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Abstract: Chlorophyll-a (chl-a) is a central water quality parameter that has been estimated 

through remote sensing bio-optical models. This work evaluated the performance of three 

well established reflectance based bio-optical algorithms to retrieve chl-a from in situ 

hyperspectral remote sensing reflectance datasets collected during three field campaigns in 

the Funil reservoir (Rio de Janeiro, Brazil). A Monte Carlo simulation was applied for all 

the algorithms to achieve the best calibration. The Normalized Difference Chlorophyll Index 

(NDCI) got the lowest error (17.85%). The in situ hyperspectral dataset was used to simulate 

the Ocean Land Color Instrument (OLCI) spectral bands by applying its spectral response 

function. Therefore, we evaluated its applicability to monitor water quality in tropical turbid 

inland waters using algorithms developed for MEdium Resolution Imaging Spectrometer 

(MERIS) data. The application of OLCI simulated spectral bands to the algorithms generated 

results similar to the in situ hyperspectral: an error of 17.64% was found for NDCI. Thus, 

OLCI data will be suitable for inland water quality monitoring using MERIS reflectance 

based bio-optical algorithms.  
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1. Introduction 

Water resources managers are committed to assuring the availability of water in adequate quantity 

and quality for its multiple mankind uses. They are also committed to maintaining the recreational and 

ecological amenities of the environment [1]. For that, it is essential to monitor the quality of inland 

waters, mainly the water supply aquatic systems. One of the most important aspects for water quality 

management is the level of phytoplankton activity within the water body [2], which is usually 

represented by phytoplankton biomass.  

Phytoplankton is also frequently used as a bioindicator of water quality. This is possiblly because it 

is one of the water quality parameters that responds most quickly to environmental changes [3]. Its 

response can be monitored using remotely sensed data through the observations of the optical changes 

in the reflected light at specific wavelengths. Therefore, these changes can be related to the concentration 

of phytoplankton’s main and major pigment: Chlorophyll-a (chl-a). This ubiquitous phytoplankton 

pigment exhibits a unique spectral absorption signature with two marked peaks: one in the blue region 

of the spectrum (~433 nm); and another one in the red region of the spectrum (~686 nm) [4–6]. Its main 

reflectance peak is in the green channel, around 550 nm [5,7], with a secondary peak around 715 nm, 

associated with high scattering by the phytoplankton cells [5]. Because of these specific signatures, the 

estimation of chl-a concentration by remote sensing has been possible [8–12]. Furthermore, it can be an 

effective tool for environmental managers since it can provide synoptic and repetitive quantitative 

information about the aquatic systems. 

A wide range of algorithms have been developed for retrieving chl-a [3,8–13]. Two comprehensive 

reviews of algorithms for retrieving a variety of parameters from remote sensing including the estimation 

of chl-a can be found in Matthews [14] and Odermatt et al. [15]. The success of these algorithms depends 

on the biogeochemical characteristics of the water body. In marine optics, much progress has been made 

in the retrieval of this pigment from blue-to-green ratios of remote sensing reflectance [16–18]. The ratio 

of these two spectral channels worked well in ocean waters since phytoplankton is usually their 

predominant constituent and the concentrations of suspended solids (SS) and dissolved organic matter 

(DOM) correlate with it. Problems have arisen for coastal and inland waters where SS and DOM have 

higher values and their concentrations do not always correlate with chl-a. Thus, all constituents that are 

present in these waters affect their optical properties. 

The overlapping and uncorrelated absorptions by DOM and non-algal particles (NAP) in the blue 

region of the spectrum, renders the blue-to-green ratio inaccurate for estimating chl-a concentration in 

waters where these components are not correlated to phytoplankton [18,19]. Hence, for retrieving chl-a, 

reflectance based algorithms focus on the spectral properties of chl-a in the red and near 

infrared (NIR) channels.  

Bio-optical models are parameterized to fit satellite bandwidth so they can be repetitively used for 

retrieving biogeochemical concentration over the world. One of the satellite sensor most used for aquatic 

studies was the MEdium Resolution Imaging Spectrometer (MERIS). MERIS was a sensor whose 
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spectral bands were positioned aiming to capture the spectral features of the different components in the 

water [20]. In 2012, 10 years after its launch, this sensor stopped sending data to Earth, but the continuity 

of MERIS measurement capability is particularly important for water bodies (including water quality) 

and climate monitoring applications [21]. For this purpose, its successor will be send into space onboard 

of the two Sentinel 3 satellites which will image Earth in constellation: the Ocean and Land Color 

Instrument (OLCI). However, new sensors have to be tested using in situ radiometric measurements. 

Therefore, the main goal of this study was to evaluate the use of MERIS reflectance based chl-a 

algorithms using in situ hyperspectral data and OLCI simulate bands.  

2. Material and Methods 

2.1. Study Area  

The study area was the Funil Hydroelectric Reservoir (44º55′W; 21º05′S, see Figure 1) located in 

Itatiaia, Rio de Janeiro state, Brazil. Formed by the damming of Paraíba do Sul River in its medium 

course, it has a flooded area of 40 km2 with maximum depth of 70 m and average depth of 20 m [22]. 

The catch basin covers almost entirely the São Paulo portion of the Paraíba Valley which is one of the 

most industrialized axes of Brazil with intense economic activity. Thus, the number of large industries 

with high pollution potential is significant [23]. 

Figure 1. (A) Location of Funil Hydroelectric Reservoir. Sampling points from: (B) May 

2012, (C) September 2012; and (D) April 2013. Color Composite TM-Landsat5 R3G2B1. 

Orbit/Point: 218/76. Date of Passage: 5 September 2011. 
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Industrial development and urban expansion contributed to enhance degradation which lead to a 

mischaracterization of basin environmental conditions. Waters drained from these industrial areas are 

the main source of water pollution in Funil. Domestic sewage, industrial effluents and sand extraction 

in the river contribute to increase turbidity and siltation on the reservoir. Therefore, these factors 

collaborate to the loss of water quality in this water body [24]. 

For the regions downstream the reservoir, Funil dam acts as a barrier to the São Paulo State pollution. 

It accumulates nutrients; toxic substances; and sediment drained by Paraíba do Sul River. As a result, 

several studies have already demonstrated the constant presence of high values of phytoplankton 

biomass [25–28]. It constantly undergoes high primary productivity with reduced transparency and 

frequent occurrences of algal blooms that reduce the dissolved oxygen, which can lead to fish mortality. 

2.2. Datasets  

Datasets were collected during three field campaigns held in 20–22 May 2012, 2–4 September 2012, 

and 2–5 April 2013. In the May and April campaigns the hydrological period was high-water, which 

occurs right after the rainy season (austral summer). In September, the reservoir was operating at low 

capacity, after a long period of drought (austral winter), with a lowering of the water level of more than 

10 meters. Sampling points were distributed homogeneously along the reservoir for the May and 

September campaigns (Figure 1B,C). For the April campaign (Figure 1D) we only collected the data 

from the river inlet. In all sampling points we collected water samples for limnological analysis at the 

same time we collected the radiometric data. 

2.2.1. Remote Sensing Reflectance 

Two submersible radiometers (TriOS RAMSES-Oldenburg, Germany) were used for in situ 

radiometric measurements during the three field campaigns. Spectral measurements of upwelling radiance 

(Lu) just below the air-water interface; and downwelling plane irradiance (Ed) right above the air-water 

interface; were collected using RAMSES-ARC-UV/VIS and RAMSES-ACC-UV/VIS, respectively. 

These instruments were mounted on a frame in which their optical axes were aligned parallel to each 

other. Depth and inclination measurements were acquired by a pressure and tilt sensor integrated into 

the RAMSES-ACC-UV/VIS. Each sensor has 190 useable channels from 320 nm to 950 nm with the 

spectral sampling interval of 3.3 nm and 0.3 nm of accuracy [29].  

The radiometric measurements were collected at a distance of 1.5 meter from the boat, reducing any 

shading effects. All measurements were made simultaneously following the acquisition protocol from 

Hooker [30] and Mobley [31]. The Remote Sensing Reflectance (RRS) above the water surface was then 

calculated based on Mobley [31] as described in Equation 1. ܴோௌ = ݐ ∙ ௨݊ଶܮ ∙ ௗ (1)ܧ

where, t is the transmittance at the air-water interface (0.98); and n is the refractive index of water (1.34). 

We used Mobley’s [31] equation to achieve RRS because the underwater measurement of Lu is not 

influenced by sky reflection or sun glint, but it can only be performed at single stations and has to be 

extrapolated to the water surface [32] using equations and in the conditions stated by Mobley [31]. 
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For each sampling point, ten measurements of both irradiance and radiance were acquired and the 

average spectrum was calculated to achieve RRS. The RRS spectra were resampled to 1 nm using linear 

interpolation. A synthetic dataset was created by applying the OLCI spectral response function to the 

RRS spectra. 

2.2.2. Chl-a 

Water samples for chl-a determination were collected at all sampling stations on the surface of Funil 

Hydroelectric Reservoir (about 10 cm deep) at the same time the radiometric data was being acquired. 

These samples were kept on ice until the arrival on land where the filtering procedure with 0.7 mm 

Whatman GF/F was conducted. The filters were then frozen until they were delivered to the laboratory 

for the extraction of the chl-a pigment using acetone and measuring its absorbance in a Varian Cary 50 

Conc UV-VIS spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) following Nush [33] 

method. Some of the samples were collected at duplicates and the chl-a concentrations were calculated 

from the absorbance data using the equations from Lorenzen [34]. 

Table 1 and Figure 2 show the summary of chl-a data for the three campaigns. The datasets collected 

are representative for a large range of chl-a concentrations. The analysis of the standard deviation in 

Table 1 shows low values for May and April with higher value for September. We also observed the 

discrepancy between Average and Median values. In May and April they are cohesive, but in September 

they are distinct, which can be explained by the small number of high concentration values of chl-a in 

September. Those values influence the average, making it larger than the median as shown in Figure 2.  

Table 1. Summary statistics for chl-a (concentrations in µg·L−1) at each campaign. 

 Maximum Minimum Range Average Median 
Standard 
Deviation 

May 2012 32.96 2.33 30.63 8.59 4.88 7.81 
September 2012 306.03 4.37 301.67 67.08 14.82 90.80 

April 2013 52.78 4.92 47.86 19.49 12.89 15.28 

Figure 2. Box-plots with the summary statistics for chl-a (concentrations in µg·L−1) at 

each campaign.  
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2.3. Chl-a MERIS Bio-Optical Models  

Three bio-optical models were evaluated in this study to estimate the chl-a concentration based on 

the RED-NIR relationship. The chosen models were already parameterized for inland waters and fitted 

to MERIS spectral bands. The use of the RED-NIR relationship is a strategy to reduce the interference 

in the signal of other components in the water column [12,35], although variations of specific absorption 

coefficient of chl-a can be a limitation [19]. The analysis of these specific models parameterized for 

MERIS addresses their applicability to the OLCI sensor. Table 2 summarizes the models. 

Table 2. Summary of RRS based bio-optical models to retrieve chl-a concentration. Where: 

Chl-a is the chlorophyll-a concentration; and RRS is the Remote Sensing Reflectance 

obtained by Equation (1) at specific wavelengths. 

Abbreviation Reference Model 

2BDA 19 ܥℎ݈ − ܽ ≈ ܴோௌ(709)ܴோௌ(665) 
3BDA 36 ܥℎ݈ − ܽ ≈ (ܴோௌ(665)ିଵ − ܴோௌ(709)ିଵ) ∙ ܴோௌ(753) 
NDCI 12 ܥℎ݈ − ܽ ≈ ܴோௌ(709) − ܴோௌ(665)ܴோௌ(709) + ܴோௌ(665) 

Gitelson et al. [36] proposed an algorithm to retrieve chl-a in higher plant leaves. Later, Dall’Olmo and 

Gitelson [19] applied this model (3BDA) and presented its special case (2BDA) for turbid productive waters. 

Gitelson et al. [8] estimated chl-a concentration using these two models with datasets collected from lakes 

and reservoirs in Nebraska (sandpit lakes and reservoirs in Eastern Nebraska), Iowa (Lake Okoboji), 

Minnesota (Lake Minnetonka) and Maryland (Choptank River–Chesapeake Bay). They found a chl-a range 

from 1.2 to 236 µg·L−1 and found a R2 equal 0.94 and 0.93 for 3BDA and 2BDA, respectively. 

Mishra and Mishra [12] based on the Normalized Difference Vegetation Index (NDVI) proposed the 

Normalized Difference Chlorophyll Index (NDCI) to predict chl-a concentration from MERIS images 

in estuarine and coastal turbid productive waters. Their results indicate that the NDCI was successful in 

predicting chl-a concentration in the range from 0.9 to 28.1 µg·L−1 with R2 of 0.9. They applied this 

model to several study sites: Chesapeake Bay, Delaware Bay, Mobile Bay, and the Mississippi River 

delta region in the northern Gulf of Mexico, USA. 

2.4. Calibration and Validation  

The radiometric and limnological data acquired in all field campaigns were merged in unique dataset 

and used to calibrate the algorithms listed in Table 2. We joined all field data from the three campaigns, 

separated the extreme data, split the remaining data into quartiles and used three samples of each quartile 

for validation. As a result, we ended up with 28 samples for calibration and 12 for validation. 

We considered extreme data the chl-a concentrations higher than 20 µg·L−1. The use of this limit is 

justified because the dataset was composed of a major number of data below this value (40 samples) and 

the other samples were mainly concentrated above 100 µg·L−1. We split the extreme samples (12 values) 
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from the dataset, as it is not representative for the normal behavior of the reservoir. These samples were 

obtained during bloom condition, with optical characteristics of phytoplankton dominance [37], which 

is not the natural behavior for most of the time of the year.  

To assure this difference between bloom and non-bloom conditions, we also calibrated and validated 

all models with all data available. Eight samples with extreme values were included in calibration, 

leaving the other four for validation. We then had 36 samples for calibration and 16 for validation. The 

comparison of these results with the calibration using only data with chl-a values under 20 µg·L−1 was 

conducted to enhance the need to split the dataset. 

To conduct models calibration, we used a Monte Carlo simulation (Figure 3): eight samples were 

randomly selected and used to calibrate the algorithms with a linear trend between model values and  

chl-a concentrations. This process was repeated 100,000 times. The resulting values of slope, intercept 

and determination coefficient (R2) were recorded for each iteration. 

Figure 3. Scheme of Monte Carlo simulation to calibrate the models. 

 

The R2 histogram was a decision tool to find the equations which had this parameter in its most 

frequent range. Within this range of R2, we plotted the corresponding slope versus intercept of the 

equations and determined their mode and standard deviations. We selected only the equations that had 

both slope and intercept in a range based on their mode (mode ± standard deviation). From this group, 

we selected the equations that had the best R2 and validated them using the 12 validation samples. The 

equation with the lower error estimator was selected as the best. Figure 4 shows a summary scheme of 

this calibration/validation process. 

Figure 4. Calibration/validation scheme. 
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The error estimators used in this study were: Bias; Root Mean Square Error (RMSE); and Normalized 

Root Mean Square Error in percentage (NRMSE%). They were calculated according to Table 3. The 

error estimator used to choose the best equation was NRMSE%. We also generated scatterplots between 

estimated and measured chl-a concentration to see how close to 1:1 these models are capable to estimate. 

Table 3. Summary of the error estimators used. Where: yi and xi are the predicted and the 

measured chl-a concentration respectively in each i sample. 

ݏܽ݅ܤ = 1݊(ݕ − )ݔ
ୀଵ ܧܵܯܴ =  ܧܵܯ√

ܧܵܯ = 1݊(ݕ − )ଶݔ
ୀଵ %ܧܵܯܴܰ = ℎ݈ܥ∆ܧܵܯܴ − ܽ ∙ 100

2.5. OLCI Simulated Bands  

RRS hyperspectral dataset was applied to OLCI response function resampled to 1 nm spectral 

resolution. Each wavelength of RRS data was multiplied by its response and the results were added and 

an average response was obtained for each band. The goal was to simulate an approximation of OLCI’ 

spectral bands and then apply MERIS bio-optical model on them to retrieve chl-a concentration. With 

OLCI simulated data we performed the calibration/validation using the same processes and models 

applied to the in situ hyperspectral dataset with chl-a concentration values below 20 µg·L−1. 

3. Results and Discussion  

3.1. Remote Sensing Reflectance Behavior 

Figure 5 shows all RRS data from field campaigns. It can be noted a substantial reflectance peak 

around 550 nm, which can be attributed to phytoplankton spectral behavior. The spectral troughs near 

620 nm and around 685 nm appear due to phycocyanin strong absorption (representative cyanobacterial 

pigment) and chl-a, respectively [19,38]. The RRS feature at the beginning of the near infrared region of 

the spectrum (700 nm) is also recorded shifting to longer wavelengths with the increase in chl-a 

concentration following the results of Gitelson [5].  

Figure 5. RRS spectra from Funil reservoir in: (A) May 2012; (B) September 2012 and 

(C) April 2013. 
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3.2. Bio-Optical Models 

The models listed in Table 2 were evaluated in the following sections for three conditions: in situ 

hyperspectral data with chl-a bellow 20 µg·L−1; all in situ hyperspectral data with no chl-a concentration 

limit; and OLCI simulated data with chl-a bellow 20 µg·L−1. 

3.2.1. Calibration and Validation of the Hyperespectral Data with chl-a Concentration bellow 20 µg·L−1 

Table 4 shows the results from Monte Carlo analysis. It is clear that the only negative value of the 

intercept was found for 2BDA. A negative value in the intercept represents the case when there is no 

chl-a in the water. In this case, the model would produce a value because of the interference of other 

constituents. On the other hand, a positive intercept means that, at a given concentration of chl-a, the 

models would have no response, which could mean that the spectral signatures are masked or the model 

have a limit concentration below what it does not respond. This is not a response expected for a  

chl-a model. 

Table 4. Coefficients derived from model calibrations applied to samples with chl-a 

concentration bellow 20 µg·L−1. Hyperspectral data. 

 Slope Intercept R² 

2BDA 41.8 −15.0 0.90 

3BDA 581.1 25.5 0.90 

NDCI 54.0 23.8 0.90 

Figure 6 shows the R2 histograms from Monte Carlo simulation. The most frequent R2 range was 

between 0.8 and 0.9. Within this range, we chose the best equation of the validation with the maximum 

R2. That is why Table 4 only exhibits R2 equals 0.9. 

Figure 6. Histograms of the R2 distribution for: (A) May 2012; (B) September 2012; and 

(C) April 2013. Hyperspectral data with chl-a values below 20 µg·L−1. 

 

Table 5 shows the error analysis. The lowest errors estimators were achieved with NDCI, with 

NRMSE% of 17.85%. It is observed from Table 5 and the scatterplot on Figure 7 that NDCI and 2BDA 

had the best performance. In Figure 7 these are the models that come closer to 1:1 line. Even so, all 

models diverge from 1:1 line as the chl-a concentration increase to 20 µg·L−1. This indicates that the 

parameterization found for these models can only be applied to restricted ranges of chl-a concentrations. 
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Besides that, based on the p value showed in Table 5 obtained by t test, no significant difference between the 

estimated and the measured chl-a concentration was found for all algorithms for a significance level of 5%. 

Table 5. Summary results for validation process using in situ hyperspectral data with chl-a 

values below 20 µg·L−1. 

 Bias (µg·L−1) RMSE (µg·L−1) NRMSE% p Value 

2BDA 0.01 2.92 18.32 0.987 

3BDA −0.01 3.14 19.68 0.993 

NDCI −0.03 2.84 17.85 0.970 

Figure 7. Scatterplots of the Measured vs. Estimated chl-a for each model using in situ 

hyperspectral data with chl-a values below 20 µg·L−1. 

 

3.2.2. Calibration of All in situ Hyperspectral Data  

All samples were calibrated/validated without restraining the chl-a concentration. The results in Table 6 

are for calibration and they aren’t conclusive without analyzing the error estimators showed in Table 7. 

Figure 8 show the R2 histograms obtained. The most frequent R2 range was between 0.8 and 0.9.  

Table 6. Coefficients derived from calibration applied to all in situ hyperspectral data. 

 Slope Intercept R2 

2BDA 47.3 −17.9 0.9 

3BDA 714.3 28.9 0.9 

NDCI 67.6 28.0 0.9 

Table 7. Summary results for validation process applied to all samples using the 

hyperspectral data. 

 Bias (µg·L−1) RMSE (µg·L−1) NRMSE% p Value 

2BDA −1.02 9.65 4.74 0.493 

3BDA 11.34 32.90 16.17 0.175 

NDCI −17.88 44.24 21.74 0.180 
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Figure 8. Histograms of the R2 distribution for: (A) May 2012; (B) September 2012 and 

(C) April 2013. All hyperspectral data. 

 

Bias and RMSE in Table 7 are larger than those in Table 5. The NRMSE% in Table 7 is smaller than 

those in Table 5. However this is a consequence of the increase of the chl-a range, which is a divisor 

term in NRMSE% formula (Table 3). Therefore, it does not represent a real decrease in the algorithms 

error. The RMSE increased more than 300%, 1000% and 1500% for 2BDA, 3BDA and NDCI, 

respectively. This indicates that applying the same algorithm under normal and bloom conditions can 

increase the errors of the chl-a estimation. Unfortunately, we do not possess a significant amount of 

samples in bloom condition to adequately parameterize these models. With these results we can conclude 

that this reservoir should be handled in two different ways: with models parameterized for bloom 

conditions; and models parameterized for non-bloom conditions. Besides the growth of the error, 2BDA 

had a better performance proved by its lowest errors when compared to the two other algorithms; and 

the lowest increase in the RMSE. Still, no significant difference between the estimated and the measured 

chl-a concentration was found for 2BDA algorithm only (based on p value showed in Table 7 obtained 

by t test for a significance level of 5%). 

The scatterplot on Figure 9 shows that all algorithms diverge from 1:1 line and the error became 

greater as the chl-a concentration increases. This indicates that the parameterization found for these 

models using the whole range of chl-a concentrations can lead to inaccurate estimations of this parameter.  

Figure 9. Scatterplots of the measured vs. estimated chl-a for each model using all in situ 

hyperspectral data. (A) All chl-a range; (B) Limiting the range to clarify the analysis. 
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3.2.3. Calibration and Validation of OLCI Simulated Data 

We simulated OLCI bands for the 28 samples with chl-a values under 20 µg·L−1. With these simulated 

bands, we repeated the calibration/validation process. Table 8 shows the calibration results for OLCI 

simulated bands. Analyzing the coefficients we notice the same pattern from hyperspectral calibration: 

the only model that had a negative intercept was 2BDA. 

Table 8. Coefficients derived from model calibrations applied to OLCI simulated bands. 

 Slope Intercept R² 

2BDA 45.4 −16.3 0.90 

3BDA 646.8 27.1 0.90 

NDCI 57.7 25.7 0.90 

Figure 10 shows the histograms of the R2 distribution obtained from Monte Carlo simulation. Again, 

the most frequent R2 range was between 0.8 and 0.9. Among this range, we chose the best equation 

in validation.  

Figure 10. Histograms of the R2 distribution for: (A) May 2012; (B) September 2012; 

and (C) April 2013. OLCI simulated data with no chl-a below 20 µg·L−1. 

 

The equations in Table 8 were validated and the results are in Table 9. NDCI had the best validation 

performance, with NRMSE% of 17.64%. This value is lower than what we found for NDCI using in situ 

hyperspectral data (17.85%, Table 5). This may be due to the band response as the positions of the  

chl-a features may shift and this may affect the in situ hyperspectral results. Based on the p value in 

Table 9 obtained by t test, no significant difference between the estimated and the measured chl-a 

concentration was found for all algorithms for a significance level of 5%.  

Table 9. Summary results for validation process applied to OLCI simulated bands. 

 
Bias 

(µg·L−1) 
RMSE 
(µg·L−1) 

NRMSE% p Value 

2BDA −0.02 2.88 18.07 0.982 

3BDA −0.03 3.23 20.27 0.978 

NDCI 0.05 2.81 17.64 0.957 
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The scatterplot showed in Figure 11 represents the measured chl-a concentrations versus the 

estimated ones. From it and the results in Table 9 it is evident that the best results were one more time 

obtained by NDCI and 2BDA models.  

Figure 11. Scatterplots of the measured vs. estimated chl-a using OLCI simulated bands. 

 

For 2BDA and 3BDA, the results shown in this paper contrast with the ones found for 

Gitelson et al. [8]. The authors observed that 2BDA is suitable for chl-a estimation in waters with chl-a 

values greater than 20 µg·L−1. In this paper, we observed that 2BDA is adequate for chl-a estimation in 

Funil reservoir with samples under 20 µg·L−1.  

The reduced efficiency of 3BDA compared with 2BDA may be explained by its third band. This third 

band centered in 753 nm is minimally affected by chl-a, NAP and DOM absorption. Therefore, the total 

absorption at this wavelength is a measure of the absorption by water, i.e., the absorption at this 

wavelength is greater than the backscattering [8] which makes it responsible for minimizing the 

backscattering effect by NAP. The 2BDA model is a special case of 3BDA conceptual model when the 

absorption by chl-a is greater than the backscattering and also greater than the sum of NAP and DOM 

absorptions [8,19]. Matching these provisions, the explanation for 2BDA better performance may be 

that the inorganic suspended sediments (ISS) are negligible; and the organic suspended sediment (OSS) 

is correlated to chl-a. 

Analyzing the SS field data, we observed that ISS are solely not negligible when we reach the river 

inlet, where we had a gradient of ISS in the inlet declining towards the dam. In addition, if we analyze 

the chl-a relationship with OSS excluding the sampling points located in the river inlet, which are mostly 

influenced by the river influx, we observed that they are correlated, with R2 equals 0.86. These may be 

the reasons why the 2BDA performed better than the 3BDA for Funil reservoir. 

Another explanation relies on the assumption of the spectral uniformity of backscattering coefficient 

over the wavelengths. Such assumption may not be true for inland turbid waters [39,40]. This would 

affect the accuracy of 3BDA at low chl-a concentrations as the third 3BDA band should remove the 

effects of particulate backscattering.  

NDCI had the better performance probably due its structure: the difference between the chl-a 

absorption peak and chl-a reflectance peak, normalized by its sum. Based on the spectral architecture of 



Remote Sens. 2014, 6 11702 

 

 

this model, and the fact that its results are normalized, it is clear that it is sensitive to the difference 

between RRS (709 nm) and RRS (665 nm). As observed in Figure 2, these features are well marked in all 

data, which makes this model also suitable for Funil reservoir. 

3.3. Comparison with Other Studies  

Table 10 [8,9,12,41] shows different values of slope and intercept found on other studies. It is clear 

that the values diverge from each other with the change of study area. This was expected due to the 

empirical structure of the algorithms and the regional differences found among all study sites. The 

majority of studies available were performed in lakes and reservoirs located in temperate zones. 

Algorithms validation should be performed in other tropical inland waters to be able to compare the 

results found in this study. The spread of these studies will contribute to the ongoing development of 

algorithms adequate for tropical inland waters. 

Table 10. Comparison of Slope and Intercept values from other studies. 

Model Reference Location Slope Intercept 

2BDA 

This study Funil reservoir 41.8 −15 

Mishra and Mishra [12] Chesapeake Bay and Delaware Bay 20.96 −8.88 

Moses et al. [9] Azov Sea 0.00002 0.61 

Gitelson et al. [8] Nebraska and Iowa Reservoirs 0.95 4.55 

Gitelson et al. [8] Nebraska Reservoirs 0.94 12.1 

Gitelson et al. [8] Lake Minnetonka 0.94 6.82 

Gitelson et al. [8] Choptank River 0.98 11.91 

Huang et al. [41] 5 Lakes in China 64.01 −46.19 

3BDA 

This study Funil reservoir 581.1 25.5 

Mishra and Mishra [12] Chesapeake Bay and Delaware Bay 136.13 11.52 

Gitelson et al. [8] Nebraska and Iowa Reservoirs 0.89 2.84 

Gitelson et al. [8] Nebraska Reservoirs 0.95 4.57 

Gitelson et al. [8] Lake Minnetonka 1.07 -2.39 

Gitelson et al. [8] Choptank River 0.96 3.33 

Huang et al. [41] 5 Lakes in China 90.05 19.63 

NDCI 
This study Funil reservoir 54 23.8 

Mishra and Mishra [12] Chesapeake Bay and Delaware Bay 87.99 13.55 

Table 11 [8,12,41–43] contains the comparison of the errors found in other studies. Analyzing the 

RMSE and the NRMSE we can see that the errors found in this study are coherent to other studies and 

in average lower than most of them. The NRMSE (or relative RMSE) is the most adequate error indicator 

to conduct a comparison, since it is normalized within the range of data from each study site. 

Nevertheless, it is not a very common error measure, which is why some studies lack this information. 
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Table 11. Comparison of error estimators values from other studies. 

Model Reference Location RMSE NRMSE 

2BDA 

This study Funil 2.92 18.32 

Mishra and Mishra [12] Chesapeake Bay and Delaware Bay 2.82  

Moses et al. [42] Azov Sea 6.04  

Gitelson et al. [8] Nebraska and Iowa Reservoirs 10.2 36.2 

Gitelson et al. [8] Nebraska Reservoirs 14.8 57.3 

Gitelson et al. [8] Lake Minnetonka 6.15 25.3 

Gitelson et al. [8] Choptank River 10.7 15.2 

Huang et al. [41] 5 Lakes in China 13.17 53.59 

3BDA 

This study Funil 3.14 19.68 

Mishra and Mishra [12] Chesapeake Bay and Delaware Bay 2.69  

Moses et al. [42] Azov Sea 6.68  

Gitelson et al. [8] Nebraska and Iowa Reservoirs 8.7 52.6 

Gitelson et al. [8] Nebraska Reservoirs 11.2 46 

Gitelson et al. [8] Lake Minnetonka 4.2 20.7 

Gitelson et al. [8] Choptank River 6 47.9 

Huang et al. [41] 5 Lakes in China 12.58 51.19 

NDCI 

This study Funil 2.84 17.85 

Mishra and Mishra [12] Chesapeake Bay and Delaware Bay 1.43  

Zhang et al. [43] Lake Taihu 6.48  

Zhang et al. [43] Lake Taihu 22.53  

Zhang et al. [43] Lake Taihu 5.73  

3.4. MERIS Models Applied to OLCI Simulated Dataset 

As a summary of the results, both 2BDA and NDCI showed adequate performance for chl-a 

concentration below 20µg·L−1: 2BDA had low NRMSE% (18.07%) and a negative intercept (−16.3); 

and NDCI had the lowest NRMSE% (17.64%). These results showed that OLCI will continue MERIS’ 

water quality monitoring legacy through previously published MERIS bio-optical models. This 

continuity is important for ongoing studies. The biggest problem of this sensor will be its spatial 

resolution, which will be the same as MERIS (300 m). This restricts the use of such data to water bodies 

with larger surface area. However, water quality monitoring by this sensor will be better because of the 

constellation structure of Sentinel 3 satellites which will improve the temporal resolution of their sensors 

and the extra bands which will provide improved models. 

4. Conclusions  

This study aimed to test the performance of the MEdium Resolution Imaging Spectrometer (MERIS) 

chlorophyll-a bio-optical models applied to in situ hyperspectral data and to the Ocean Land Color 

Instrument (OLCI) simulated data. We analyzed the performance of three published reflectance based 

algorithms to retrieve chlorophyll-a concentration already parameterized to fit MERIS bands. The 

models were evaluated for three conditions: i. hyperspectral data collected in situ with chlorophyll-a 
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bellow 20 µg·L−1; ii. all hyperspectral data with no chlorophyll-a concentration limit; and iii. OLCI 

simulated data with chlorophyll -a bellow 20 µg·L−1. 

Using chlorophyll-a concentration and hyperspectral data with concentration below 20 µg·L−1, the 

two band model (2BDA) proposed by Gitelson [19] had a low Normalized Root Mean Square Error in 

percentage (NRMSE% = 18.32%) and a negative intercept; and the Normalized Difference Chlorophyll 

Index (NDCI) proposed by Mishra and Mishra [12] had the lowest NRMSE% (17.85%).  

Without restraining chl-a concentration, the Root Mean Square Error (RMSE) increased more than 

300%, 1000% and 1500% for 2BDA, 3BDA (three band model proposed by Gitelson et al. [36]) and 

NDCI, respectively. This indicates that applying the same algorithm for a dataset with normal and bloom 

conditions can increase the errors of the chlorophyll-a estimation.  

We also applied the hyperspectral data with concentration below 20 µg·L−1 to OLCI response function 

to test it using MERIS reflectance based bio-optical models. We found the same pattern showed for the 

hyperspectral data: 2BDA had a low NRMSE% (18.07%) and a negative intercept; and NDCI had the 

lowest NRMSE% among all (17.64%).  
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