

Reactive and non-reactive trace gas exchange within and above an Amazonian rainforest

Stefan Wolff, Matthias Sörgel, Antonio O. Manzi, Leonardo Deane de Abreu Sá, Laurens Ganzeveld Ivonne Trebs, Meinrat O. Andreae

Motivation

Trace gas exchange in the Amazonian rainforest

u_z/u_{hc}

Physical and chemical processes of the Atmospheric Boundary Layer in and above a forest canopy including the wind profile characteristic [Tsokankunku, 2012; originally after Enders et al. (1992) and Amiro (1990)]

Photos of/from the walk-up tower

Fotos from/of the ATTO tower

Measurements

The profile system for CO2, H2O, O3, NO, NO2

Analysis of air from

0,05 m 0,5 m 4 m 12 m 24 m 38,3 m 53 m

by switching valves between inlets

Measurements

The profile system

4

CO2 mixing ratios inside the canopy

Time in UTC

Average gradients

O3-dry season 2013

Average gradients

O3-rainy season 2014

Urban pollution in the trade wind zone

Wind distribution at the ATTO site

Andreae et al., 2015

The ATTO site (T0) compared to (T2) and (T3)

The ATTO site (T0) compared to (T2) and (T3)

Maximum at the ATTO site higher than at T2 and T3 – due to reactions with NO

Theory

Soil

dry deposition microbiology evaporation **NO** emission

O3-NO anticorrelation – wet season

2014/03/10

2014/03/12

2014/03/14

2014/03/16

2014/03/18

Biomass burning effects on air composition

O3 mixing ratios – Example for the drier season 2014

Biomass burning effects on air composition

Example for the drier season 2014

NO and NO2 mixing ratios 0.4 0.3 0.2 NO [ppb] 0.1 -53 m -0.1 -0.2 18-Aug-14 19-Aug-14 20-Aug-14 21-Aug-14 22-Aug-14 23-Aug-14 24-Aug-14 25-Aug-14

MLC_CHEM: Multi-Layer Canopy Chemical Exchange Model

Multi-layer model of atmosphere-biosphere exchanges of reactive compounds and aerosols

- site-scale studies, e.g., analysis of surface & in-canopy observations
- large-scale studies of atmosphere-biosphere exchange

- Soil NO, Rn emission
- Foliage NO_v and HONO emissions
- **BVOC** emissions
- Dry deposition gases & aerosols
- Compensation point (e.g., NO₂, NH₃, OVOCs)
- Extinction of radiation (BVOC emissions, dry deposition and photolyis)
- Canopy wind speed profile
- Gas-phase chemistry (CBM4)
- **Turbulent** exchange

Ganzeveld et al., JGR, 2002a Ganzeveld et al., AE, 2006 Kuhn et al., ACP, 2007

canopy-soil layer

By courtesy of Laurens Ganzeveld

O3 gradients – comparison with MLC-Chem-model

Example for the wet season 2014

NOx gradients – comparison with MLC-Chem-model

Example for the wet season 2014

NO gradients – comparison with MLC-Chem-model

-0.2 2014/03/10

2014/03/12

2014/03/14

2014/03/16

2014/03/18

Thank you very much for your attention !!!

Measurements

The profile system

The gradient system with inlets and analyzers [by courtesy of A. Moravek]

NOx-T-comparison

Example for wet season 2014

NO-and O_3 -profile at the ATTO site between 24/10/13 and 30/10/13

NO-and **CO**₂-profile at the ATTO site between 24/10/13 and 30/10/13

NOx-and O_3 -profile at the ATTO site between 24/10/13 and 30/10/13

T-profile at the ATTO site between 28/10/13 and 30/10/13

Nocturnal downdrafts in Central Amazonia occur in the rainy and the dryer season

Forest-Atmosphere-coupling – Extreme weather events, incoming radiation,...

Emission plumes in the early morning – Change of coupling regimes

Upcoming IOP in Aug/Sept 2014

Thank you very much for your attention !!!

The disturbed state

Schematic of the disturbed state over the ocean or the land. The section is divided into the region ahead of the storm, the outflow region, the convective region and the wake of the storm [Garstang & Fitzjarrald, 1999]

The equivalent potential temperature

$$\boldsymbol{\theta}_{\boldsymbol{e}} = T_{\boldsymbol{e}} \left(\frac{p_0}{p}\right)^{\frac{R_d}{c_p}} = \left(\boldsymbol{T} + \frac{L_v}{c_p} \boldsymbol{r}\right) \left(\frac{p_0}{p}\right)^{\frac{R_d}{c_p}}$$

with

T _e	=::::	Equivalent temperature
Т	=	Temperature of air at pressure p
p	=	Pressure at the point
p_0	=	Standard reference pressure (1000 hPa)
R _d	=	Specific gas constant for air (287 J/(kg·K))
c _p	= 24	Specific heat or dry air at constant pressure (1004 J/(kg·K))
L _v	=	Latent heat of evaporation (2400 kJ/kg {at 25°C} to 2600 kJ/kg {at 40°C})
r	=	Mixing ratio of water vapor mass per mass of dry air (g/kg)

Ozone-profile at the ATTO site between 14/07/13 and 16/07/13

T-and RH-profile at the ATTO site between 14/07/13 and 16/07/13

p-and precipitation-profile at the ATTO site between 14/07/13 and 16/07/13

T-and θ_e -profile at the ATTO site between 14/07/13 and 16/07/13

Downdrafts

Ozone-profile at the ATTO site between 18/02/14 and 10/02/14

p-and *precipitation*-profile at the ATTO site between 14/07/13 and 16/07/13

T-and θ_e -profile at the ATTO site between 08/02/14 and 10/02/14