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Abstract 

This article explores the use of nonlinear geostatistical procedures, known as kriging and simulation 

indicator approaches, for spatial modeling of categorical attributes. The categorical information is 

initially represented by a set of sample points observed within a spatial region of interest. The 

original sample set is used to generate indicator fields take into account the classes of the categorical 

data. The indicator fields, or indicator samples, contain 0 and 1 attribute values according to the 

class they are representing. Empirical and theoretical semivariograms are built from the indicator 

samples to represent the spatial variation of each class in relation to the others. The geostatistical 

procedures, making use of the samples and the theoretical semivariograms, allow obtaining an 

approximation of the stochastic model, the conditioned probability distribution function (cpdf) of the 

categorical attribute at any desired spatial location. From any cpdf it is possible to assess optimal 

prediction, or estimate, and uncertainty values associated to the stochastic model. Optimal prediction 

as mean, median or any quantile values can be assessed. Uncertainty values are obtained by means 

of the maximum cpdf probability, Shannon entropy, or another criterion. The uncertainty values can 

be used to qualify the predictions and can also be considered to generate constrained spatial 

predictions, or constrained classifications, that are important in decision makings related to 

environmental planning activities, for example. The concepts here presented are applied and tested 

in a case study developed for a sample set of soil texture observed in an experimental farm in the 

region of São Carlos city in São Paulo State, Brazil. Four classes of soil texture are considered, 

sandy, medium clay, clay and too clay, in order to get the cpdf values. Some maps derived by 

constraints are presented and analyzed considering different probability values from the attribute 

stochastic models. 

KEYWORDS: Spatial Analyzes, Indicator Geostatistics, Modeling of Categorical Attributes, 

Uncertainty Assessments, Constrained Classifications, Decisions Making in Environmental 

Planning.  

 

INTRODUCTION 

Computational spatial modeling for environmental phenomena has nowadays been 

developed using Geographical Information Systems (GISs). This task demands the integration of 
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different environmental variables in a mathematical model and has the main objective of obtaining 

reports or maps that will be useful for decision makings applied to problems related to the earth 

surface. The spatial modeling issue involves the use of continuous and categorical variables which 

have to be well structured in order to facilitate their integration. In general, these variables are 

represented by sample sets organized as vectors, points or lines, or matrices. When a set of points 

are available, as samples of a variable, it is common to spatialize the samples in order to have 

information in any location inside a spatial region of interest. The variable spatialization is 

accomplished using interpolation procedures which can be deterministic or stochastic. Interpolations 

are very common when the values of a variable are numeric, i. e., when continuous numeric 

variables are handled. Nevertheless, it is difficult to find appropriated procedures to interpolate 

variables representing qualitative information, also called categorical or thematic variables.  

Geostatistical approaches can be used to model numerical and thematic variables (Goovaerts, 

1995; Delbari et al., 2011; Isaaks and Srivastava, 1989; Wasiullah and Bhatti, 2005). The 

geostatistics use stochastic methods, based on the inference of local or global probability 

distribution functions, cdfs or pdfs, of the variable. Geostatistical tools allow to perform exploratory 

analyses of the sample data and to infer prediction and simulation values of numerical and thematic 

information at no sampled spatial locations. These tools are conditioned to the sample sets and they 

allow to qualify the predictions and the simulations with uncertainty information associated to them. 

When the variable is continuous the predictions can be, for example, mean, median, or quantile 

values and the uncertainties are represented by confidence interval values based on variances, 

standard deviations or quantiles. When the variable is thematic the predictions and the uncertainties 

are assessed from the probability values of the pdfs. In this case its common to use the maximum 

probability value of the pdf to determine the prediction and the uncertainty values. Nonlinear 

approaches known as indicator geostatistics allow to spatialize environmental variables, numeric 

and thematic, from a set of sample points in a nonparametric method (Deutsch and Journel, 1998; 

Deutsch, 2006; Goovaerts, 1998; Felgueiras, 2000; Zaeri et al., 2013).  

Considering the above context, the objective of this article is to explore the use of the 

indicator kriging and simulation approaches for spatial modeling of categorical attributes. This 

article is an extension of the Felgueiras et al., 2003. The categorical information is initially 

represented by a set of sample points observed within a spatial region of interest. The original 

sample set is used to generate indicator fields take into account the classes of the categorical data. 

The indicator fields, or indicator samples, contain 0 and 1 attribute values according to the class they 

are representing. Empirical and theoretical semivariograms are built from the indicator samples to 

represent the spatial variation of each class in relation to the others. The geostatistical procedures, 

making use of the samples and the theoretical semivariograms, allow obtaining an approximation of 

the stochastic model, i. e., the conditioned probability distribution function (cpdf) of the categorical 

attribute at any chosen spatial location. From any cpdf it is possible to assess optimal prediction, or 

estimation, and uncertainty values associated to the stochastic model. Optimal prediction as mean, 

median or any quantile values can be assessed. Uncertainty values are obtained by means of the 

maximum cpdf probability, Shannon entropy (Shannon and Weaver, 1949), or another criterion. The 

uncertainty values can be used to qualify the predictions and can also be considered to generate 

constraint spatial predictions, or classifications, that are important in decision makings evolved in 

environmental planning activities for example. The concepts here presented are applied and tested in 

a case study developed for a sample set of soil texture observed in an experimental farm in the 
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region of São Carlos city in São Paulo State, Brazil. Four classes of soil texture are considered, 

sandy, medium clay, clay and too clay, in order to get the cpdf values.  

Constrained prediction maps are obtained when the uncertainty values are taken into account 

as levels of quality accepted for a specific application. Many derived constrained maps are presented 

and analyzed considering different probability values of uncertainties.  

The results of this work show that environmental planners can get different possible 

classified scenarios, based on different uncertainty levels, which can be evaluated to support 

decisions on applications where the spatial uncertainty is considered important.  

MATERIAL AND METHODS 

Concepts 

The geostatistical indicator approaches allow for modeling the joint conditional distribution 

functions, of continuous (ccdf) or categorical (cpdf) random variables, at any unknown spatial 

location u, considering an available set of sample points. The Kriging and Simulation processes 

work on, respectively, assessing predictions and drawing realizations from the joint distribution 

functions. 

For categorical variables the cpdfs are built from estimations on indicator fields obtained by 

indicator transformations applied to the original sample set S(u) considering K classes. Instead of the 

variable S(u), consider its binary indicator transform I(u;zk) as defined by the relation of equation 1: 

 

                                                   (1) 

 

Kriging of the indicator random variable I(u;z) provides an estimate that is also the best least 

square estimate of the conditional expectation of I(u;z). Now the conditional expectation of I(u;z) is 

equal to the local pdf of Z(u) as presented in equation 2: 

 

                                   (2) 

 

In order to perform the above estimations using kriging procedures it is necessary to model 

indicator semivariograms that represent the spatial variability, or spatial dependence, of the indicator 

random variables. 

The cpdfs, obtained from the indicator fields, their semivariograms, and using the property 

of the equation 2 are used directly by the Indicator Kriging procedure as it will be explained below. 

Moreover, any ccdf can be built from the estimated cpdf of a categorical variable considering 

an order among its classes. The Sequential Indicator Simulation process works with these ccdfs and 

a random number generator. N realizations of each, continuous or categorical, random variable Z 

can be drawn from any ccdf. This process comprises draw randomly N decimal numbers, each 

between 0 and 1, and mapping these numbers to N classes according the ccdf function. The 



realization values allow the reproduction of the spatial cpdfs of a categorical random variable at any 

spatial location u. 

The cpdfs are then used to assess to the most frequent class, mode or higher probability, in 

order to produce prediction and uncertainty maps. In this case the prediction map may be assigned 

with the classes with higher probabilities, Pmax, among of them. The uncertainty map may be 

assigned with the 1-Pmax values. Other metrics of uncertainty can be used, as the Shannon Entropy 

that takes into account all the probability values of a cpdf (Shannon, 1949, Felgueiras, 2000). 

Using the typical geostatistical procedures, the prediction maps are constructed without 

probability restrictions. This means that even the maximum probability of a cpdf is lower than a 

minimum value, the spatial location is assigned to the class of this value. A constrained prediction 

map for a categorical variable can be produced considering a minimum probability, or a maximum 

uncertainty, value defined by application demand. In this way many, different scenarios for decision 

making purposes can be built according the maximum uncertainty value considered by the 

application planner. In the constrained predictions maps the classes with probabilities higher than a 

threshold are maintained, otherwise the classes are changed to a user defined background class. 

Material 

 For this work it was used as primary information a punctual sample set of a categorical 

attribute. The samples were imported to a geographic database organized in the GIS software known 

as Sistema de Processamento de Informações Georeferenciadas, SPRING, (Câmara et al., 1996). 

The SPRING was the main tool to perform some exploratory analyses in the spatial data, as the 

assessment of the indicator semivariograms, and to display contents of the derived database 

infolayers. From the geostatistical library, named GSLIB (Deutsch and Journel, 1998), it was used 

the sisim procedure for performing the sequential indicator simulations.  

Methodology 

The methodology of this work follows the sequence:  

1. Exploratory analyzes of the categorical sample set; 

2. Generation of indicator sample sets using the considered set of categorical classes; 

3. Assessment of experimental and theoretical semivariograms for the indicator sample sets;  

4. Running of indicator simulation program, using the original samples and the 

semivariograms, to get the prediction and uncertainty maps; 

5. Creating constrained prediction maps using the uncertainty models. 



Case Study 

In order to illustrate the methodology of this work, it was used a set of points of soil texture 

data sampled in the region of an experimental farm known as Canchim. The studied region is 

located in the city of São Carlos, SP, Brazil, and cover an area of 2660 ha between the north-south 

coordinates from s 21o54’46’’ to s 21o59’31’’ and the east-west coordinates from w 47o51’46’’ to w 

47o48’18’’. 

The sample data set consists of 84 samples of soil texture information each classified as one 

of the following four classes: sandy, medium clayey, clayey or too clayey. Figure 1 illustrates the 

borders of the Canchim farm along with location and the classification of the soil texture sample set. 

This categorical map of figure 1 was obtained with a nearest neighbor interpolation procedure 

showing the regions of influence of each spatial sample along with its class. 

Figure 1.  Spatial localization of the Canchim farm, the categorical sample set distribution and a 

classified map showing the region of influence of each location and its class. 

 

RESULTS AND DISCUSSIONS 

The spatial dependences analyses are represented by the indicator semivariograms generated 

from the indicator sample set defined by each texture class. It was fitted four semivariograms 

representing the four soil texture classes considered. The spatial dependence analyses are based on 

the indicator sample set of the soil texture classes. 

The indicator semivariogram parameters and the global probabilities of each texture class are 

reported in the table 1. 

 



Table 1: Parameters of the indicator semivariograms and global probability of each class 

Texture Class Nugget Effect Contribution Range Global 

Probability 

Sandy 0.00 0.14 1915 0.20 

Medium Clayey 0.00              0.22   902 0.35 

Clayey 0.01             0.20          1059 0.38 

Too Clayey      0.03 0.05             695 0.07 

 

The spatialization of the soil texture classes in the Canchim region was accomplished by 

using the Sequential Indicator Simulation, sisim, function available in the geostatistical library 

package GSLIB. Figure 2 shows the map of predicted soil texture classes (left) and respectively 

uncertainty map (right) obtained from the realizations of the sisim approach. The estimations were 

assessed from the higher probabilitie Pmax, the mode, of the cpdfs estimated at each spatial location.  

A qualitative, visual, comparison between this map of predictions and the map of nearest 

neighbours’ interpolation, map of figure 1, shows that the both maps globally agree with the spatial 

distribution of the texture sample set. The differences appear mainly in regions of class transitions of 

the predicted map obtained from the geostatistical simulated values. 

 

Figure 2. Map of predictions of texture classes (left) and map of uncertainties (right) estimated 

using the output realizations of the GSLIB sisim function. 

 

The uncertainties depicted in figure 2 were assessed by 1-Pmax value, the complement to 1 of 

the cpdf higher probability. As expected for environmental attributes, the uncertainties are higher in 

  



the borders, the transitions areas, of the soil texture class regions. Consequently, the probability 

uncertainty values are lower in the middle of the classes. 

Figure 3 presents maps of predictions of texture classes constrained to different uncertainty 

threshold values. These maps were built by integrating the classified information with their 

respective uncertainties. From these maps it can be observed that the smaller the value of the 

uncertainty threshold, the more restricted areas of the classes will be accepted to be effectively used. 

These means that the planner can control the size of the regions to be handled according the 

uncertainty or the maximum region extent accepted by the user application. 

 

     
(a)                                                                      (b) 

 
                                        (c)                                                                       (d) 

Figure 3. Prediction maps of texture classes constrained by different uncertainty threshold values: 

(a) 1; (b) .5; (c) .25 and; (d) .12. 

 

The following program developed in LEGAL language, that is a language for spatial 

analyses of the SPRING GIS, was applied to the predicted and uncertainty information of figure 2 in 

order to obtain the maps of figure 3. Uncertainty threshold values of 1, 0.5, 0.25 and 0.12 were 

assigned to the threshold variable of the program in order to create different output scenarios. 



 

The program initiates with an opened curly bracket, {, and terminates with a closed curly 

bracket, }, symbol. All the line commands preceded by // are comments and are not considered as 

part of the program interpretation. All language commands must be terminated with semicolon 

character. Two Thematic variables, named predictionsin and predictionsout, are declared as 

belonging to the Texture-Classes database category. One Numeric variable, named uncertainty, is 

declared as belonging to the Texture-DTM category. Two input infolayers are assigned to the 

predictionsin and uncertainty variables through the Retrieve language command. An empty output 

infolayer, called Mode-12%, is created, through the New language command, with spatial resolution 

x and y, ResX and ResY, equal to 35m and 50m, respectively, and with a Scale equal to 1:10000. 

The uncertainty threshold value is user defined and has 0.12 value in this example. The last 

command is used to fill each point of a rectangular grid of the output infolayer, represented by the 

predictionsout variable, with classes determined by a macro command that means: if the uncertainty 

value is lower than a threshold, then (? symbol) maintain the information of the predictionsin data, 

else (: symbol), if the uncertainty is lower than 1 set the grid value equal to the class named No 

Class and, otherwise, set the grid value to the background class 0. As a result of the program above, 

the classes are preserved when the uncertainty value is lower than the user defined threshold and is 

assigned to the No Class value otherwise. 

The areas of the classes in the maps of figure 3 are reported in table 2. Those areas were 

calculated in raster format, considering the pixel resolutions 35 m and 50 m in the x and y directions 

respectively.  

 

Table 2: Table with areas of the remaining classes in each constrained classification 

Uncertainty 

level (%) 

Area of the Texture Classes (m2)  

Sandy Medium 

Clayey 

Clayey Too 

Clayey 

No Class Total 

Classified 

Total 

Classified 

100 5439000 8452500 11620000 1109500 0 26621000 100% 

50 5141500 7323750 10711750 824250 2619750 24001250 90.16% 

25 3020500 3010000 5978000 199500 14413000 12208000 45.86% 

12 1701000 878500 2941750 22750 21077000 5544000 20.83% 

{ 

// Variable Declarations 

   Thematic predictionsin, predictionsout ("Texture-Classes"); 

   Numeric  uncertainty ("Texture-DTM"); 

 

// Variable Instantiations 

   predictionsin = Retrieve (Name = "Mode_Sisim-1000rfat_rec" ); 

   uncertainty = Retrieve (Name = "Uncert_Sisim-1000r_rec"); 

 

   predictionsout = New (Name = "Mode-12%", ResX = 35 , ResY = 50 , Scale = 10000 ); 

 

// Operations 

   threshold = 0.12; 

   predictionsout = (uncertainty <= threshold) ? predictionsin : uncertainty < 1 ? Class("No Class"):Class(0); 

 

} 



Based on the information of figure 3 and table 2, and considering different uncertainty 

values, environmental planners can build different scenarios with different area values for the 

classified regions. The area values can be used for making decisions on evaluating risks, or profits, 

to be assumed for agricultural project implementations, for example. 

In the maps of figure 3 the uncertainty restriction was applied to all the classes. The planner 

can also work on create scenarios considering only a subset of the available classes. This idea is 

illustrated in figure 4 that shows two classified maps containing only the Medium Clayey and 

Clayey classes and the uncertainty threshold values were set to 0.5 and 0.25. The following 

command:  

 

predictionsout = (predictionsout == Class("Sandy") || predictionsout == Class("Too Clayey")) ? 

Class("No Class") : predictionsout;  

 

was inserted as the final command of the above LEGAL program in order to take the classes Sandy 

and Too Clayey off the final maps. 

 

 

 
(a)                                                                         (b)                                                    

Figure 4. Prediction maps of Medium Clayey and Clayey texture classes constrained by uncertainty 

threshold values (a) 0.5 and (b) 0.25. 

 

CONCLUSIONS 

This work illustrated how the spatial modelling of categorical attributes, initially represented 

by a sample set of points, can be accomplished by indicator geostatistical approaches known as 

indicator kriging and simulation. These approaches have allowed to create prediction maps of 

categorical attributes along with their uncertainty maps which can be used to qualify the predictions.  

Moreover, the article showed that constraints could be applied to the predictions using the 

uncertainty information. It is important to note these constrained predictions aim to minimize risks 

of loss in economy, agricultural productivity or any other application where the uncertainties are 



considered important. Thus, the constrained prediction maps of categorical attributes should be 

considered by decision makers responsible to adapt the resulting classifications to user demands, as 

maximum area to be used or maximum budget (investment) to be spent in a project related to the 

earth surface supplies. An advantage of the presented methodology is to provide the user different 

planning possibilities, or scenarios, to be applied in the geographical application being developed. 

Even though this work considers only predictions and uncertainties information, it is 

important to know that the set of realizations of the indicator simulations can be used also as input 

for multivariable spatial modelling of categorical variables in Monte Carlo approaches, for example. 

In the future we intend to explore similar methodology for spatial modelling of continuous 

attributes and for different uncertainty metrics as, for example, the Shannon entropy. 
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