RMS of error Kcoarse reference not available 0.00003708

In conclusion, regarding the current example, Modelica is the mature language for modeling and
simulation, nonetheless, when the notion of “reaction” is a requirement Hybrid Quartz and hybrid
fUML may provide a well-defined (not necessarily predictable) concept of macro-step. Moreover,
hybrid fUML provides a verbose alternative where the concept of reaction matches the original
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concept of macro-step from synchronous languages with the abstract notion of time (see Subsec-
tion 2.2.2 and Chapter 6) providing predictability and determinism.

8.2 Evaluation Concerning the Usage of Free Software

This section checks whether the hypothesis it is possible to define and to evaluate the proposed
extension using free software is valid or not.

The development environment for all the computer-readable material was the “Eclipse Modeling
Tools” (ECLIPSE, 2014b). In particular, all the meta-models and models were defined or extended
using Papyrus (ECLIPSE, 2014c). Moreover, the ultra deep embedding was performed using the
Acceleo (ECLIPSE, 2014a) that provides an implementation of the OMG specification MOF Model-
To-Text Transformation Language (MOFM2T). The models’ simulation was performed using As-
mGofer (SCHMID, 2010). Finally, the consistency evaluation of the base semantics was performed
by Eprover (SCHULZ, 2013). However, as formulas are described by CLIF and Eprover does not
support CLIF files, HETS (MOSSAKOWSKI, 2013) was used to translate CLIF files into TPTP
files (a format supported by Eprover (SCHULZ, 2013)). The result of the translation performed by
HETS was the input for Eprover.

These software and tools are free software, which in turn means that the secondary hypothesis is
valid. In spite of the fact that this secondary hypothesis does not have any novelty, it is considered
a crucial enabler for future work.

8.3 Discussion

This section uses the related works presented in Chapter 3 to draw qualitative comparisons regard-
ing synchronous fUML (discrete modeling) and hybrid fUML (hybrid modeling). Both languages
are based on bUML (a subset of fUML, which in turn is a subset of UML) and are synchronous
languages taking into account Definition 2.8.

In preparation for discussing the support for discrete/hybrid modeling, it is worthwhile to discuss
the role of fUML and its extensions concerning SysML ((OMG), 2012c). The matching of these OMG
specifications is explored in Table 2.5 and Table 2.4, moreover, due to the strict use of bUML it is im-
possible to claim that synchronous fUML is in compliance with the L1 level of SysML since actions
in this level are not available in synchronous fUML, e.g., the OpaqueAction. Moreover, stereotypes
provided in SysML Level 1, e.g., SysML::Activities::Continuous and SysML::Activities::Discrete,
are not available in synchronous fUML. Nevertheless, synchronous/hybrid fUML offers a precise
semantics for SysML models in which the behavior only depends on the abstract syntax of syn-
chronous/hybrid fUML. The following example shows how hybrid fUML can provide precise se-
mantics for SysML.

Example 31 (Timepiece using SysML.). A Timepiece is an instrument for measuring time. It is
described by one ODE that defines the derivative of a continuous property t equal to one (1) w.r.t.
physical time, i.e., der(t) = 1.
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The structure of the model is composed of: (1) a block Timepiece owning a part TimepieceCon-
straint and (2) the TimepieceConstraint, a constraint block, composed of two constraints. The
first constraint from TimepieceConstraint is the TimepieceDynamics that is a ModelicaEquation
defining the ODE discussed above. The second constraint states the domain of validity for the Time-
pieceDynamics. The behavior of the model is defined by the mandatory activity Main that creates
an instance of Timepiece and starts it. In addition, as a reactive class (see Definition 4.4), Time-
piece has its classifier behavior which defines a non-instantaneous non-terminating loop. Fig. 8.3
shows the model for the Timepiece.

Figure 8.3 - A well-formed and well-behaved SysML model for Timepiece regarding hybrid
fUML.

This SysML model is a well-formed user-defined model for hybrid fUML since its behavior is
completely defined by elements of the abstract syntax of hybrid fUML. As it does not explicitly
define clock constraints necessary for an enichronous model, it is assumed that the model is a
strictly time-triggered model (see Definition 7.3) in which the physical time consumption of a
macro2-step is fixed (it is mandatory to inform the physical time consumption for the operational
semantics using the rule rule_fUML_initSim for a simulation). Finally, it is a well-behaved user-
defined model for hybrid fUML since it respects the conditions defined in Definition 7.4.

Although this thesis does not use SysML in its main examples, all activity diagrams, class diagrams
(BDD in SysML) and composite diagrams (IBD in SysML) are fully compatible with SysML be-
cause only elements available in SysML and with precise semantics defined by synchronous/hybrid
fUML are used in these models (see Section 7.1 for a presentation of the abstract syntax of hybrid
fUML including the reason for the exclusion of SysML parametrics diagrams).

Following the same line of thought, (ROMERO, 2014a) evaluated synchronous fUML as a semantic
foundation for space systems architectures. Synchronous fUML provided a limited, but formally
precise and deterministic, form to describe structure and behavior in UML. Through the combina-
tion of this semantics foundation with UPDM (Unified Profile for DoDAF and MODAF) ((OMG),
2013c), a precise language supporting a standardized meta-model emerged for the definition of
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space systems architectures. The proposed combination was under evaluation for space systems
architectures since it was precise allowing formal analysis but it could demand special considera-
tions and more effort (detailed definition that could have good acceptance in space community due
to complexity of the space systems). The following example shows how synchronous fUML can be
used as a complement to UPDM in order to allow discrete synchronous modeling of space systems
architectures.

Example 32 (SatelliteTrackingAndControl using UPDM.). In this simplified example, an oper-
ational view is defined using the compliance level 0 from UPDM ((OMG), 2013c), i.e., based on
UML.

UPDM and synchronous fUML share the UML as basis so every meta-class used by UPDM that
is part of synchronous fUML has a straightforward semantics. For the meta-classes used in UPDM
that are not part of synchronous fUML, it was chosen to extend UPDM in order to make them
interpretable using synchronous fUML. Two extensions are defined: (1) ExchangeElement is spe-
cialized by a new stereotype called SignalExchangeElement, therefore, exchanges in the operational
view can be expressed by Classes or Signals; and, (2) OperationalStateDescription is a specializa-
tion of Activity from UML, therefore, one can define the operational state description using state
machines or activities.

An operational view (OV) describes the activities, operational elements and information exchanges
required to conduct operations. Moreover, as preconized by the UPDM, the emphasis is on the
modeling and analysis of Participants (Node), their operational activities OperationalActivity and
their communication. The computation is abstract, denoted by the operational activity actions
OperationalActivityActions, which indeed are CallBehaviorActions to activities not necessarily de-
tailed.

OV-1b High-level Operational Concept Description

In the National Institute for Space Research (INPE), the satellite tracking and control center
(CRC, SatelliteTrackingAndControl) is the department responsible for the activities of tracking and
control of satellites. The CRC consists of the satellite control center (SCC, SatelliteControlCenter)
in São José dos Campos and the tracking ground stations (TrackingGroundStation) of Cuiabá
(CBA) and Alcantara (CLA). These three sites are interconnected by a private network, which is
suppressed in the sequel models to keep them simple.

The communication of the CRC with the satellites is established by the tracking ground stations
during the visibility window of the antennas. During these windows, the signals transmitted by
a satellite are sent by its antenna providing a downlink communication. The signals contain the
information of the satellite, i.e., telemetry revealing its current state of operation. After the estab-
lishment of a downlink, the tracking ground station provides an uplink, which is used for sending
telecommands. All control actions are planned, coordinated and executed from the CRC. During
the windows of satellites’ visibility, the CRC connects to a tracking ground station through the
network, and then it is able to receive and send data from a visible satellite.
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OV-2 Operational Flow Description

OV-2 illustrates the nodes in the SatelliteTrackingAndControl as well as the need to exchange
information between the them. Fig. 8.4 shows the structural view (UML class diagram) of the
nodes. The main points are:

• SatelliteTrackingAndControl defines the boundaries of the operational view with three
ports to an outer system, rawdataReceiver, rawdataEmitter and telecommandReceiver.
The ports rawdataReceiver and rawdataEmitter communicate with the space segment
(beyond of the scope of this operational view), and the port telecommandEmitterSystem
broadcast to an outer system the telecommands defined to be sent to the space segment.
It has two parts: TrackingGroundStation and satelliteControlCenter. The multiplicity
of the TrackingGroundStation is not defined as two (CBA and CLA) to maintain the
operational view independent of the system view. Finally, SatelliteTrackingAndControl
is modeled using an active class, denoted in the diagram by a class box with an additional
vertical bar on either side.

• TrackingGroundStation is an active class with four ports. The ports are clearly shown
in Fig. 8.5.

• SatelliteControlCenter is the last active class with two ports.

Figure 8.4 - OV-2 - Operational flow description - UML class diagram.

Fig. 8.5 shows the communication and collaboration between the nodes defining the need to ex-
change information. It is a UML composite structure diagram, in which the white color in ports
means that they are not conjugated so they are input ports, and the gray color in ports means
that they are conjugates, therefore, they are output ports.

The communication and collaboration in the system can be explained as follows. Rawdata com-
ing from an outer system is received by the part trackingGroundStation, the data is transformed
in Telemetry and sent to the part SatelliteControlCenter. The part satelliteControlCenter sends
Telecommands to the trackingGroundStation as well as to an outer system. Finally, the part track-
ingGroundStaticion may sent Rawdata to an outer system.
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Figure 8.5 - OV-2 - Operational flow description - UML composite structure diagram.

Note, generally, it is necessary to type a connector with an association. However, system engineers
do not use associations to support connectors because associations are viewed as a software-level
concept with weak semantics and not suitable for system-level modeling (pp.259 (OBER et al., 2011)).
Therefore, the structure of the operational view shown in Fig. 8.4 does not have associations to
support the connectors.

OV-6b Operational State Transition Description

The operational state transition description is a graphical method of describing how an operational
node responds to various events by changing its state. The diagram represents the sets of events
to which the node will respond (by taking an action to move to a new state) as a function of its
current state ((OMG), 2013c).

As defined by UPDM, the OperationalStateDescription should be defined by a
state machine visualized by a state machine diagram, however, the package UPDM
L0::Core::OperationalElements::Extended introduces the possibility to define its behavior
using activities, and then, interpret according to the synchronous fUML semantics. Indeed,
environments of synchronous languages offer tools to visualize the resulting automata from a
given action-oriented description avoiding the explicit enumeration of states. Therefore, Fig. 8.6
and Fig. 8.7 show the state transition description for the operational nodes using activities.
Fig. 8.6 can be roughly explained as follows. In every reaction, the antenna is directed (described
by the OperationalActivityAction DirrectAntenna), then Rawdata is received, concurrently,
telecommands are received. Afterwards, RawData is (ideally) processed by an operationalActivity
and Telecommand is (ideally) processed by another operationalActivity concurrently. Finally, the
results are sent to the respective target, and the reaction ends.

Fig. 8.7 can be roughly explained as follows. In every reaction, the Telemetry is received, then it
is stored and used to prepare the telecommands. Finally, the telecommands are sent to the port
telecommandEmitter and the reaction ends.

Note the sterotypes Pausable, Nonblockable, Previous are used to define a reaction that is con-
structive, therefore, it is possible to execute the behaviors with guarantees of determinism.
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Figure 8.6 - OV-6b Operational state transition description - trackingGroundStationClas-
sifierBehavior.

The next subsections explore similarities and differences between the proposed fUML extensions
and the related works.

8.3.1 Support for Discrete Modeling

The first assumption of the present thesis is that there are no modeling languages with widespread
use in systems engineering and software engineering communities that have the attraction of
UML (GRAVES, 2012; BORDIN et al., 2012). Recall UML supports discrete modeling. Moreover,
the second assumption of the thesis is that synchronous languages, focused on discrete modeling,
have been established as a technology of choice for specifying, modeling and verifying real-time sys-
tems (BENVENISTE et al., 2003). While UML does not prescribe precise semantics, fUML standard
execution model provides a nondeterministic precise semantics. On the other hand, synchronous
languages provide a well-founded deterministic semantics, indeed, the main reason for their appli-
cation in real-time systems. In accordance with (BENVENISTE et al., 2003; SIMONE; ANDRÉ, 2006),
the present thesis blends synchronous features for control into the standardized fUML using the
unconstrained semantics areas, namely time and concurrency. Consequently, synchronous fUML
has a well-founded deterministic semantics in compliance with the standardized fUML.
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Figure 8.7 - OV-6b Operational state transition description - satelliteControlCenterClas-
sifierBehavior.

8.3.1.1 Semantics of UML and fUML

Concerning semantics of UML and fUML, the two main differences between the reviewed related
works and synchronous fUML are: (1) the reviewed related works did not take into account the
fUML action language defined by OMG ((OMG), 2012a) so they did not notice the subset of the
UML syntax, the operational semantics defined for this subset, the base semantics formalizing
using first-order logic the semantics of bUML as well as the standardized semantic domain, and (2)
the reviewed related works did not challenge the nondeterministic nature of UML. Nevertheless,
real-time systems have to be functionally deterministic according to Definition 2.15.

(SARSTEDT; GUTTMANN, 2007) formalized semantics of the token flow in UML 2 activity diagrams
using ASMs. A special focus was put on the InterruptibleActivityRegion, in addition, asynchronous
multi-agent ASMs were applied to handle activity executions and unconstrained areas were modeled
by the non-deterministic choice of ASMs. However, the InterruptibleActivityRegion is considered
less used by OMG, which excludes it from fUML (pp. 20; ((OMG), 2012a)). (JARRAYA et al., 2009)
proposed a formal syntax and semantics for a subset SysML activity diagrams, nonetheless, there
was no support for object flows and object nodes so it was impossible to describe the data-flow
in activities, which is a key part in bUML (the core of fUML). (KRAEMER; HERRMANN, 2010)
presented an operational semantics for a subset of activity diagrams of UML. The ActivityPartition
was the key element to organize the communication between components, nevertheless, activity
partitions are excluded from fUML since, according to OMG, they are a general modeling construct
and their precise execution semantics is unclear (pp. 53; ((OMG), 2012a)). (GRONNIGER et al., 2010)
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defined a semantics for a subset of UML activity diagrams, in the variant in which atomic actions
were covered (in fUML the majority of actions are atomic, e.g., ReadStructuralFeatureValueAction
and AcceptEventAction), it excluded ForkNode and JoinNode, however, ForkNode is part of the
bUML (the core of fUML). (KNIEKE et al., 2012) did not no support object flows and object nodes
so it was impossible to describe the data-flow in activities, which is a key part in bUML.

In common, these works proposed a token flow semantics covering control flow and object flow
(in some of them) regardless the standardized semantic domain and the base semantics that de-
fines using first-order logic the valid interpretations of the token flow semantics for bUML. On
the contrary, this thesis embedded the standardized semantic domain and proposed a restricted
version of token flow semantics taking into account the base semantics (see Section Execution of
an Activity 5.4). Moreover, while the token flow semantics is the center of attention in those works,
in synchronous fUML it is an enabler for the center of attention that is the change of the model
of computation from a nondeterministic model based on interleaving to a deterministic one based
on synchronous concurrency.

Nevertheless, evaluations of the base semantics are a necessity (ROMERO et al., 2014b), e.g., the
first syntactical defect described in the Appendix B was recognized in version 1.1 RTF from 2012
(pp. 383;((OMG), 2012a)). However, the same defect was detected in version FTF beta 2 from 2009
(pp. 289;((OMG), 2009)). Furthermore, fUML is a basic building block for future specifications of
OMG, e.g., the request for the proposal - precise semantics for composite structures ((OMG), 2013b)
states that new axioms must have explicit relationships with the base semantics and have to be
consistent with it, however, the base semantics is not consistent (see Appendix B) ((OMG), 2012a).

Regarding the related works that adhered to translation, (PLANAS et al., 2011) stated that translat-
ing UML behavioral models into other languages or formalisms could compromise scalability and
efficiency of the proposed approaches regarding verification. Another issue is that the translation
may define a semantics that is different from the standardized semantics, in this case, fUML. In
this sense, (ABDELHALIM et al., 2012) is an exception since it was based on fUML. In particular,
(ABDELHALIM et al., 2012) detected two conditions under which a fUML model may cause state
space explosion in the CSP formalism. It is remarkable that both conditions were rooted in the
nondeterministic inter-object communication of fUML.

Finally, (ROMERO et al., 2014b) introduced a conceptual evaluation of the formal semantics (the
base semantics) defined in fUML. From the practical perspective, it showed with a simple example
how the base semantics could support formal verification (a requirement for real-time systems)
through theorem proving. Although this technique has well-known issues related to scalability, it
can be applied together with synchronous fUML provided that the base semantics is consistent.

8.3.1.1.1 fUML and the Conformance Assessment

Although the ASM mainSyn (the operational semantics of synchronous fUML) does not define an
execution tool, its usage together with the transformation Embedding - M1 - ASM can be eval-
uated concerning conformance with the fUML specification. The Section “2 Conformance” from
fUML ((OMG), 2012a) defines the criteria for a claim regarding conformance. The following assess-
ment applies these criteria to synchronous fUML and it can be compared with the conformance
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statement of the fUML reference implementation (MODELDRIVEN.ORG, 2014a).

X Conformance Level – As synchronous fUML is based on bUML that is orthogonally
defined regarding the fUML’s levels of conformance and does not support object-
orientation (see Subsection 4.1), it is impossible to claim the level L1 since syntactical
elements from L1 are not part of the embedded abstract syntax of synchronous fUML,
e.g., Operation. However, since synchronous fUML is based on bUML that is expressive
enough to define the execution model of fUML (pp. 351; ((OMG), 2012a)), it can be
used to model systems. In this case, the static partial acceptance as defined by OMG
(elements not part of the embedded abstract syntax of synchronous fUML are ruled out
from the embedded user-defined model) is applied by synchronous fUML.

X Model Library Conformance – fUML does not require to implement the whole stan-
dardized model library so synchronous fUML is in conformance with fUML since the
operators available are in conformance with the behavior specified in fUML. The op-
erators available are: binary operators for reals (+), (*), (<=), the unary operator for
real (-), binary operator for booleans (and) and the unary operator for booleans (not)
(see Section 4.2).

X Abstract Syntax Mapping – The Embedding - M1 - ASM receives an XMI (compatible
with Acceleo (ECLIPSE, 2014a)) as input, then the model is filtered taking into account
the embedded abstract syntax of synchronous fUML, and, hence, it is transformed into
an embedded user-defined model defined by an ASM module. Therefore, this transfor-
mation, defined by the ultra deep embedding architecture (see Section 5.1), performs the
mapping from a concrete syntax available in XMI into the embedded abstract syntax
defined by algebraic data types, which enables execution. Note the goal of this the-
sis is not to define an execution tool, however, the operational semantics defines an
interpreter naturally3.

X Semantic Value Mapping – Synchronous fUML applies the ultra deep embedding ap-
proach so the Values defined in the semantic domain of fUML are available as is in the
embedded semantic domain (if selected). Therefore, the Values in the embedded seman-
tic domain of synchronous fUML has a one-to-one relation to the respective Values in
the standardized semantic domain of fUML.

X Execution Environment Mapping – The abstraction of the execution environment Locus
from fUML is embedded in the semantic domain of synchronous fUML (see Subsec-
tion 5.4). Therefore, it is possible to demonstrate the following aspects:

XDefinition of whether execution takes place at a single locus or may be distributed
across multiple loci – The initial rule of synchronous fUML rule_fUML_init discussed
in Subsection 5.4 instantiates a single locus FUML_Semantics_Loci_LociL1_Locus for
the ASM mainSyn. Therefore, all executions in synchronous fUML take place at a single
Locus.

XPersistence of Extensional Values – The rules discussed in the Subsection 5.4,

3This does not mean that the interpreter can be used on the large scale as an execution tool,
on the contrary, its purpose is to explore and to research the semantics.
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namely operatio_Locus_add and operatio_Locus_instantiate, defines that all ex-
tensional values are stored at the Locus of the execution.

XSpecification of which objects are pre-instantiated at a locus – The initial rule of
synchronous fUML rule_fUML_init initializes opaque behaviors in order to support
the available operators of the model library. Note the interaction with the environment
is not based on the classical input/output channel or parameters, the sole interaction
with the environment available in synchronous fUML is based on signals stored by the
dynamic function function_fUML_signals discussed in Section 5.3.

× Semantic Conformance – It is allowed to avoid the object-orientation for the semantics
of fUML (pp. 6; ((OMG), 2012a)) so it is possible to demonstrate the aspects required for
the semantic conformance. Nevertheless, the use of terms synchronous/asynchronous in
fUML should not be confused with the use of these terms regarding MoCs, which is
noted in Remark 2.1.

XEvaluation – ValueSpecifications are evaluated using an embedded rule for the
standardized Executor. The rule operatio_Executor_evaluate receives an Executor
and a ValueSpecification and then it returns a Value. The signature and behavior of
the rule exactly match those defined in the standardized semantic mapping (see Sub-
section 5.4).

XSynchronous Execution – Synchronous fUML does not support parameters, as
stated before, the interaction with the environment is solely based on signals. More-
over, there is a naming convention that the activity Main is the sole activity to be
prepared for execution by the initial rule. Therefore, it is possible to run an arbitrary
activity (without input parameters) and waits its processing (without output parame-
ters). In order to enable that execution, it has to be defined the activity Main with a
CallBehaviorAction to the desired activity. A run of these activities is defined by the
operational semantics as the execution of a macro-step.

XAsynchronous Execution – Synchronous fUML supports the initialization of the
classifier behavior of arbitrary active classes, as exemplified in the examples presented
in this thesis. Concerning the activity Main, commonly, it creates active objects using
the action CreateObjectAction, initializes them and, finally, starts them using the action
StartObjectBehavior. A reaction of these classifier behaviors is defined by the operational
semantics as the execution of a macro-step at which the active classes can exchange
uniquely defined signals instantaneously.

× Base Semantics – The specification states that the conformance of an inter-
preter would be demonstrated by a formal proof that it respects all the definitions of
the base semantics (pp. 7;((OMG), 2012a)). However, at this point, it is known that the
base semantics is not consistent so, actually, it cannot support such semantic confor-
mance assessment (see Appendix B). Therefore, technically, the specification it-
self and, consequently, the reference implementation (MODELDRIVEN.ORG,
2014b) are not in conformance with this criteria actually. Finally, the ASM
mainSyn based on a formal method with a well-known integration with logic, pursued
this formal proof but it was not achieved due to such inconsistence.

• Synchronous fUML covers, in the operational semantics, only actions and ob-
ject nodes with at most one incoming and at most one outgoing edge, additionally, all
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actions produce and/or consume only one object token per action’s execution in syn-
chronous fUML so the ObjectNodes always have upper multiplicity equal to one (see
Subsection 5.4).

X Semantic Constraints – For details see Chapter 5.

XTime – The abstract notion of time of synchronous languages is introduced in the
semantics. The operational semantics is defined in such a way to describe a macro-step
(one tick of the abstract clock). In order to handle this newly introduced notion of time,
the meta-model MARTE4fUML is added into the semantic domain.

XConcurrency – The synchronous concurrency is introduced. This introduction
changes the semantics of ControlNodes stereotyped with Pausable and AcceptEventAc-
tions.

XInter-Object Communication – The inter-object communication is based on the
exchange of synchronous signals uniquely defined at a macro-step. In order to enable
broadcasting, the meta-model CompositeStructure4fUML is introduced in the abstract
syntax. Finally, all the communications are reliable and deterministic.

X Semantic Variation – For details see Chapter 5.

XEvent Dispatch Scheduling – The notion of a list augmented with some sort
of priority for the storage of incoming signals of an active object is replaced by a
set that stores the uniquely defined signals at a macro-step (the dynamic function
function_fUML_signals). The values of the signals are determined using the construc-
tive semantics. Finally, the reception of a signal (AcceptEventAction) does not remove
it from that set.

× Polymorphic Operation Dispatching – Synchronous fUML does not support
object-orientation so the relationship generalization has no semantical meaning and the
action CallOperationAction is not part of the abstract syntax of synchronous fUML.

8.3.1.2 Semantics of UML Composite Structures and fUML

Although UML composite structure is not part of fUML, it is well-accepted as a fundamental
technique to describe systems (CUCCURU et al., 2008; OBER; DRAGOMIR, 2011; ROMERO et al.,
2014a). For example, Alf has an informative annex defining a semantic integration with composite
structures since “executable behaviors will often be nested in some way within a component” (pp.
365; ((OMG), 2013a)). Furthermore, OMG has a request for proposal for the integration of UML
composite structures and fUML ((OMG), 2013b)4.

(ROMERO et al., 2014a) recognized that UML composite structures are a feasible standardized option
to support broadcasting in fUML since ports in active objects can work as relays dispatching signals
received to other active objects. Indeed, one of the main differences between (OBER; DRAGOMIR,
2011) and (ROMERO et al., 2014a) is that a port in an active object can dispatch a received signal to
more than one active object, which defines the concept of broadcasting used in synchronous fUML.
Complementarily, SysMLModelica Transformation ((OMG), 2012b) decides to use IBD, a kind of

4The thesis is not intended to satisfy the requirements of the OMG’s request for pro-
posal ((OMG), 2013b).
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UML composite structure, for the modeling of hybrid systems. Therefore, taking into account
(ROMERO et al., 2014a) and SysMLModelica Transformation ((OMG), 2012b), synchronous fUML
uses composite structures for the definition of boundaries between components (decoupling) and
the broadcasting (discrete behaviors), whereas hybrid fUML uses composite structures to enable
composition of equations likewise generation of equations (describing connections in continuous
behaviors).

The meta-model CompositeStructure4fUML defined by (ROMERO et al., 2014a) is exactly the meta-
model part of the abstract syntax of synchronous fUML (see Section 5.2). The differences between
that work and the current thesis are two: (1) instead of using translation to integrate the newly
defined meta-model into fUML, the thesis prefers to extend the semantic domain in order to
support broadcasting without any required association (see Subsection 5.4) and (2) the rule “Port
2.2. Port (isBehavior=false), at least, one delegation connector must reach it coming from internal
elements” is removed from the static semantics. The reason for the exclusion is that a classifier
behavior can be the sole activity that sends a signal to a port so it is not mandatory a delegation
connector. Finally, the formal static semantics defined by (ROMERO et al., 2014a) extending the
base semantics is assumed by the operational semantics of synchronous fUML (the exception is
the discussed exclusion).

8.3.1.3 Model of Computation of UML and fUML

Regarding the model of computation of UML and fUML, the thesis ratifies (BENYAHIA et al., 2010;
ROMERO et al., 2013b) in the sense that the standard execution model of fUML is not applicable
to real-time systems due to its nondeterminism. However, instead of proposing changes in the
informal semantics of fUML as (BENYAHIA et al., 2010) or a new informal semantics as (ROMERO

et al., 2013b), the thesis defines a formal operational semantics based on the synchronous-reactive
MoC, which is established for real-time systems (BENVENISTE et al., 2003).

Synchronous fUML offers a deterministic model of computation based on synchronous concurrency
addressing the issues identified by (BENYAHIA et al., 2010; ROMERO et al., 2013b), additionally, its
operational semantics centralizes the scheduling of internal actions providing an alternative to ad-
dress the issue of scattered scheduling algorithm identified by (BENYAHIA et al., 2010; COMBEMALE

et al., 2013) (see Section 5.4).

The informal Alf annotations introduced by (ROMERO et al., 2013b) are used in this thesis in
an attempt to facilitate large activities comprehension. However, their definite mapping into syn-
chronous fUML are not definable due to the restricted abstract syntax of synchronous fUML, which
is noted in Remark 2.2. The proposed multicasting mechanism from (ROMERO et al., 2013b) based
on the non-standardized element MessageDispatcher is replaced by the UML composite structures
in this thesis. Lastly, the origins of the nondeterminism identified by (ROMERO et al., 2013b) are
redefined in synchronous fUML in such a way that the deterministic synchronous-reactive MoC
emerges, namely token flow semantics and event dispatching.

In accordance with (SIMONE; ANDRÉ, 2006), synchronous fUML instantaneously allows the receiv-
ing of multiple events by the one active object at a macro-step due to the synchronous-reactive
MoC. Nevertheless, Assumption 4.1 takes an important role in synchronous fUML since it enforces
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the matching between the base semantics and bUML (see Appendix B). Recall the base semantics
constrains the AcceptEventAction, beyond the scope of bUML, in such a way that it is impossible
to define the synchronous-reactive MoC, e.g., the discussed case of reaction to absence.

Finally, a recurrent concept in the usage of MARTE ((OMG), 2011a) is the TimedEvent that is
not part of the abstract syntax of synchronous fUML. The reasons for this are twofold, with
the exclusion of fUML being the first. The stereotype TimedEvent from MARTE is applicable to
TimeEvents defined in the package SimpleTime from the UML ((OMG), 2011b), however, fUML
excludes the entire package SimpleTime since time events and constraints are not within the scope
of fUML (pp. 44; ((OMG), 2012a)). One can argue that synchronous fUML is adding time concerns
into fUML so it could copy the entire package of SimpleTime and define it, nonetheless, recall
a major concern for fUML is the compactness, and the SignalEvents, part of fUML, support the
necessary notion of clocks ((OMG), 2012a) (the second reason).

8.3.1.4 Real-time Extensions of Synchronous Languages

Synchronous fUML does not allow any type of reference to physical time, whereas physical time
is a key element of the semantics of hybrid fUML in which clock constraints can consider the
physicalClk of the Locus and the idealClk (an ideal wall clock).

Taking into account (CLOSSE et al., 2001; BERTIN et al., 2001), hybrid fUML does not deal with
worst-case execution time and deadlines, i.e., verification is not addressed by hybrid fUML. On the
other hand, the well-founded deterministic semantics of hybrid fUML can enable integration with
verification methods and formalisms, e.g., the timed automaton used by Taxys.

The strictly periodic clocks from (FORGET et al., 2008b) are defined by clock constraints between
the physicalClk and other clocks available in the model or the reactionClk in a time-triggered model
defined using hybrid fUML. However, in this thesis, there is no concern about static semantics of the
clock constraints and their implications on the communication between synchronous components.
Moreover, Example 29, a multi-periodic one, is based on the fastest base rate as usual (FORGET

et al., 2008a). Hybrid fUML agrees with (FORGET et al., 2008a) in the sense that the synchronous
hypothesis does not prevent from considering the duration of a discrete instant.

In the same sense, (BOURKE; SOWMYA, 2009) defined alternatives to describe physical time delays
in Esterel. Indeed, the strictly time-triggered models (see Definition 7.3) uses the same principle
from the sample-driven implementation (BOURKE; SOWMYA, 2009), in which each macro-step had
a physical time associated with it, and then the counting of macro-steps gave the elapsed physical
time. Similarly, the loosely time-triggered models (see Definition 7.3) shares the same principle
of event-driven with timing inputs (BOURKE; SOWMYA, 2009), in which the reception of a signal
s occurred regularly with a predefined period so the elapsed physical time was obtained by the
multiplication of the number of signals received by its period. Although (BOURKE; SOWMYA, 2009)
called the latter as an event-driven approach, hybrid fUML enforces the periodicity of these inputs
regarding an idealClk so the system is time-triggered according to Definition 2.16.

Three main points set hybrid fUML apart: (1) the temporal concerns are not mixed with
discrete behaviors as is the case in (CLOSSE et al., 2001; BERTIN et al., 2001; FORGET et al.,
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2008b; FORGET et al., 2008a; BOURKE; SOWMYA, 2009), which enables reuse and explicitly defines
the temporal concerns as essential system characteristics, (2) taking into account the consumption
of physical time at a macro2-step for an enichronous model, the physical time is defined in a
homogeneous way for all components at every reaction without necessarily the definition
of a fixed physical time per macro2-step (see Section 7.3), and (3) hybrid fUML does not nec-
essarily satisfy the restrictions for a real-time system implementation usually taken
into account in the hardware/software viewpoints, which are noted in Remark 5.1 regarding
synchronous fUML.

The lack of restrictions for a real-time system implementation (the third point) sets synchronous
fUML and, consequently, hybrid fUML apart from the reviewed languages - synchronous languages:
Esterel, Quartz, Lustre and Signal, hybrid extensions of synchronous languages: Hybrid Quartz and
Zélus, as well as Modelica - increasing its expressivity but decreasing its amenability for analysis
(without loss of precision). Nevertheless, throughout this thesis the indiscriminate creation and
destruction of objects (an important restriction, the avoidance of dynamic features in discrete be-
haviors) are avoided due to the additional challenges for the constructive semantics (see Section 4.1)
so the third point is henceforth not to be considered in the discussion.

8.3.2 Support for Hybrid Modeling

The last assumption of this thesis states that the model of computation provided by the syn-
chronous languages is sufficiently powerful to encode continuous-time (LEE; ZHENG, 2007; BEN-

VENISTE et al., 2011). In fact, this is one of the premises from UML behavioral semantics in
which continuous behaviors can be modeled provided that they are abstracted using discrete in-
stants ((OMG), 2011b). Furthermore, MARTE only deals with chronometric clocks defined by the
discretization of an ideal clock ((OMG), 2011a). Therefore, synchronous fUML being a synchronous
language based on UML and MARTE is extended by hybrid fUML for dealing with continuous
behaviors.

Regarding the syntactics of the languages and formalisms that support hybrid modeling, as the
continuous behaviors are usually represented by the standard mathematical notation (with varia-
tions), a key difference is how the languages and formalisms encode the discrete behaviors. Hybrid
automaton explicitly enumerates the possible discrete states using a graph in which vertices define
the set of ODEs and the edges the discrete behaviors. The explicit enumeration of the discrete
states in a hybrid automaton has presented difficulties for the modeling of hybrid systems, in par-
ticular, the state explosion is a recurrent drawback of modeling using this formalism (BARTON,
2000; BAUER, 2012). In addition, it is difficult and error-prone to perform the description of global
characteristics, e.g., common equations have to be replicated in each discrete state. Due to these
reasons, hybrid automaton is considered a low-level formalism rather than a modeling language.

Focusing on the syntactics of the reviewed languages, Modelica, Hybrid Quartz and Zélus avoid
the enumeration of discrete states. Additionally, their syntactics define that continuous and dis-
crete behaviors should be described in a strongly integrated way (tangling them). For example:
(1) Example 17 (BouncingBall) using Modelica defines the zero-crossing using an equation, when
equation, at the same syntactical element as that of differential equations, (2) Example 20 (Bounc-
ingBall) using Hybrid Quartz defines the ODEs as part of the control flow of the discrete module
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Plant, the statement flow until (), and (3) Example 21 (BouncingBall) using Zélus defines the
zero-crossing using the construct up alongside differential equations. On the contrary, hybrid fUML
supports the independent description of three concerns, in addition to the avoidance of discrete
states enumeration. The three concerns are: (1) structure and continuous behaviors (defined by
class diagrams and composite structure diagrams), (2) discrete behaviors exclusively defined by
activity diagrams, and, lastly, (3) temporal concerns defined by class diagrams using the clocks
made available by the semantics or SignalEvents defined in the structure. For example, Example 25
(BouncingBall) using hybrid fUML defines the DAEs using components which are assembled by
a composite structure diagram independently from the description of the activity actHistTheFloor
and its discrete domain DiscreteDomainForHitTheFloor. Although there are no empirical results
about the impact of such approach in the pragmatics of hybrid fUML, the operational semantics
is simplified since the continuous behavior evaluation does not depend on the control flow state of
discrete behaviors (indeed, a design decision, see Section 6.1). In other words, they are always well
aligned.

Concerning the semantics, the reviewed languages and formalisms share the same basic model of
execution in which it alternates between run-to-completion of discrete actions (without physical
time consumption) and continuous evolutions that are halted by zero-crossings. In particular, the
reviewed languages apply the urgent semantics for timed transition systems defined in the context
of the formalism of the hybrid automaton (see Definition 2.14) since they stop the continuous
evolutions at the minimal physical time at which one or more zero-crossings are detected. Moreover,
the notion of parallel composition defined by a semantical operation over LTSs regarding physical
time, also defined in the context of the hybrid automaton (see Definition 2.13), is commonly the
basis for claims of composability, e.g., Hybrid Quartz (see Remark 6.1) and Zélus (see Remark 6.2).

Hybrid fUML does not claim composability based on notions defined in the context of hybrid au-
tomaton, in contrast, it claims that its operational semantics exhibiting the synchronous-reactive
MoC for enichronous models (see Definition 6.3) characterizes hybrid fUML as a synchronous lan-
guage, consequently, the notion of composability of synchronous languages is inherited. This dis-
cussion is further examined in Subsection 8.3.2.2. Additionally, hybrid fUML being a synchronous
language offers determinism and cycle accuracy.

8.3.2.1 Modelica

The synchronous language primitives (Clocks) introduced in Modelica 3.3 address a list of identified
drawbacks in descriptions of control systems using previous versions of Modelica (pp. 182; (MOD-

ELICA, 2012)). The first drawback states that, as sampling was based on when equations, it was
easy to define inconsistent conditions in a system composed of multiple components, moreover,
some blocks demand a period and, consequently, it was easy to inform inconsistent periods. In
other words, the scattering of temporal concerns in the model turns the modeling task harder and
error-prone, in addition, the static analysis is difficult. On the contrary, hybrid fUML clearly sep-
arates temporal concerns from the structure and behavior of the system. Although hybrid fUML
has no static semantics and clock inference, the arguments stated by Modelica indicate that such
definitions are enabled by the approach followed by hybrid fUML in which there is no scattering
of temporal concerns.
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One feature of these synchronous language primitives is beyond the operational semantics of hybrid
fUML, the clocked discretized continuous-time partition (ELMQVIST et al., 2012). This feature en-
ables continuous behaviors inside “discrete controllers” and then the numerical solving is performed
from the previous to the next clock tick (ELMQVIST et al., 2012). However, hybrid fUML only allows
readings of the previous macro2-steps and readings/writings at the current macro2-step, therefore,
such feature is not definable in the operational semantics of hybrid fUML.

The constructs that allow state machines in Modelica (pp. 201;(MODELICA, 2012)) resemble the
concept of state management in reactive classes discussed in the context of synchronous and hybrid
fUML. Complementarily, in the context of ModelicaML, the suitability of equation-based modeling
for discrete behaviors was discussed in (SCHAMAI et al., 2013): behavior expressed by a state machine
has always a predefined input/output relation (pp. 502; (SCHAMAI et al., 2013)). Consequently, the
authors chose to generate algorithms instead of a mixed set of algebraic equations. Due to the
nature of the action language fUML ((OMG), 2012a), during the discrete behavior evaluation, this
sort of equations does not exist since the run of the discrete behavior is defined by a run of a
transition system. This represents a significant difference from works based on the description
of discrete behavior as a mixed set of algebraic equations, namely ModelicaML (SCHAMAI et al.,
2013), SysMLModelica ((OMG), 2012b) and Modelica itself (pp. 254;(MODELICA, 2012)). The major
motivation is the same as that pointed out by (SCHAMAI et al., 2013). Besides, the definition of
how the discrete behavior can freeze the continuous evolution, namely DiscreteDomain (related
to when equations from Modelica), supports the definition of state transfer functions (BARTON,
2000).

Furthermore, Modelica provides constructs to define initial equations and algorithms as well as an
operator initial, which are used during the initialization phase from the simulation (MODELICA,
2012). These types of equations are not part of hybrid fUML since they are handled by discrete
behaviors, e.g., the classifier behavior from the Example 25 (BouncingBall) has an explicit call to a
constructor that is responsible for the setup of the initial conditions. Instead of explicit assumptions
as Modelica (assert; pp. 87;(MODELICA, 2012)) or absence of the concept as Hybrid Quartz (pp.
52;(BAUER, 2012)), hybrid fUML gives a precise operational meaning for the domain of a given set
of equations, ContinuousDomain, which makes the model amenable to analysis and can make it
clearer since a model of a hybrid system requires the description of the continuous behavior, the
discrete behavior, and the regions on which these behaviors apply (GOEBEL et al., 2009). Moreover,
it is a fundamental concept to avoid implicit assumptions, to declare the operational conditions,
and, consequently, a major input to define the concept of operations (CONOPS).

Finally, consider a pure continuous model defined using Modelica, i.e., it only contains continu-
ous variables and equations, additionally, the model can contain components defined in libraries
following the same restrictions. In particular, consider Example 17 (BouncingBall, defined using
Modelica) removing the when equation. Furthermore, consider Example BouncingBall 25 (defined
using hybrid fUML) removing the activity and discrete domain for HitTheFloor likewise the clock
constraint. Indeed, the first model and its behavior w.r.t. the semantics of Modelica are equiv-
alent (in the sense of the same simulation results) to the second model and its behavior w.r.t.
the operational semantics of hybrid fUML. The simulation in Modelica needs the time interval,
whereas hybrid fUML assumes the second model as a strictly time-triggered model in which the
period and the discretization step of a macro2-step have to be informed (using the initial rule
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rule_fUML_initSim per ds, see Subsection 7.3). In summary, this empirical evidence indicates
that both languages have the same level of expressivity for this type of models (pure
continuous in Modelica and hybrid in hybrid fUML). The expressivity for hybrid models
cannot be compared since hybrid fUML uses the concept of macro2-step to define the meaning
of one reaction, while Modelica does not define a standardized semantics for this type of mod-
els (CARLONI et al., 2004; BENVENISTE et al., 2012; BAUER, 2012; ZIMMER, 2013) and does not have
the concept of reaction explicitly defined.

8.3.2.2 Hybrid Extensions of Synchronous Languages

Two hybrid extensions of synchronous languages are reviewed, namely Hybrid Quartz (see Subsec-
tion 3.2.2.1) and Zélus (see Subsection 3.2.2.2). Both languages have the operational interpretation
of their MoC characterized by the super-dense time in which a discrete subset of the totally ordered
tag set Tsuper = R≥0×N>0 is used to define values that range over the same set Vb = V∪{�,⊥} for
signals s : Tsuper → Vb. Moreover, using different strategies, both use the constructive semantics for
discrete behavior evaluation and the detection of zero-crossings to freeze continuous evolutions5.
As the operational interpretations of their tag sets are the same and, likewise, the nature of their
processes, they have the same model of computation.

Their tag set can be abstracted by the one that characterizes the synchronous-reactive MoC Tsync =
N>0 due to the use of a discrete subset of their original tag set Tsuper, although they do not have
the fundamental property of the synchronous-reactive MoC that is parallel composition, if defined,
as the conjunction of associated macro-steps (see Theorem 6.1). While the consumption of physical
time based on zero-crossings provides composition w.r.t. the continuous-time (as defined by the
urgent semantics of timed transition systems, see Definition 2.14), it does not sufficiently allow the
abstraction of time in the sense of synchronous languages.

Hybrid fUML proposes the tag set called ultra-dense time Tultra = N>0 × N>0 × R≥0 accompa-
nied with the concept of macro2-step (that uses a discrete subset of Tultra) in order to retain the
fundamental property of the synchronous languages (see Subsection 7.3). Therefore, taking into
account the consumption of physical time at a macro2-step for an enichronous model, hybrid fUML
defines the physical time consumption in a homogeneous way for all components at all reactions
without necessarily the definition of a fixed physical time consumption per macro2-step (see Sub-
section 7.3). In other words, hybrid fUML follows the time observed in the environment so at the
end of each macro2-step the physicalClk is synchronized with the idealClk of the environment.

As consequence of the retainment of the essential and sufficient features of synchronous languages
(see Section 7.4), the following benefits are achieved by hybrid fUML: (1) applying the constructive
semantics, it guarantees determinism and predictability, (2) it provides a well-behaved notion for
parallel composition that enables verification through observers since if observers do not emit
signals they cannot change the behavior of other elements at a macro2-step (it does not matter
whether they are discrete modules or not), and (3) it leads to smaller LTSs, which in turn is a
crucial factor for the feasibility of verification techniques, e.g., model-checking.

5Zélus allows time horizons that are computed by the definition of the minimum of all periods
within a context so they are not the same concept as applied in time-triggered models of hybrid
fUML in which there is no such computation.
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Finally, consider the BouncingBall modeled using Hybrid Quartz 20, using Zélus 21 and using
hybrid fUML 25. Furthermore, as the sole signal emitted by the model defined using hybrid fUML
is the signal hitTheFloor that does not describe the current velocity of the ball, consider a change
in the activity actHitTheFloor in which it emits the value of the variable velocity as the value of a
signal called velocity after the loss of kinetic energy. Thus, the three models define a unique value
for the signal velocity at a reaction which corresponds to the current velocity of the ball, ideally,
after the loss of kinetic energy. Furthermore, the three models are based on zero-crossings, since
Hybrid Quartz only allows this type of interruption of continuous evolutions, the Zélus model uses
the construct up and the hybrid fUML model is an event-triggered model due to its clock constraint
that relates the clock of a signal with the reactionClk. Therefore, it is possible to compare the results
of simulations taking into account the following requirement “The velocity of the ball after hitting
the floor shall be instantaneously broadcasted”. Table 8.4 shows the comparison of the value of the
signal velocity according to the respective operational semantics. For details of how those values
are computed, see the examples6.

Table 8.4 - Synchronous streams for the signal velocity of BouncingBall using Hybrid
Quartz, Zélus and hybrid fUML.
Source: (GROUP, 2014), (POUZET et al., 2014), and hybrid fUML’s simulator.

Value of the signal velocity at
Language macro(2)-step 1 macro(2)-step 2 macro(2)-step 3
Hybrid Quartz 0 ≈ −14.71 ≈ 7.35
Zélus 0 ≈ 6.99 ≈ 3.49
hybrid fUML ≈ 7.06 ≈ 3.53 ≈ 1.81

Hybrid fUML provides cycle accuracy regarding the stated requirement since at each macro2-
step the value broadcasted is the expected value. Similarly, Zélus does the same except for the
first macro-step (initialization). Hybrid Quartz needs two macro-steps (after initialization so 3
macro-steps) to compute the result broadcasted at the first macro2-step of hybrid fUML. More
importantly, the value assumed by velocity according to Zélus and Hybrid Quartz depends on the
minimal time for the holding of the zero-crossing(s) so an addition of one component may change
the values computed at the macro-steps, whereas hybrid fUML does not change the values provided
that no included component emits the signal(s) related to reactionClk, i.e., it does not matter how
many zero-crossings occur before the emission of the signal(s) related to the reactionClk. In this
sense and considering the cycle accuracy, hybrid fUML is able to express models that would
not be expressed by Hybrid Quartz and Zélus.

On the other way around, the question is whether hybrid fUML is able to express models according
to the urgent semantics for timed transition systems (the basis for the semantics of Hybrid Quartz
and Zélus w.r.t. physical time). In order to describe such models, the modeler shall define a clock
tree (using clock constraints, see Definition 7.3) in which the root is the reactionClk and the

6The numerical difference presented by the values is due to different integration methods and
integration step sizes.
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subclocks are signals manually emitted at all possible zero-crossings. Thus, those models are
expressible using hybrid fUML albeit at the expense of modeling convenience (in fact,
the pragmatics of hybrid fUML is discussed in Section 8.1).

In conclusion, taking into account event-triggered models and cycle accuracy, Hybrid Quartz and
Zélus have the same level of expressivity, whereas hybrid fUML is able to express models
beyond the expressivity of Hybrid Quartz or Zélus and it is the sole option when de-
terministic cycle accuracy is a requirement. Regarding time-triggered models, Hybrid Quartz
and Zélus do not support models for which the evolution of the physical time is dictated by the
environment so, in this sense, hybrid fUML is more expressive regarding such interaction
with the environment. Finally, hybrid fUML allows DAEs, whereas Hybrid Quartz and
Zélus support ODEs. This difference does not represent more expressivity but a better support
for reuse as Modelica has been shown (ZIMMER, 2013).

8.3.2.2.1 Hybrid Quartz

Hybrid Quartz is based on Quartz, an imperative synchronous language with a rich support for
preemption. As an imperative synchronous language the fundamental statement of Quartz is the
statement pause, however, the operational semantics defines that pause should be avoided in Hy-
brid Quartz (pp. 97;pp. 98; (BAUER, 2012)). Taking into account this recommendation, one can
interpret that a discrete behavior defined using Quartz is not easily integrated with a hybrid be-
havior defined using Hybrid Quartz. On the contrary, in hybrid fUML, the stereotype Pausable has
the same semantics of synchronous fUML. It is not related to physical time and it always deter-
mines that a discrete behavior will wait until the next macro2-step (hybrid fUML) or macro-step
(synchronous fUML) so pure discrete behaviors can be composed with hybrid behaviors without
problems provided that the resultant model is a well-behaved model for hybrid fUML.

Furthermore, while Hybrid Quartz introduced in the semantic domain a new continuous environ-
ment for the continuous variables allowing two values for a variable, the only introduction in the
semantic domain of hybrid fUML w.r.t. synchronous fUML is an alternative to store the set of equa-
tions for a given active object (SystemOfEquations). This holds due to the fact that synchronous
fUML deals with computation and communication as different phenomena and then variables can
have multiple values at a macro-step.

Finally, Hybrid Quartz considers that the concepts of location invariants and discrete transitions
from hybrid automaton are redundant when analyzed the operational semantics for deterministic
hybrid automaton (pp. 52; (BAUER, 2012)). In contrast, hybrid fUML uses two similar concepts,
namely ContinuousDomain and DiscreteDomain, that can be related to the concepts in the hybrid
automaton. In particular, ContinuousDomain is used in the hybrid fUML because the control
flow of discrete behaviors cannot directly determine which equations should be considered in the
SystemOfEquations of an active object.

8.3.2.2.2 Zélus

As discussed in Subsection 8.3.2, Zélus tangles discrete behavior, continuous behavior and temporal
concerns (described by the construct period)(see Example 21). Consequently, a series of papers
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is dedicated to define a type system that can statically reject ill-formed combinations of these
concerns (BENVENISTE et al., 2011; BENVENISTE et al., 2012; BENVENISTE et al., 2014). Hybrid
fUML follows another approach in which the syntactics of the language does not allow definition of
different concerns at the same syntactical element so the static semantics of hybrid fUML should
not have such type system as a keystone although this was not investigated in the current thesis.

Zélus allows time horizons using the construct period that can be translated into a zero-
crossing (BOURKE; POUZET, 2013). Even not translated, a period in Zélus has no direct relation to
time-triggered models for hybrid fUML since they are dealt under the urgent semantics for timed
transition system in which the minimum of all periods within a context is used to define the end
of a continuous evolution and the beginning of a new macro-step.

A remarkable difference between Zélus and hybrid fUML is how the languages deal with the zero-
crossings. In Zélus, each zero-crossing defines a discrete clock that can be either present or absent
at a macro-step, furthermore, when detected at the end of a continuous evolution, it defines the
beginning of a macro-step. In contrast, hybrid fUML defines a global logical clock called logicalClk
that is protected in the semantics. Every detected zero-crossing at the end of a continuous evolution
means a new tick of this clock and the beginning of a new macro-step but not the end of a macro2-
step. In other words, the lack of a clock for each zero-crossing (what would be based on uniquely
defined signals in hybrid fUML) allows that a specific zero-crossing can be detected independently
of the semantics of signals. In hybrid fUML, the relation between the logicalClk and the reactionClk
is defined by the following CCSL: logicalClk isSporadicOn reactionClk gap 1, i.e., each tick
of reactionClk has at least one tick of logicalClk. Indeed, the logicalClk indicates how many macro-
steps are evaluated at a macro2-step.

Finally, hybrid fUML likewise Zélus advocates that nondeterminism shall be externalized of mod-
els (BOURKE; POUZET, 2013).

8.3.3 Other Frameworks, Languages and Formalisms

Taking into account Ptolomy II and considering the composition of the synchronous-reactive MoC
on top of the discrete-event MoC, (LEE; ZHENG, 2007) concluded that the synchronous-reactive
MoC cannot abstract away the physical time consumption if its children have to be concrete about
the physical time consumption. This corroborates with Corollary 6.5 in which event-triggered
models cannot have time-triggered components exactly because event-triggered models cannot
abstract away the physical time consumption if their children have to be concrete about the physical
time consumption (which happens with time-triggered models).

Lastly, Project P (BORDIN et al., 2012) enabled integration between isolated viewpoints, whereas
hybrid fUML attempts to enable modeling and analysis of an integrated model supporting the
system viewpoint, hence, concrete versions of the hardware/software and control viewpoints would
be defined taking into account the system viewpoint. These concrete versions could be imported
together with the system viewpoint into Project P in order to verify consistency and fine-grained
properties.

206



9 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of the thesis and discusses future works.

9.1 Conclusions

The difficulty in modeling and analyzing hybrid systems comes from the diversity of these systems,
and one promising approach to mitigate this issue is developing expressive and precise model-
ing languages, on which precision enables analysis. However, developing expressive and precise
modeling languages does not necessarily mean the emergence of a new language, on the contrary,
this thesis likewise other research projects propose precise semantics for subsets of
existent languages. Subsets of existent languages are defined since expressivity and precision
usually conflict, e.g., the size and complexity of a language (related to expressivity) may have
direct consequences on the size and complexity of its semantics (related to precision).

Taking into account the three viewpoints, namely system, hardware/software and control, hybrid
systems should be modeled and analyzed in such a way that the intersection of the views are also
object of analysis, in other words, it is the interaction of the views that determines the systems’
characteristics. Therefore, this thesis proposes a language targeting the description of
the system view of hybrid systems composed of hybrid plants and discrete controllers
in such a way that analysis is possible. The language is a suitable complement for
the dominant process-oriented approach for system engineering, in which models are
descriptive and support product lifecycle management but do not have precise semantics.

Chapters 6 and 7 provide evidences that the main research hypothesis “A hybrid synchronous exten-
sion of fUML with formal semantics allows modeling and deterministic cycle-accurate simulation
of hybrid systems composed of hybrid plants and discrete controllers.” is valid. Complementary
evidences are provided by the complete formal definition accompanied by the models used through
this thesis which are available as free software (ROMERO, 2014b).

As part of this thesis, nine papers were published (see Appendix A). Three of them were published
at international conferences (ROMERO et al., 2013b; ROMERO et al., 2014b; ROMERO et al., 2014a),
moreover, one of the three was published as a book chapter at the Lecture Notes of Computer
Science (ROMERO et al., 2014a) (indexed by Qualis CAPES under ISSN 0302-9743). Other two were
published at international conferences focused on space engineering (ROMERO; FERREIRA, 2012b;
ROMERO; FERREIRA, 2012a). Furthermore, one was published at the Brazilian national conference
of automatic control engineering (ROMERO; SOUZA, 2012). Finally, a developer’s guide (ROMERO,
2014a) for the distributed package of hybrid fUML (ROMERO, 2014b) was published in the hope
that it will support analysis, peer-review and further development.

The next subsections share conclusions about the two languages defined in the thesis. Synchronous
fUML is based on bUML, the core subset of fUML, which in turn is the core of UML according to
OMG. Hybrid fUML is a conservative extension of synchronous fUML in which DAEs are described
using a subset of Modelica concrete syntax. The subset of Modelica concrete syntax is selected in
such a way that its semantics is defined by the standard mathematical semantics.
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9.1.1 Synchronous fUML

The present thesis blends synchronous features for control into the standardized fUML using the
unconstrained semantics areas, namely time and concurrency. Synchronous fUML is the result of
such blending.

The results of the first secondary hypothesis “it is possible to use the unconstrained semantics areas
from fUML, namely time and concurrency, to define a synchronous extension of fUML with formal
semantics described by Abstract State Machines” present three novelties of this thesis achieved by
the definition of synchronous fUML (see Chapter 4).

a) Synchronous fUML is a fUML extension that strictly concentrates on bUML given by
fUML for its formal definition of syntax and semantics through ultra deep embedding.

The strict use of bUML revealed issues in the specification published by OMG,
specifically the issues 18797 and 18798 (see Appendix B ).

As defined by OMG, bUML is expressive enough to define functional behavior, e.g.,
algorithms. Therefore, a standardized action language is formally defined.

b) Synchronous fUML is a fUML extension that replaces the nondeterministic model of
computation of fUML based on asynchronous interleaving by a deterministic one de-
fined by the synchronous-reactive MoC that is based on synchronous concurrency (see
Chapter 4).

The nondeterminism often observed in fUML was recognized as an impediment
to the use of fUML for real-time systems. Synchronous fUML as a synchronous lan-
guage lends itself to the modeling of real-time systems providing determinism and cycle
accuracy.

The approach applied by synchronous fUML in which computation and communi-
cation are dealt as different phenomena is unusual for the most synchronous languages.
Nevertheless, it turns out to be a key enabler for hybrid fUML since continuous variables
can have more than one value at each macro-step.

c) Synchronous fUML uses part of the MARTE time domain (see Subsection 2.2.3.5) in
its semantic domain.

The use of MARTE means the use of a standardized semantic domain for the
synchronous extension of fUML.

The results of the second secondary hypothesis “it is possible to prove formally that the extended
fUML is in compliance with fUML” presents another novelty of this thesis achieved by the possi-
bility of a formal proof regarding bUML (see Chapter 5). However, due to the lack of maturity
of the base semantics the secondary hypothesis is not valid. Although this proof is not
achievable since the base semantics given by fUML revealed inconsistent, the formal treatment pur-
sued in this thesis revealed this inconsistency likewise other issues in the specification published
by OMG, specifically, the issues 18794, 18795 and 18796 (see Appendix B ).

In summary, a standardized synchronous action language is defined which enables the use of the
well-known synchronous paradigm on the modeling of system views.
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9.1.2 Hybrid fUML

Synchronous fUML being a synchronous language based on UML and MARTE is extended by
hybrid fUML for dealing with continuous behaviors.

The objective of hybrid fUML is neither to replace Modelica or synchronous languages but instead
to enable modeling and deterministic cycle-accurate simulation of hybrid systems at the system
level. In particular, Modelica models (without discrete behaviors) may be completely reused for the
definition of hybrid plants (see Chapter 6). Furthermore, imperative synchronous languages may
be responsible for the synthesis of discrete controllers. Therefore, the purpose of the language is to
enable modeling and simulation of system views, which in turn enables analysis of the interaction
between abstractions of the other views.

The results of the third secondary hypothesis “once there exists a formal synchronous extension
of fUML, it is possible to extend it in order to enable modeling and deterministic cycle-accurate
simulation of hybrid systems” present the main two novelties of this thesis achieved by the
definition of hybrid fUML (see Chapter Hybrid fUML - An Introduction 6).

a) The concept of hybrid synchronous languages is defined in such a way that the formal
properties of synchronous languages are not lost, nevertheless, only a subset of models
has semantics, which led to the definition of enichronous systems that characterizes
this subset.

Recognizing the real-time nature of hybrid systems, enichronous systems explicitly
define relations between the environment’s clock and the internal clock of the operational
semantics. Once these relations are defined, the abstract notion of time, focused on
cycles, is well-defined exactly as in the synchronous languages.

The types of well-defined models supported by hybrid fUML, stated by Defini-
tion 7.3 and based on enichrony, cover discrete models, event-triggered models and two
types (loosely and strictly) of time-triggered models.

b) The formal semantics of hybrid fUML provides a deterministic cycle-accurate sim-
ulation even for hybrid systems due to the combination of enichronous systems,
differentiation of computation and communication, and the novel model of com-
putation for hybrid extensions of synchronous languages. This novel approach
deals with macro-step as a micro-step, which led to the definition of macro2-step
concept.

One final minor novelty of hybrid fUML is the encapsulation of DAEs in synchronous
processes, which simplifies the interaction of continuous and discrete behaviors likewise the static
semantics since it is not possible to mix these different kind of behaviors. It is a combined result
from the third and the fourth secondary hypotheses.

Regarding expressivity, hybrid fUML and Modelica have the same level of expressivity for the pure
continuous models (hybrid in hybrid fUML and pure continuous in Modelica). The expressivity
for hybrid models cannot be compared since hybrid fUML uses the concept of macro2-step to
define the meaning of one reaction, while Modelica does not define a standardized semantics for
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this type of models and lacks of the explicit concept of reaction (see Subsection 8.3.2). Taking
into account event-triggered models and cycle accuracy, Hybrid Quartz and Zélus have the same
level of expressivity, whereas hybrid fUML is able to express models beyond the expressivity of
Hybrid Quartz or Zélus and it is the sole option when deterministic cycle accuracy is a requirement.
Regarding time-triggered models, Hybrid Quartz and Zélus do not support models for which the
evolution of the physical time is dictated by the environment so, in this sense, hybrid fUML is
more expressive regarding such interaction with the environment (see Subsection 8.3.2). Finally,
hybrid fUML allows DAEs, whereas Hybrid Quartz and Zélus support ODEs. This difference does
not represent more expressiveness but a better support for reuse as Modelica has been shown.

In conclusion, hybrid fUML is defined based on a synchronous action language (synchronous fUML),
which in turn is based on a standardized action language (fUML). Its formal description defines a
novel model of computation for which hybrid systems can be modeled and analyzed concerning de-
terminism, predictability and straightforward composition. As a synchronous language, it is based
on the abstract notion of time based on cycles, which leads to smaller LTSs. Finally, straightfor-
ward composition and smaller LTSs are well-accepted desired characteristics for verification using
a variety of techniques, e.g., verification through observers and model-checking.

9.2 Future Work

Hybrid systems are the basic building block for cyber-physical systems, a major research field in
the systems science and engineering. Therefore, we believe that a well-behaved formal semantics
based on subsets of standardized languages for hybrid systems can be a valuable contribution for
the modeling and analysis of cyber-physical systems, nevertheless, further investigation should be
done.

Moreover, we argue that the viewpoint applied for the definition of the semantics of hybrid fUML
is the system viewpoint. For example, the strictly time-triggered models are not supported by
the reviewed hybrid extensions of synchronous languages, while they are supported by hybrid
fUML (see Subsection 8.3.2). Recall safety-critical real-time systems are usually time-triggered and
considering safety and real-time requirements in an integrated way is among the responsibilities of
the system views.

Hybrid fUML can be seen as a basis for a possible framework to approach hybrid systems from
the system viewpoint. In such framework, we envision five fronts of further research, which are:
enichrony and the proposed model of computation, the pragmatics of the proposed languages, the
formal definition, integrated analysis, and development of engineering tools.

Enichrony and the proposed model of computation of hybrid fUML are general concepts that may
be applied in any hybrid extension of synchronous languages. Recall none of the reviewed hybrid
extensions of synchronous languages support models definable using these concepts. Therefore, two
basic research questions arise: (1) are they sufficiently strongly defined for other hybrid extensions
of synchronous languages to apply or to extend these concepts? and (2) how difficult is it?

The pragmatics of the proposed languages is a relevant topic for any language but usually neglected.
The initial evaluation presented in Section 8.1 shows that the pragmatics of hybrid fUML should
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be improved since the absence of syntactic sugar defines hybrid fUML rather tersely. In particular,
the syntax could be extended in order to support actions for the common operators sample and
hold.

The formal definition of the languages (synchronous fUML and hybrid fUML) is subject of peer-
review likewise extension (they are available as free software (ROMERO, 2014b)). A large number
of simplifications are done throughout their definition, which are subject of extension, e.g., the
restrictions on token flow semantics (see Section 5.4), the function that computes whether a signal
can be emitted at a macro-step or not (see Section 5.4), the flattening process for active classes (see
Section 7.3), numerical solving, etc... Regarding extensions, a relevant topic is the complete coverage
of bUML in synchronous fUML, in particular, the activities StructuredActivityNode, ExpansionNode
and ExpansionRegion. Furthermore, the formal definition of synchronous fUML in accordance with
the L3 conformance level of fUML is an important extension. Another relevant topic for further
investigation is the definition of a static semantics for hybrid fUML, which should cover the clock
relations and their consequences (clock calculus and inference commonly defined for declarative
synchronous languages).

Closely related to the formal definition of the proposed languages, the follow-up of the issues
identified, submitted and under evaluation of OMG is a special topic for further investigation (see
Appendix B). This is due to the fact that the result of the evaluation may mean that fUML could
not support synchronous extensions and/or could not support formal proof of compliance from
extensions (see Section 4.1).

Integrated analysis of hybrid systems is another further research topic since the only method
currently available on hybrid fUML is analysis through simulation. Further techniques from control
engineering and software engineering as well as computer science could be integrated in such a way
that the relevant properties for the system could be analyzed based on a system model. Such
techniques include, for example, model-checking and theorem proving.

Development of engineering tools is a precondition for the use of the proposed languages, which
in turn is a precondition for the pragmatics’ evaluation. An interesting strategy is the integration
of the proposed languages in the available frameworks for system definition, e.g., a master thesis
at TU Kaiserslautern, Kaiserslautern, Germany, is available for students that would integrate
synchronous fUML into Averest ((GROUP, 2014), based on Quartz). Another basic demand is the
refinement of the ASMs in implementations for the simulators.

Finally, the proposed languages may be used beyond the scope of hybrid systems, in particular,
synchronous fUML may be used for the definition of the semantics of domain-specific languages.
Still, related with domain-specific languages, the technique ultra deep embedding (see Definition 5.1)
applied for the formal description of the operational semantics of synchronous and hybrid fUML
may be applied for the definition of the languages’ semantics based on the meta-modeling approach.
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APPENDIX A - LIST OF PUBLICATIONS

A.1 Systems and Software Engineering

A.1.1 2014

Hybrid fUML – Developer’s Guide (ROMERO, 2014a)
Abstract: The notion of a hybrid system is centered around a composition of discrete and con-
tinuous behaviors. Although the difficulty in modeling hybrid systems comes from the diversity
of these systems, the most promising approach to mitigate this issue is developing expressive and
precise modeling languages. Nevertheless, developing expressive and precise modeling languages
does not necessarily mean the emergence of a new language, on the contrary, this work proposes
precise semantics for subsets of existent languages. Subsets of existent languages are defined since
expressivity and precision usually conflict, e.g., the size and complexity of a language (related to
expressivity) may have direct consequences on the size and complexity of its semantics (related
to precision). Precision means a semantics defined according to a well established formal method,
furthermore, recognizing the real-time nature of hybrid systems, the modeling language have to
enable determinism, predictability and straightforward composition. In this work, the distributed
package of two complementary languages defined by abstract state machines (ASMs) is presented.
The first one is called synchronous fUML and it blends synchronous features for control into the
standardized fUML (foundational subset for executable UML models). The second one, hybrid
fUML, is a conservative extension of synchronous fUML in which differential algebraic equations
(DAEs) are described using a subset of Modelica concrete syntax. The subset of Modelica con-
crete syntax is selected in such a way that its semantics is defined by the standard mathematical
semantics. Hybrid fUML is a modeling language defined to enable description and analysis of sys-
tem views from hybrid systems. The developer’s guide allows extension of the distributed package,
which contains: meta-models, transformations, static semantics defined in first-order logic, ASMs
and examples.

Using the Base Semantics given by fUML for Verification (ROMERO et al., 2014b)
In: International Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD); 01/2014
Abstract: The lack of formal foundations of UML results in imprecise models since UML only de-
fines graphical notations, but not their formal semantics. However, in safety-critical applications,
formal semantics is a requirement for verification. Semantics for the key parts of activities and
classes of UML is defined by the semantics of a foundational subset for executable UML models
(fUML). Moreover, the base semantics given by fUML defines the formal semantics of UML. In
this paper, we evaluate a subset of the base semantics given by fUML covering its formal definition
and its use for verification. From the practical perspective, we show with a simple example how
the base semantics can support formal verification through theorem proving. The initial results
show that the base semantics, when mature, can play an important role in the formal verification
of UML models.

Integrating UML Composite Structures and fUML (ROMERO et al., 2014a)
In: International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM); 01/2014
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Abstract: To cope with the complexity of large systems, one usually makes use of hierarchical
structures in their models. To detect and to remove design errors as soon as possible, these models
must be analyzed in early stages of the development process. For example, UML models can be
analyzed through simulation using the semantics of a foundational subset for executable UML
models (fUML). However, the composite structures used to describe the hierarchy of systems in
UML is not covered by fUML. In this paper, we therefore propose a complementary meta-model for
fUML covering parts of UML’s composite structures, and elaborate the rules previously defined in
the literature for static semantics. These rules are described in an axiomatic way using first-order
logic so that a large set of tools can be used for analysis. Our preliminary evaluation provides
results about the applicability of the meta-model and the soundness of the rules.

A.1.2 2013

Towards the Applicability of Alf to Model Cyber-Physical Systems (ROMERO et al.,
2013b)
In: Federated Conference on Computer Science and Information Systems - International Workshop
on Cyber-Physical Systems (IWCPS’13); 09/2013
Abstract: Systems engineers use SysML as a vendor-independent language to model Cyber-
Physical Systems. However, SysML does not provide an executable form to define behavior but
this is needed to detect critical issues as soon as possible. Action Language for Foundational
UML (Alf) integrated with SysML can offer some degree of precision. In this paper, we present
an Alf specialization that introduces the synchronous-reactive model of computation to SysML,
through definition of not explicitly constrained semantics: timing, concurrency, and inter-object
communication. The proposed specialization is well-suited for safety-critical systems because it
is deterministic. We study one example already modeled in the literature, to compare these ap-
proaches with our one. The initial results show that the proposed specialization helps to couple
complexity, provides better composition, and enables deterministic behavior definition.

Synchronous Specialization of Alf for Cyber-Physical Systems (ROMERO et al., 2013a)
In: First Open EIT ICT Labs Workshop on Cyber-Physical Systems Engineering (EIT CPSE
2013); 05/2013
Abstract: Systems engineers use SysML as a vendor-independent language to model Cyber-
Physical Systems. However, SysML does not provide an executable form to define behavior but
this is needed to detect critical issues as soon as possible. Alf integrated with SysML can offer
some degree of precision. In this paper, we present an Action Language for Foundational UML
(Alf) specialization that introduces the synchronous-reactive Model of Computation to SysML,
through definition of not explicitly constrained semantics: timing, concurrency, and inter-object
communication. The Smart Parking system, a well-known cyber-physical system, was selected to
evaluate this specialization. Our initial results show that the proposed specialization does not
add complexity to the task of modeling using SysML, and enables concise and precise behavioral
definitions.

A.1.3 2012

Finite State-Machine Verification Applied to Hybrid Systems (ROMERO et al., 2012)
In: SAE 2012 Brasil; 10/2012
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Abstract: Hybrid systems are characterized by a composition of discrete and continuous dynamics.
In particular, the system has a continuous evolution and occasional jumps. The jumps are caused
either by controllable, uncontrollable external events or by its continuous evolution. Inevitably, this
type of system is present in mobility devices such as cars, ships, and aircrafts. Efforts to develop this
type of system have increasingly suffered from cost and schedule overruns. In fact, the verification
of such systems has become a key activity in the development life cycle. Historically, such activity
demands experts and high efforts, and uses ad-hoc methods. Therefore, the aim of this work is
to apply finite state-machine verification to hybrid systems. To do that, a small part of the vast
theory of automatic test suite generation for this type of discrete behavior and system is applied in a
model-based testing approach, showing an effective and reproducible alternative for automatic test
suite generation. A case study considering the problem of the inverted pendulum was developed
to evaluate the suggested approach. The inverted pendulum is a model of the attitude control
for satellite launch vehicles at its departure. The uniqueness of an inverted pendulum, due to its
natural instability, provides various research in areas of systems, control, electronics and software.
Furthermore, the inverted pendulum is a classic hybrid system, since it is composed of continuous
dynamics (stabilization of the pendulum in a vertical axis) and discrete logics (mode management).
The results obtained so far with this case study have given strong indications that the approach
can bring significant gains for the effectiveness of verification coupled with the reduction of time for
planning and execution of verification, as well as contributing to fulfill certification requirements.

A.2 Space Engineering

A.2.1 2012

An Approach to Model-Driven Architecture Applied to Hybrid Systems (ROMERO;

FERREIRA, 2012a)
In: SPACEOPS 2012; 06/2012
Abstract: Hybrid systems are characterized by a composition of discrete and continuous dynam-
ics. In particular, the system has a continuous evolution and occasional jumps. The jumps are
caused either by controllable, uncontrollable external events or by its continuous evolution. The
continuous evolution and these jumps in control loops are the origins from the most stringent
real-time demands. With the necessity to launch more satellites, Brazilian National Institute for
Space Research (INPE) has been carrying out research on modeling and verifying hybrid systems,
of which its main focus is to obtain a better balance between dependability, schedule, and cost. We
are attempting to use Object Management Group (OMG) specifications to model discrete events.
We are focusing mainly in Modelica (with some degree of Scicoslab) to model continuous dynamics.
Another concern addressed by this, INPE, research is to be independent from commercial tools,
establishing itself on open source software. This paper presents an approach to implement Model-
Driven Architecture in hybrid systems based on vendor neutral specifications. It shows how the
models are defined, traced and used, as well as a set of tools for this. SysML (Systems Modeling
Language), and MARTE (Modeling and Analysis of Real-Time Embedded Systems) allowed us
to define a Computation Independent Model focused mainly on high-level structure and behav-
ior (state oriented). At the end, a case study is presented (inverted pendulum). From this case
study, we have concluded that the proposed approach can complement uncovered topics in current
research applied to hybrid systems development and maintenance.
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An Approach to Model-Driven Architecture Applied to Space Real-Time Soft-
ware (ROMERO; FERREIRA, 2012b)
In: SPACEOPS 2012; 06/2012
Abstract: Real-time systems are commonplace in satellites. In this system type, software has be-
come a crucial factor to satellite’s success projects because its complexity quickly increases, along
with cost. Some factors that contribute to increase complexity of software are: it interacts with
different kind of hardware, it has several states and for each state commonly a different control
law, it has hard-deadlines, and it must have a high level of reliability. Attitude and Orbit Control
System (AOCS) is a good example for this type of system. With the necessity to launch more satel-
lites, Brazilian National Institute for Space Research (INPE) has been carrying out research on
modeling and verifying real-time software, like a lot of other space agencies and research institutes.
The main focus is to obtain a better balance between dependability, schedule, and cost. However,
instead of creating one more brand-new, one-of-a-kind approach, method or process, we are trying
to use Object Management Group (OMG) specifications, which have been proposed and adopted
by community in some degree. Another concern from this INPE research is to be independent from
commercial tools establishing itself on open source software. This paper presents a detailed ap-
proach to implement Model-Driven Architecture (MDA) in real-time space software based strongly
in OMG specifications. It shows how models are defined, linked, verified and transformed, as well
as a set of tools for this. We place special emphasis on fUML (Semantics of a Foundational Subset
for Executable UML Models) and MARTE (UML Profile for Modeling and Analysis of Real-Time
Embedded Systems) that allow us to define a completely executable Platform Independent Model
(PIM). At the end, a case study is presented, along with an assessment of the proposed approach.
This assessment allowed us to conclude that MDA, following the proposal presented, has advantages
versus the current approaches applied to real-time space software development.

A.2.2 2011

Modeling and Attitude and Orbit Control System using SysML (ROMERO; FERREIRA,
2011)
In: II WETE - 2nd Workshop in Space Technology and Engineering; 05/2011
Abstract: This paper presents an approach for the development process of an Attitude and Orbit
Control System (AOCS) software applying SysML (Systems Modeling Language). The development
process starts analyzing the context diagram, the stakeholders and their interests. Afterwards, the
system requirements and the measure of effectiveness (MoEs) are derived. Using use cases, the
functional analysis is performed, hence, constraints and parametric diagrams are described. The
behavior is defined using sequence diagrams taking into account physical aspects of the plant.
Finally, concerning the software viewpoint, the model is translated into a PSM (Platform Specific
Model), which allows code generation.

A.3 Automatic Control Engineering

A.3.1 2012

Uma Avaliação Empírica de Duas Opções para Modelagem de Sistemas Físi-
cos (ROMERO; SOUZA, 2012)
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In: Brazilian Congress of Automation (CBA 2012); 09/2012
Abstract: The theories and applications of physical systems face enormous challenges. The efforts
to develop these systems have increasingly suffered from cost and schedule overruns. In fact, to
mitigate this issue, many formalisms have been developed, including: signal flow modeling using
block diagrams and physical flow modeling. This paper presents an empirical evaluation of these
two options for modeling physical systems. This evaluation was performed using a case study,
the inverted pendulum. In this case study, eight models for the same problem have been devel-
oped containing the main alternatives that each formalism offers. Finally, a quantitative metric of
these models was extracted, and allowed the authors to quantitatively conclude that physical flow
modeling offers advantages even in simple scenarios.
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APPENDIX B - OMG ISSUES

In this appendix, it is shown the list of issues identified, submitted and under evaluation of
OMG ((OMG), 2014) concerning the base semantics given by fUML ((OMG), 2012a).

Issue 18794: Defects in Base Semantics from fUML (fuml-rtf)
Summary: There were found 42 issues, 5 of them were enhancement proposals, and 37 were defects.

Issue 18795: Computer-readable version of the Base Semantics (fuml-rtf)
Summary: It should be made available a computer-readable version of the Base Semantics, as a
CLF file. The place would be the OMG site where other files defined by this specification were
available, such as, XML Metadata Interchange (XMI).

Issue 18796: Base Semantics PSL version (fuml-rtf)
Summary: Base Semantics should declare the PSL version used to define it.

Issue 18797: Actions outside the bUML (fuml-rtf)
Summary: It should not define constraints for Actions outside the bUML, namely AcceptEventAc-
tion and ReadIsClassifiedObjectAction. In the other way around, it should be evaluated if these
actions should be included in bUML. The java statement instanceof is used from page 98 to 328,
therefore, the ReadIsClassifiedObjectAction should be added into bUML.

Issue 18798: Cover all ActivityNodes used in bUML (fuml-rtf)
Summary: The specification should cover all ActivityNodes used in bUML. It should be added
declarative definition for ActivityFinalNode because it is used in annex A.3.1, and A.3.2, pages
401, and 402. However, it should be evaluated the replacement of this node by FlowFinalNode. For
the latter, a proposal is defined.

Issue 18799: Remove unneeded inference rules from Base Semantics (fuml-rtf)
Summary: Inference rules not used, and not needed for completeness, should be removed.

Issue 19007: ReadSelfAction is not compliant with UML 2.4.1 Superstructure Speci-
fication (formal/11-08-06) (fuml-rtf)
Summary: ReadSelfAction issue - in a scenario where an activity with a context (classifier) calls
(CallBehaviorAction) an activity owned by other classifier, the ReadSelfAction (from fUML exe-
cution model) violates the constraint defined in UML superstructure 2.4.1 because it returns the
context from the caller activity (not necessary the same classifier).

Issue 19008: Extensional values should have a unique identifier (fuml-rtf)
Summary: Locus has a “set” for all extensional values, however, there is no unique identifier in the
ExtensionalValue to support the uniqueness.
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