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ABSTRACT
For about two decades, the research topic of Complex Net-
works has been presented ubiquitously. As a simple and
effective framework to express agents and their relation-
ships, several fields of study, from Physics to Sociology, have
taken advantage of the powerful representation provided by
complex networks. A particular feature inherited by almost
any real world network is the presence of densely connected
groups of vertices, named modules, clusters or communities.
The majority of the proposed techniques does not take ad-
vantage of specific features commonly encountered on real
networks, such as the power law distribution of vertices’ de-
gree (presence of hubs) and its dynamic nature, i.e. vertices,
edges and communities normally does not persist invariant
regarding to time. Aiming to take into account these two im-
portant features, an another ubiquitous phenomenon is ap-
plied on detecting communities: synchronization, expressed
by coupled Kuramoto oscillators. Here, we extend the Ku-
ramoto’s model by introducing a negative coupling between
hubs in the network. Moreover, two adjacency lists are used
to represent, efficiently, the network structure. Tests have
been performed in real network benchmarks, with consistent
results achieved.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; E.2 [Data]:
Data Storage and Representations—linked representation
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1. INTRODUCTION
Since 1736, when the Swiss scientist and mathematician

Leonhard Euler published his studies on the Königsberg
bridges [7], pioneering Graph Theory, much has been de-
veloped under the framework of this discrete mathematical
structure.

The scientifical community would have to wait until the
5th decade of the 20th century to appreciate a change on re-
searchers’ mindset about the developing direction of Graph
Theory. Paul Erdős and Alfréd Rényi (ER) [6], let back
the common practice of cataloging graphs and its proper-
ties (mainly regular ones) by starting to ask about the for-
mation mechanism of real world graph structures, to which
they named networks, based on their belief that such graphs’
topology were originated by random linkage among vertices
and, as consequence, each vertex had almost the same de-
gree, in a Poissonian-like distribution [6].

Although an elegant, simple and powerful mathematical
theory on network 1 formation, randomly linked vertices
would result in a world where any person would have, ap-
proximately, the same number of friends or atoms would
link to the same amount of other atoms, not forming specific
molecules [3]. This almost all-to-all network topology is not
encountered regularly in nature, which demanded further re-
search to better understand their formation mechanism [3].

In 1998, DuncanWatts and Steven Strogatz [22], ressurect-
ing the small-world property originated by a Stanley Mil-
gram’s experiment [15], realized that from a regular lattice,
just changing some of its edges would produce another net-
work with small-world property. This approach emerges the

1From now on, the words graph and network will be used
interchangeably.
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presence of clusters, which was much more aligned with the
topologies normally presented in nature [3].

One year later, Albert-László Barabási, Hawoong Jeong
and Réka Albert [1], studying the topology of the world
wide web (the virtual network of the Internet), concluded
that apart from the property of having clusters, another fea-
ture was recurrent in such networks: the presence of hubs
(vertices with above average degree). During the dynam-
ical formation of a network, new vertices tend to follow a
preferential attachment when taking part of it. This pro-
duces network topologies where the distribution of vertices’
degree obeys a power law, with a small number of nodes
having higher degrees, while the majority of them has few
edges incident [1].

At providing a technique for detecting communities in
complex networks, which absorbs the dynamic nature of net-
work formation (the property of growth [1]), we apply the
dynamic phenomenon of synchronization, expressed by the
Kuramoto Model [11]. In [24] Wu et al introduce a negative
coupling applied only betweeen unconnected vertices, which
as consequence provide, at the stable state, synchrony within
communities. In this work, aiming to have a lower time com-
plexity for the dynamics, we modified the Kuramoto Model
proposed in [24], by introducing a negative coupling only be-
tween hubs, since these vertices, by the formation rule, are
few in number and the most influent ones. With this modi-
fication, we avoid the global repulsion interaction, which is
the most time-consuming part of Wu et al’s model.

This paper is structured as follows. In Section 2, the
model description is given, besides the modification by Wu
et al. Also in this section, a discussion about time complex-
ity is presented, which will be the motivation for changing
the data structure representing the network. In Section 3,
the computer simulations are detailed, how the data struc-
tures are applied and which networks are used. The paper
is concluded with the synthesis of the results achieved and
imminent future works to be developed further.

2. MODEL DESCRIPTION
Complex Networks is a ubiquitous research topic, from

Physics to Sociology [18],[3],[16],[9] researchers have taken
advantage of their powerful representation to better under-
stand a variety of phenomena concerning their fields of study.

An important common feature in a wide number of net-
works is the presence of sets or groups of highly dense con-
nected vertices, named modules, clusters or communities
[8],[17],[14],[9]. Detecting these modules can reveal the net-
work domain and how a specific kind of relationship among
vertices affects its topology [5].

In [8], Santo Fortunato has compiled a variety of com-
munity detection techniques, showing their advantages and
drawbacks. Almost every model shown in this survey is able
to deal only with static networks.

Real world networks are dynamic, i.e. their formation is
not invariant regarding to time [3],[1],[10],[20]. Aiming to
absorb this feature, in this paper, a dynamic phenomenon
is used for detecting communities: synchronization.

2.1 Kuramoto Model
In 1975, the Japanese physicist Yoshiki Kuramoto [11],

intrigued by the works of the American biologist Arthur
Winfree, on modeling biological phenomena [23], worked
on a simple yet complete mathematical model which could

express the essential aspects of synchronization, which is
shown as follows:

dθi
dt

= ωi +
K

N

N�

j=1

aijsin(θj − θi), i = 1, . . . , N (1)

where θi is the phase variable and ωi is the intrinsic fre-
quency of the ith oscillator (vertex i), N is the total number
of oscillators in the system, K is the coupling parameter
(coupling strength) which carry the oscillators to a common
phase value at the dynamic equilibrium and, finally, aij is
the cell element at the row i and column j of the adjacency
matrix [aij ] related to the input complex network.

In its standard form, the Kuramoto model, at the dynami-
cal stability, will not realize communities, since the coupling
parameter will make every node in the network evolve to a
same phase value (it is called phase locking in the synchro-
nization jargon [19]). In [2], Arenas et al shown that when
applying the Kuramoto model in clustered networks, they
will, at first synchronize locally and then, globally, reaching
a collective stable state.

In a way to highlight the local synchronization when the
system reaches stability, [24], inspired by [12] proposed a
modified Kuramoto model as follows:

dθi
dt

= ωi +
Kp

N

N�

j=1

aijsin(θj − θi)

+
Kn

N

N�

j=1

(1− aij)sin(θj − θi)

i = 1, . . . , N Kp > 0,Kn � 0

(2)

in this new form, phases of connected oscillators (aij = 1)
are under the original rule, having their phases evolving to-
gether but, unconnected oscillators will have the tendency
to reach far different phases due to the negative coupling
strength.

In the next subsection, a discussion about time complex-
ity is given and also its importance concerning the results
achieved in this paper.

2.2 Time Complexity
When storing a graph on a computer, its primitive ele-

ments (vertices and edges) have to be placed in memory for
fully represent it. By this storage, an adjacency matrix can
be generated highlighting which pair of vertices produces an
edge, or not.

Networks with community structure are sparse [8], there-
fore the number of edges participating in the positive cou-
pling are much less than the number of fictitious edges for
the negative one.

Using the Big O notation for a graph with n vertices,
necessarily applying the positive coupling to the network and
the negative coupling to its complementary, the dynamics
will demand a computational complexity of O(n2).
Considering that real networks, e.g. social networks (Twit-

ter, Facebook), normally are large, with millions of nodes and
that their topologies have, most of the time, the presence of
community structure and hubs, thus they are indeed sparse,
i.e. the number of 1�s is less than of 0�s in the adjacency
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matrix.
To make a better use of the computational process, we

will represent the network with two adjacency lists 2, one
for hubs only (pseudo adjacency list), and the other as tradi-
tional. Figures 2 and 3 present the schemes of the data struc-
tures used to represent the network, based on this approach,
the dynamics equation expressed in (2) can be rewritten as
follows:

dθi
dt

= ωi +
Kp

N

�

j∈L(i)

sin(θj − θi) +
Kn

N

�

j∈P (i)

sin(θj − θi)

(3)

where L(i) represents the adjacency list of vertex i and,
whether i is considered a hub, P (i) represents the hub’s
pseudo-adjacency list of vertex i, otherwise P (i) is empty
and the second summation of Equation (3) is ignored. The
parameters Kp and Kn are the same as in Equation (2).

By Equation (3), suppose, for a network with n vertices,
that each vertex has degree 1, using adjacency list as the
data structure, then for the positive coupling, the time com-
plexity will be O(n�k�), where �k� is the average degree of
the vertices in the network, in this particular case, �k� = 1,
therefore O(n). For the negative coupling, the complexity
reached will be O(n(n − �k�)), which yields O(n2). Never-
theless, applying the dynamics as in Equation (3) leads to
a lower time complexity, since hubs are not very frequent in
real networks, as will be shown in section 3.

1

2

6

7

4
3

5
13

8
9

14
10

11
12

Figure 1: A simple network, with 14 vertices and 2
communities. Vertices 7 and 14 were the only con-
sidered hubs.

To clarify the idea behind our strategy. the sample net-
work in Figure 1 will be used. Setting as rule of centrality
that for a vertex being considered a hub, it should have an
above average degree (�k� + 1), only vertices 7 and 14 will
deal with the negative coupling (see Figure 3). General-
izing for whatever h (h � 0), the time complexity for the
pseudo-adjacency list will have an upper bound of O(h2).
Using the model by [24], the number of computational steps
for the dynamics will be 196 (Kp = 30.0 and Kn = −10.0)
and with our approach it yields 50 + 2 = 52 (Kp = 5.0 and

2We had preserved the name adjacency list, although one
is for actual links and the other, referred to as pseudo-
adjacency list, is for hubs only, either connected or not.

2 6 7 /

1 4 7 /

4 5 7 /

2 3 7 /

3 6 7 13 /

1 5 7 /

1 2 3 4 5 6 /

1

2

3

4

5

6

7

Figure 2: Adjacency list for the vertices belonging
to the orange community in Figure 1. Links between
hubs are not presented (see Figure 3).

14 /

7 /

Figure 3: Pseudo-adjacency list for hubs. Respec-
tively from top to down, vertices 7 and 14 of the
network in Figure 1.

Figure 4: The scenario encountered after 500 itera-
tions, applying the negative coupling between each
and every unconnected vertices in the network. 2
communities has been detected, using a threshold
of 0.2 radians. Kp = 30.0 and Kn = −10.0

Kn = −50.0) steps, which is a sensible computational pro-
cessing economy to complete one iteration. Figure 4 shows
the stable state reached at the 500th iteration using Wu
et al’s model, depicting two well defined clusters, classified
using a threshold of 0.2 radians 3. Figure 5 shows the sta-

3The phase values in the unit cycle are classified respecting
the cycling nature of the space values e.g., supposing a phase

1162



Figure 5: The scenario encountered after 1500 iter-
ations, applying the negative coupling only between
hubs (vertices 7 and 14). 2 communities has been
detected, using a threshold of 0.2 radians. Kp = 5.0
and Kn = −50.0

ble state reached at the 1500th iteration, but applying the
negative coupling only between hubs. Since in this sample
network, the two hubs don’t have much higher degree if com-
pared with the non-hubs vertices, the number of iterations
needed for phase lock within clusters is considerably greater
if compared to the all-to-all approach. Even in this disad-
vantageous case, the two clusters could be well detected for
a threshold of 0.2 radians and, also considering the number
of iterations, this new approach is yet preferable concerning
computational cost (A decrease of total steps from 98000
to 78000). As will be shown in section 3, for the real net-
works under study, the numerical difference on the number
of iterations to reach dynamical stability between these two
approaches will be at most 200.

The next section we will present the computer simulations
on real network benchmarks, comparing the results achieved
with those gotten by the original model [24].

3. COMPUTER SIMULATIONS
Once applying the lower complexity algorithm in a sample

artificial network, in this section, following the methodology
in [24], the same real networks will be used for comparison:
The Zachary Karate Club Network [26], The Lusseau’s Bot-
tlenose Dolphins Network [13] and The Protein Interaction
Network [21].

For comparing the outcomes in [24] with those achieved by
our approach, phase values will be represented by tables not
by plots as in Figures 4 and 5, since highlighting numerically
which are these values will be very important. The only
exception is for the Lusseau’s Bottlenose Dolphins Networks,
since a table representation would demand too much space.

Table 1 shows, for the Zachary’s Karate Club Network
the phase values reached for each vertex both, in the all-to-
all approach and ours with hubs. The colors in the table
matches with those in Figure 6, except for the ones in gray
which denotes overlapping nodes (vertices in the limits of

value of r radians and a threshold of k. It will be considered
as of belonging to a same community, any oscillator with
phase value in the range [r − k, r + k].

the modules). Nodes without phase values (marked with
a dash −) are core-peripheral vertices, they are part of the
network but with only one connection with it, then placed at
the periphery of the graph, as in [24] they will automatically
be classified as members of the same community of the node
they are attached to.

Although the table shows only one instance of the out-
come, an interesting aspect has to be highlighted. Running
about 200 instances of the dynamics for each network, when
reaching the stable state (considering the same values for
Kp and Kn), a fixed relative disposition of the oscillators is
repeated for each and every instance (like a signature of the
network), the only difference is the absolute position of the
ensemble at a particular iteration. Therefore, although the
phase values could be different, the community classification
will always be the same, supposing an unchanged threshold.

3.1 Zachary’s Karate Club Network [26]
As previously said, Table 1 depicts the scenario for the

Zachary’s Karate Club Network. For the all-to-all approach
the values for Kp and Kn are, respectively, 30.0 and −10.0,
when applying the negative coupling only between hubs the
values used are 100.0 and −300.0, the threshold for phase
classification is 0.2 in both cases. For higher values of Kp

the network easily reaches global synchronization (the same
happens for lower values of Kn) and for higher values of Kn

the network does not synchronize at all (the same happens
for lower values of Kp).

Applying the same rule for classifying a vertex as hub as
in the toy sample (kh � �k� + 1) 4,5. For this network, the
vertices classified as hubs are 1, 2, 3, 4, 32, 33 and 34, i.e.
20.5% of the nodes.

Comparing the all-to-all model as in [24] with our ap-
proach, the following can be said:

The community in orange is merged with the community
in red, since there are no hubs in the orange module and
that the limitrophe nodes 7, 6 and 5 are all connected to 1,
which is a red hub.

Vertices 9 and 10 were kept as overlapping nodes, the
other ones (3, 14, 29 and 31) although not in gray, their
community membership is in accordance with their place-
ment in the network.

Finally, the total number of steps, for each iteration, with
the all-to-all model is 1156 (stable at the 300th iteration)
and with our approach, given that �k� is roughly 5, results in
170+49 = 219 steps as upper bound (stable at the 500th it-
eration), which lowers in 81% the amount of computation for
the dynamics and also provides a consistent coarse-grained
community detection.

3.2 Protein Attraction Network [21]
Figure 7 shows a protein interaction network first pre-

sented in [21] and also analyzed by [24].
The results for community detection, following the same

methodology as for the Karate Club Network, are presented
in Table 2. It is worth noting that, in this case, although not
having any hubs, the community in red could be detected
by the approach with hubs due to the shielding given by the
overlapping nodes 5 and 12. By the way, this overlapping
nodes could not be detected, being classified as members of

4kh is the degree of the hub h.
5This rule will be kept for the other experiments.
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Figure 6: Zachary’s Karate Club Network.

Table 1: Comparison between [24] model with the
Hubs lower cost approach for the Zachary’s Karate
Club Network. At iteration 300 and 500, respectively.

Zachary’s Karate Club Network
n All-to-all With Hubs
1 1.295 4.031
2 1.498 4.019
3 2.256 3.872
4 1.452 3.989
5 0.976 4.118
6 0.943 4.161
7 0.947 4.146
8 1.480 3.983
9 3.311 1.417
10 2.860 6.074
11 0.977 4.116
12 - -
13 1.173 4.040
14 1.589 3.941
15 4.519 0.942
16 4.522 0.961
17 0.940 4.228
18 1.198 4.035
19 4.512 0.961
20 1.242 4.682
21 4.504 0.983
22 1.199 4.058
23 4.511 0.959
24 4.585 0.968
25 4.611 0.966
26 4.659 0.962
27 4.697 0.940
28 4.517 1.041
29 4.052 0.986
30 4.589 0.969
31 3.637 1.184
32 4.587 0.983
33 4.588 1.037
34 4.562 0.928

the community in orange, which is in accordance with their
position in the graph.

For this network, the average degree is roughly 4 and the
vertices considered hubs are 11, 16, 17, 18, 25, 28, 29, 30,

32, 33, 36 and 37, i.e. 31% of the network.
Fixing the threshold for phase classification in 0.2 radians,

for the all-to-all model (Kp = 30.0, Kn = −10.0 and stable
at the 500th iteration), the amount of steps is 1444 and with
the hubs approach (Kp = 150.0, Kn = −300.0 and stable at
the 700th iteration) it yields 152+144 = 296 steps as upper
bound, an economy of 79.5% of computational cost for each
iteration, while detecting the communities satisfactorily.
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6

Figure 7: Protein Interaction Network.

3.3 Lusseau’s Bottlenose Dolphins Network [13]
For this particular network, the table representation is not

used, since it would demand much space, being difficult for
the reader to analyze node by node. In Figure 8 it is shown
the communities disposition as in [24] and in Figure 9 the
disposition acquired with our approach.

Note that again a smaller community is merged with a
larger one (since there is no shielding as in the Protein Net-
work). Once nodes of the module in yellow are more densely
connected with nodes of the community in green, if com-
pared to those in orange, the merging has resulting in yel-
lows becoming greens.

Vertices 19, 20, 21 and 22 are corrected identified as over-
lapping nodes (see Figure 9).

For this network, nodes 3, 8, 9, 13, 15, 18, 27, 31, 35, 36,
40, 43, 45, 48, 53, 54 and 60 had been classified as hubs, i.e.
28% of the vertices. The average degree is roughly 5.

Fixing the threshold for phase classification in 0.3 radians,
in an all-to-all technique, the positive coupling used is 50.0
and the negative is −10.0 (the stability is certainly reached
at the 500th iteration), for this the amount of steps will be
3844 and with our approach (Kp = 150.0, Kn = −300.0
and reaching stability at the 700th iteration) it leads to
310 + 289 = 599 steps as upper bound, which results in an
economy of 85% in computational cost per iteration, while
providing a reasonable community detection outcome.

3.4 The Algorithm
Algorithm 1 synthesizes the process in a form of a pseudo-

code and, in the sequence, the next section presents the
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Table 2: Comparison between [24] model with the
Hubs lower cost approach for the Protein Interaction
Network. At iteration 500 and 700, respectively.

Protein Interaction Network
n All-to-all With Hubs
1 5.239 5.316
2 5.235 5.310
3 5.235 5.284
4 5.408 5.294
5 6.252 1.888
6 - -
7 1.480 2.032
8 1.485 2.017
9 1.671 1.950
10 - -
11 1.778 1.867
12 0.548 1.912
13 - -
14 - -
15 - -
16 1.707 1.950
17 1.574 1.977
18 1.787 1.934
19 1.725 1.960
20 1.644 1.999
21 1.486 2.023
22 1.478 2.036
23 1.483 2.014
24 1.717 1.939
25 1.668 1.962
26 - -
27 - -
28 2.247 2.045
29 4.218 2.248
30 4.218 2.248
31 4.535 2.232
32 4.403 2.292
33 4.384 2.288
34 4.534 2.326
35 4.519 2.340
36 4.367 2.283
37 4.390 2.289
38 4.392 2.289

conclusions for the results achieved. Additionally, imminent
future works are also discussed.

4. CONCLUSIONS
In this paper, we had applied a modified Kuramoto model

for community detection in a toy sample network and three
real world ones. Based on the results achieved, we believe
to have highlighted an important feature of real world net-
works, the presence of highly connected nodes, named hubs.
Taking advantage of them we were able to reduce the time
complexity of the algorithm, from the standard O(n2) to
O(n�k�) + O(h(h − 1)) 6 , where �k� is the average degree
of the vertices and h is number of hubs in the network. Al-

6O(n�k�)+O(h2) is an upper bound, as used for comparison
in the Computer Simulations section.
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Figure 8: Lusseau’s Bottlenose Dolphins Network,
with the communities disposition as in [24].
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Figure 9: Lusseau’s Bottlenose Dolphins Network,
disposition acquired with our approach.

though the outcome of community classification is under the
dependence of how the hubs are positioned in the network,
applying it on real networks has proved to be a fast con-
sistent coarse-grained method for detecting communities. It
is an important contribution for achieving scalability while
detecting the clusters with synchronization.

For future work, at first, two things are imminent:
(1) The unit cycle lacks expressiveness, i.e., depending on

the threshold value used, the number of communities pos-
sible to be realized is reduced. It is an obstacle not only
concerning the number of communities but also when hi-
erarchical communities are present, since the phase values
will be too close to indicate any difference by a threshold.
Very recently [25] have proposed a way to overcome this
limitation, by analyzing the frequencies of phases, when os-
cillators are coincident in the cycle, their phase frequencies
are in tune only inside the modules. Our approach has not
yet been tested taking into account this new technique.

(2) A deeper study on the intervenient parameters and
how good choices could be made depending on the input
network.

We believe this paper has discussed an interesting inter-
section point between Computer Science and Physics.
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Data: The network G
initialization;
Express G as a standard adjacency list L;
Calculate each vertex degree ki;
for Every vertex i in G do

if ki � �k�+ 1 then
i is a hub;

end

end
Construct the pseudo-adjacency list P with the hubs;
while Not in stable state do

for Every node in L do
Apply the positive coupling as in Eq.3;

end
for Every node in P do

Apply the negative coupling as in Eq.3;
end

end
Algorithm 1: Synchronization Dynamics
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