

The Role of Software Testing on Modernizing a Balloon

Ground Station

Fátima Mattiello-Francisco1, Mariam Gomez1, William K.

Ariyoshi2, Fernando Aranha2, Marcelo Essado3

1
National Institute for Space Research (INPE)

Caixa Postal 515 – 91.501-970 – São José dos Campos – SP – Brazil

2
Beta/TELECOM

São José dos Campos – SP - Brazil

3
EMSISTI- Sistemas e Soluções em Tecnologia da Informação

Franca – SP - Brazil

{fatima.mattiello,mariam.gomez}@inpe.br, fgaranha@uol.com.br,

wkariyoshi@gmail.com, marcelo.essado@emsisti.com.br

Abstract. This paper reports the use of different software testing techniques

and tools in a verification and validation (V&V) strategy for software and

hardware improvements on an existing old generation balloon ground station.

A model-based testing method was combined with both human machine

interface and communication testing techniques to carry out service driven test

cases specification. The strategy was effective on validating the behavior of

the new flight control system (OPS/ES) integrated to the ground station and

useful on verification of the server system (OPS/Server) on the tasks of routing

the original ground station TM and TC channels to TCP/IP gateways.

1. Introdution

Aiming at a cost reduction on the development and operations of the balloon-borne

protoMIRAX telescope experiment, the system requirement for reusing the ground

facilities available at INPE was a challenge to the ground system engineers.

 Different age technologies were required to interoperate. The existing one

decade-old balloon ground station needed little hardware maintenance, but significant

effort on software updating was required. The improvements on INPE´s ground station

comprise only investments on information technology. The standalone computer system

available in the balloon ground station rack dedicated to run the flight control software

was modernized both in hardware and software by new system named OPS/ES. In

addition, a new server computer, properly configured for Ethernet connections, has

extended the existing ground station facilities with a network switch, serial converters

and a new software named OPS/Server in order to support the available uplink and

downlink channels being mapped to TCP/IP gateways.

 Both solutions was developed by only one supplier (Sup 1) and the acceptance

phase leaded by costumer INPE at LabV&Vsis was supported by other company (Sup 2)

as independent verification and validation (V&V) activities.

SAST

113

 This paper reports the experimental results of the V&V strategy adopted for

systematizing the OPS/ES and OPS/Server acceptance process. Section 2 presents the

concept of service in the space system engineering and its use as a V&V strategy.

Section 3 and 4 introduces the OPS/ES and OPS/Server respectively, the test bed and

how the proposed V&V strategy was used. In Section 5, the V&V strategy is discussed

in terms of the test cases set and fault detection capability, taking into account the role

of the techniques and tools used for both the test cases specification and management of

test execution and retesting cycles. Finally, the conclusions are presented in Section 6.

2. Service driven approach

In space system engineering, a service is a set of capabilities that a component provides

to another component via an interface in order to associate the set of operations that can

be invoked and performed through the service interface “Service specifications define

the capabilities, behavior and external interfaces, but do not define the implementation”.

[CCSDS 2010]

 In the context of V&V, the verification of the expected behavior of a system and

the interfaces at system level (black box testing) can be oriented by the behavioral

models of a particular service provided by one or more reactive components [Mattiello-

Francisco at al. 2013]. The service defines the set of events accepted by the component

at its available external interfaces which stimulate the component actions, performing

the expected behavior. Thus, the expected behavior of a service at a particular

abstraction level can be represented by the automata formalism, where the states of the

automata represent the actions and the events are the state transitions.

 Some model-based testing (MBT) approaches use such formalism to derive test

cases from behavioral models of the system under testing (SUT). A test case is one path

of the SUT model as result from a traverse algorithm implemented by a tool. In the last

decade there are many contributions of MBT techniques, methodologies and tools in

order to automatically generate test cases specification for reactive system [Shunkun at

al. 2013]. In particular, the concept of service according to CCSDS (2010) can be found

in two MBT methodologies developed at INPE and operational in LabV&Vsis to guide

the construction of behavioral models of the space SUT [Ambrosio 2005] and

[Mattiello-Francisco at al. 2012].

 The proposed service driven approach is a V&V strategy that use automatic and

manual testing techniques, for test case specification aiming at validating SUT aspects

in terms of human machine interface (HMI), communication functionality and control

actions. Conformance and Fault Injection (CoFI) [Ambrosio 2005] is a MBT

methodology used to guide automatic test cases generation focusing control actions.

 The TestLINK tool is used to supporting the management of the Test Case

suites for OPS/ES e OPS/Server software acceptance testing phase as a Test Project

manager [http://testlink.org/]. The TestLINK supports the SUT description and

definition of Testers (users) involved on testing activities. Test Plans are built

describing both the Services to be verified using each testing technique and the testing

environment (Test bed) required. For each test case execution Build memorizes the Test

Case Result (Passed, Failed, Blocked) providing testing management metrics and

supporting Report.

SAST

114

3. Ground Balloon Flight Control System - OPS/ES

On the context of balloon ground station modernization for protoMIRAX campaigns

operation purpose, the OPS/ES system substitutes the obsolete ground station

standalone computer. As ground station equipment’s integrator, this computer major

functionality is to support the ground station operator on balloon flight control.

 The new software OPS/ES was designed using LabVIEW 2013, National

Instruments™ [http://www.ni.com/labview/pt/], and it is the integrator element of the

ground station and on-board system equipment. It enables flight control of the balloon

by sending telecommand and visualization of the flight parameters received by

telemetry. These parameters are displayed as real-time values, status indicators, leds and

graphics. OPS/ES also creates logs of all telemetry and telecommand information since

the beginning of the campaign. In addition, OPS/ES has a tracker function to always

keep the antenna pointed to the balloon to prevent connection losses. For this purpose it

uses the GPS antenna placed in the on-board system. It also has a mapping function

using a Google Maps API that tracks the balloon’s flight path.

 OPS/ES software code size is approximately 1563KB and runs in an industrial

rack mounted computer whose hardware configuration is: 300W Power Supply;

Motherboard ATX-SB600C with one PCI-Express x16 slot and six PCI-32bits slots;

Processor Intel® Core™ i5-2400; RAM Memory Kingston 4GB DDR3 1333MHz;

HDD Seagate 500GB; DVD-RW. OPS/ES has four RS232 serial cables to communicate

with other ground station equipment: MUX/DMX – Telemetry; MUX/DMX –

Telecommand; Antenna Positioning Unit; and RF Decoder.

3.1. OPS/ES Test Plans, Test Cases Specification and Test bed

Two Test Plans were elaborated to carry on the testing activities related to OPS/ES

acceptance: (a) the Test Plan guided by Human Machine Interface Testing Technique,

named OPS/ES Interface TP; and (b) the Test Plan guided by MBT using CoFI

methodology, named OPS/ES Control TP.

 The Test bed was composed of the OPS/ES software itself embedded in the

Ground Station standalone computer, the MUX/DMX chains and channels for ground-

space communication. In addition, a software simulator provided by SUP 1 simulated

the telecommand and telemetry functions on board of the balloon.

 Based on Inputs and Outputs available to control and observe OPS/ES operation

and the software design artifacts such as user manual provided by SUP 1, an abstract

view of the SUT, as a black box, allowed the identification of 4 services associated to

the human interface and 3 services associated to control, as summarized in Table 1.

 The OPS/ES Interface TP comprises the verification of the following 4 services

SI-1 – TM: all telemetry data visualized by the Flight Control Operator (OPS/ES

operator) on OPS/ES display, as output; SI-2 – TC: all input (buttons and parameters)

and output event (led) available to the OPS/ES operator for telecommands selection

and transmission to the balloon flight control on board; SI-3 – RH: on time recording

on Historical file all telecommands sent by the OPS/ES operator and all telemetry data

received by OPS/ES software during the campaign; SI-4 – IC: all OPS/ES operational

parameters available for OPS/ES operator setting as Initial Configuration.

SAST

115

 Two sets of test cases were manually specified for each SI, taking into account

the inputs variables provided by OPS/ES software to OPS/ES operator performing the

service. One set, referred as Normal (N), comprises OPS/ES expected behavior on the

service execution. For instance SI-1: telemetry value within the specified range shall be

displayed in the graphical interface and those out-of limit values shall be signalized with

visual warnings. The other set comprises Robustness (R) aspects, for instance, wrong

inputs. The number of test cases (N) and (R) per service related to SIs is presented in

Table 1. The expressive number of (N) test cases compared to (R) is due to the quantity

and nature of HMI screen components: (i) all output variables are displaying in

graphical screens using LabView libraries in SI-1; (ii) input variables are mostly

represented by buttons and parameters values already defined for OPS/ES operator

selection in SI-2; (iii) data log needs to be tested only in terms of timestamp and delay in

SI-3; (iv) only one input variable (Antenna Position) is open in SI-4 for OPS/ES

configuration by means of writing localization coordinates, which required one (R) test

case specification to validate the OPS/ES robustness in terms of invalid parameters.

 The OPS/ES Control TP comprises the verification of the OPS/ES software

behavior on the following 3 services: SC-1 – TM: the tasks of acquiring and displaying

on OPS/ES graphics accordingly all telemetry parameters related to the different

equipment integrated in ground station; SC-2 – TC: the tasks of both sending

telecommands (sequence of buttons and parameters verified in SI-2) under selection of

OPS/ES operator to the on board balloon flight control system and feed backing on

screen telemetry data related to each telecommand effective execution on board for

monitoring purpose on ground; SC-3 – FE: the task of Flight Ending, transferring all

files recorded by OPS/ES during the campaign to the mission historical data center.

 The specification of test cases for these services followed three main steps of

CoFI methodology: (a) the construction of a set of Finite State Machine (FSM) that

models the expected behavior of the services provided by SUT, (b) models validation

and (c) abstract test-case generated automatically using Condado tool [Martins 1999].

According to CoFI, a service behavior is modeled in different perspectives: (i) normal,

(ii) specified exceptions, (iii) inopportune inputs (i.e., corrects but occurring in wrong

moments) and (iv) invalid inputs caused by hardware faults. The models are generally

small because two levels of decomposition are taken into account: (i) the services

provided by system under test and (ii) the types of behavior, which are named as: Fault

Tolerance, Sneak Path, Specified Exception and Normal, respectively associated to the

input events: invalid, inopportune, specified exceptions, normal. Moreover, it is possible

to create more than one model to represent the same type of behavior of a service. The

selection of the inputs to be considered in the models must take into account the

controllability and observability available in the test executing tools (or test

environment). Thus, the test environment has to provide mechanisms for input events

and observation of the system outputs.

 For sake of space, the FSM models built for the control services are not

presented. Table 1 summarizes the number of models built per service resulting from

only two types of behavior: Normal (N) and Sneak Path (R) which covers robustness

behavior related to wrong inputs. Exceptions models were not built because exception

behaviors were not specified in OPS/ES software requirement document. From those

SAST

116

models, abstract test-case suites were generated automatically by Condado tool. One

can observe in Table 1 a huge number of test cases generated per suite, in particular

from (R) models. The reason is the combination of input events (transitions) that are

added to each state of the nominal model in order to represent all unexpected input

variables. A test selection was necessary and manually performed by test expert analyst

using two criteria: (i) discarding all test case that comprise a step sequence already

included in other test case, considering as duplicated test case or similar; (ii) choosing

only one representative value in domain for each input variable, since most input and

output variable were already covered by the test cases specified in Interface Test Plan.

The numbers of test cases selected and effectively translated to executable test-cases for

SCs are presented by numerators in cells of Table 1 (three columns corresponding to

SCs on last two lines).

4. Gateways Mapping System – OPS/Server

The purpose of the software OPS/Server is to provide TCP/IP gateways to the payload

controllers and scientists (mission end users) for mission operation. Protomirax’s board

and ground system originally uses asynchronous RS232 and synchronous RS422

communication. These channels are routed respectively to Ethernet converter and to

USB converter in order to support OPS/Server with TCP/IP connections.

 OPS/Server software was designed using LabVIEW and its code size is

approximately 241KB running in a computer configured with W7 Professional,

Processor Intel® Core™ i7-3770; RAM Memory 8GB; HDD 1TB; DVD-RW.

4.1. OPS/Server Test Plan, Test Cases Specification and Test bed

Only one Test Plan, named OPS/Server Communication TP, was elaborated to carry

on the testing activities related to ground-ground communication protocols that were

properly defined to support the OPS/Server routing functions.

 The service driven approach was also useful for OPS/Server test case

specification that comprised the verification of the ground-ground communication

protocols involved on 3 services: SM-1 – TC: the task of sending direct telecommands

from TCP/IP gateways to particular Ground Station channel; SM-2 – TM: the task of

transmitting internally in ground all telemetry packets received from different ground

station channels to the end users; SM-3 – TMTC: the tasks of sending telecommands

and receiving telemetry simultaneously, covering SM-1 and SM-2 execution together.

 Test cases were manually specified for SMs addressing three main aspects:

message format, communication faults and performance of the routing task.

5. Testing Results and Discussion

In total, 125 test cases (N) and (R) were effectively executed, as presented in Table 1 by

the cells numerators (last two lines). The corresponding denominators show the number

of test cases Failed (9%) and/or Blocked (14%) during first cycle of testing. Blocked

test cases were due to (i) lack of on board simulator functionalities or (ii)

misunderstandings on test case specification. Test cases were rewritten and functions

added to the simulator improving the Test bed to support the second cycle of testing,

which test cases Passed.

SAST

117

Table 1. Numbers of Models, Test Cases generated and executed per service

The cells highlighted in gray show that most failures detection capability of the Test

Plans are concentrated in two services: (i) Interface TP pointed out 6 failures, 3 detected

by SI-1 test cases and all solved with the above mentioned Test bed improvements; (ii)

Control TP pointed out 3 failures, all detected by SC-2; (iii) no failure was detected by

Communication TP. Two failures detected in SC-2 were due to lack of on board

hardware in the loop. Only one failure was in fact software fault that was corrected.

6. Conclusion

The V&V strategy demonstrates that: (1) focus the model-based testing efforts on the

control services is cost-effective whether others testing techniques can be used to

supplement the whole software product verification; (2) the correspondence between

test cases specification and the resources available on the test bed for test cases control

and observation is essential to reduce testing effort and risk.

7. References

Ambrosio, A. M.. “COFI: uma abordagem combinando teste de conformidade e injeção de falhas para

validação de software em aplicações espaciais.”, 2005, 209 p. (INPE-13264-TDI/1031). Tese

(Doutorado em Computação Aplicada) - Instituto Nacional de Pesquisas Espaciais, São José dos

Campos, 2005

CCSDS-520.1-M-1. Mission Operation Reference Model. “Recommended for Space Data Systems

Practice”. (July 2010)

Mattiello-Francisco, F.; Villani, E.; Martins, E.; Dutra, T.; Coelho, B.; Ambrosio, A. M.; “An Experience

on the Technology Transfer of CoFI Methodology to Automotive Domain”; LADC2013 – Sixth Latin-

American Symposium on Dependable Computing, Industrial Track – Rio de Janeiro 2-5 Abril 2013.

Martins, E.; Sabião, S.B.; Ambrosio, A.M. - "ConData: a Tool for Automating Specification-based Test

Case Generation for Communication Systems". In: Software Quality Journal, Vol. 8, No.4, 303-319,

1999.

Mattiello-Francisco, F.; Martins, E.; Cavalli, A.R.; Yano, E.T.; “InRob: An approach for testing

interoperability and robustness of real-time embedded software.” In: Journal of Systems and Software,

85,1, January 2012, 3-15.

Shunkun, Y.; Bin, L.; Shihai, W.; Minyan, L.; “Model-based robustness testing for avionics-embedded

software.” In: Chinese Journal of Aeronautics and Astronautics, 26(3), 2013, 730-740.

V&V

strategy

OPS/ ES OPS/ Server Total

Interface Test Plan Control Test Plan Communication TP

Services SI-1 SI-2 SI-3 SI-4 SC-1 SC-2 SC-3 SM-1 SM-2 SM-3 10

#Models N - - - - 3 1 2 - - - 6

R - - - - 3 1 1 - - - 5

#Test

Cases

N 36 26 7 1 51 13 41 2 5 1 183

R 0 0 0 1 832 978 672 2 3 0 2527

#Execut N 36/11 26/2 7/4 1 5/1 6/5 2/1 2 5/1 1/1 91/26

R 0 0 0 1/1 4 19 5 2/1 3/1 0 34/3

SAST

118

