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Identifying causal relations from observational data sets has posed great challenges in data-driven causality
inference studies. One of the successful approaches to detect direct coupling in the information theory framework
is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying
variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features
into the framework of information theory. We define it as the recurrence measure of conditional dependence
(RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes
based on joint recurrence patterns between the past of the possible driver and present of the potentially driven,
excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale
of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during
recent major droughts.
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I. INTRODUCTION

Recurrence-based methods have been proposed to detect
coupling between two processes [1–3]. Another modern
approach to infer linkages among variables is applying an
information theory functional in time series analysis [4].
However, in most information theoretic approaches, the
required estimation of the probability distribution under-
lying the variables can be challenging [5]. In a recent
study Goswami et al. [6] defined what has been called the
recurrence measure of dependence (RMD), evaluating the
joint recurrences between two time series by introducing a
relevant lag in the possible driver. Although RMD successfully
measures the lagged coupling between variables, it cannot
distinguish if this relation is due to autocorrelations of the
potentially driven variable. In other words, the information
could have been shared in the common past of both processes,
which can lead to inaccurate conclusions about information
transfer.

To overcome this drawback, we extend the concept of
recurrence-based connectivity measurement and propose a
functional called the recurrence measure of conditional depen-
dence (RMCD), which enables us to detect lagged coupling
between variables. It incorporates recurrence quantification
analysis [7,8] into the concept of transfer entropy (TE) [9–12].
RMCD unveils causality accessing the recurrence dependence
between two variables. It quantifies the recurrence information
shared by the past of the potential driver and the present of the
potentially driven variable, while conditioning to the past of
the driven variable. RMCD helps to rule out any self-influence
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of the driven variable ensuring nonsymmetrical property that
reveals directional coupling. This definition is much in line
with the well-known Granger causality [13,14], however with
a recurrence-based interpretation.

To demonstrate the efficacy of RMCD, we first apply it to
three classes of paradigmatic model systems where, in each
example, we consider different lagged coupling schemes. After
that, we implement it to a real-world scenario to detect the
possibly lagged coupling between the sea-surface temperature
(SST) in the Pacific Ocean region Niño3.0 and precipitation
in Amazonia. According to the current state of knowledge,
the oceans are assumed to force the precipitation over the
southwestern Amazon river basin during selected anomalous
drought periods in the Amazon [15–17].

The characterization of intrinsic probabilities using fixed
binning can lead to some drawbacks in the case of variables
with nonstationary properties or with nonstandard distribu-
tion. However, the recurrence approach provides a dynamic
binning that can cope with such variables. Analogously as
the permutation entropy has contributed the ordinal pattern
procedure to the information theory [18–21], the RMCD
introduces the concept of recurrences into the transfer entropy
definition.

This article is organized in the following way: Sec. II
briefly summarizes the theoretical framework of recurrence
plot. Section II B defines the recurrence measure of conditional
dependence. Section II C presents a method to evaluate the
coupling via a statistical significance test. Section III presents
the applications of the RMCD to some paradigmatic cou-
pled models and to a climatological study case. Finally, in
Sec. IV we draw some concluding remarks about the main
findings.
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FIG. 1. Recurrence matrix RX definition. Consider the system at instant i, when the trajectory at instant j recurs to the vicinity of xi we
write 1 in the element i,j of RX . In contradistinction, at instant j + 1 the trajectory is outside the vicinity of xi therefore we set 0 in i,j + 1 of
RX . Notice that the recurrence matrix is symmetrical.

II. THEORETICAL BACKGROUND

A. Recurrence and joint recurrence plots

Consider an observable X from which we obtain mea-
sured values represented as the scalar time-discrete series
{x1,x2, . . . ,xn}. Using Takens’ theorem [22], we can re-
construct the phase space of its underlying dynamics. The
reconstruction follows the time delay method, which states
that a vector xi belonging to the phase-space trajectory is
defined by

xi =
m∑

j=1

xi+(j−1) d êj , (1)

where m is the embedding dimension, d is the embedding
delay, and the vectors êj are unit vectors that span an orthog-
onal coordinate system Rm, such that xi ∈ Rm for discrete
time points i = 1, . . . ,N . The analysis of time series via
phase-space reconstruction requires a suitable choice for the
embedding dimension m and the time delay d parameters [8].
Once the embedding parameters have been set appropriately,
one can investigate the recurrence behavior of the system.

The recurrence plot (RP) [8,23] is a powerful tool to
visualize and quantify the recurrences that take place in
dynamical systems. The recurrences in the trajectory of system
X are represented by the N × N recurrence matrix R,

RX
ij = Θ(ε − ‖xi − xj‖), i,j = 1, . . . ,N, (2)

where Θ(·) is the Heaviside function, ‖·‖ is a suitably chosen
norm, N is the number of sample points of the embedding
trajectory, and ε is a threshold distance of the given norm. The
issue of setting ε is discussed in detail in Ref. [8]. Figure 1
illustrates the idea behind the definition (2); a nonzero element
i,j in the recurrence matrix represents a vector in the phase
space xj that falls into the neighborhood of vector xi (sphere
in the Euclidean norm).

To investigate the dynamical relation between X and
another variable, we use a multivariate approach called joint
recurrence matrix [24]. This matrix is the entrywise product
of two or more recurrence matrices whose joint feature
unveils the instances at which a recurrence in X occurs

simultaneously to a recurrence in a second dynamical system.
For instance, suppose another variable Y such that a given
proxy {y1,y2, . . . ,yn} generates, via embedding procedure, a
set of vector yi . Then the joint recurrence matrix between X

and Y is defined as

R
X,Y
ij = RX

ij R
Y
ij = Θ(εX − ‖xi − xj‖)Θ(εY − ‖yi − yj‖).

(3)

Joint recurrence analysis can be expanded to a more
general definition for n systems through the multivariate joint
recurrence plot,

R
X1,...,Xn

ij =
n∏

k=1

Θ
(
εXk − ∥∥xk

i − xk
j

∥∥)
. (4)

One can also use the recurrence plot approach to estimate
the probability of a system to recur [8], more precisely, the
probability that a particular state recurs to its ε neighbourhood
in phase space. From this standpoint, RP works as an
intermediary step towards the estimation of the probability
distribution function associated with the recurrence behavior
of the system. In Sec. II B, this probabilistic interpretation
of recurrence plots allied with the framework of information
theory is used to define causal measures.

B. Recurrence measure of conditional dependence

Based on the recurrence matrix RX, the estimation of the
probability for the system X to recur to the vicinity of a
particular state xi at time i is defined as

pX
i = 1

N

N∑
j=1

RX
ij (5)

and naturally the probability estimation of a variable X to recur
in the whole time interval is defined as

pX = 1

N

N∑
i=1

pX
i , (6)

which is analogous to the recurrence rate definition [8].
Similarly, the joint probability that system X recurs to value
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xi and system Y recurs to yi at time i is

p
X,Y
i = 1

N

N∑
j=1

R
X,Y
ij . (7)

For the sake of simplicity, we omit the summation interval
from now on. Following this definition, the probability
dependence of X to recur conditionally to Y in a given time i

is p
X|Y
i such that

p
X|Y
i = p

X,Y
i

pY
i

=
∑

j R
X,Y
ij∑

j RY
ij

, (8)

accordingly, the probability of a variable X to recur condition-
ally to Y during the whole time interval is defined as,

pX|Y = 1

N

∑
i

∑
j R

X,Y
ij∑

j RY
ij

. (9)

Inspired by the conditional mutual information [25], we
propose the recurrence measure of conditional dependence
(RMCD). It can quantify the recurrence relation between X

and Y given Z, such that,

IRMCD(X,Y |Z) = 1

N

∑
i

p
X,Y,Z
i log

(
p

X,Y |Z
i

p
X|Z
i p

Y |Z
i

)
, (10)

the probabilities above are defined by

p
X,Y,Z
i = 1

N

∑
j

R
X,Y,Z
ij , (11)

p
X,Y |Z
i =

∑
j R

X,Y,Z
ij∑

j RZ
ij

, (12)

p
X|Z
i =

∑
j R

X,Z
ij∑

j RZ
ij

, (13)

p
Y |Z
i =

∑
j R

Y,Z
ij∑

j RZ
ij

. (14)

Substitute the above equations in (10) and we end up with
the following expression

IRMCD(X,Y |Z) = 1

N

∑
i

⎡
⎣ 1

N

∑
j

R
X,Y,Z
ij

× log

(∑
j R

X,Y,Z
ij

∑
j RZ

ij∑
j R

X,Z
ij

∑
j R

Y,Z
ij

)]
. (15)

Analogously to conditional mutual information,
IRMCD(X,Y |Z) is non-negative, in particular
IRMCD(X,Y |Z) = 0 when Z = X or Z = Y ; another
possibility is if X, Y , and Z are mutually independent.

Like transfer entropy [9], we can quantify the causal
dependence of X on Y based on joint recurrence patterns
between the past of the potential driver Xτ = {xi−τ } and the
present of the potential driven Y , excluding any contribution
that has already been in the contemporaneous past of the driven

variable Y τ ′
, such that,

IRMCD(Xτ ,Y |Y τ ′
) = 1

N

∑
i

⎡
⎣ 1

N

∑
j

R
Xτ ,Y,Y τ ′

ij

× log

⎛
⎝∑

j R
Xτ ,Y,Y τ ′

ij

∑
j RYτ ′

ij∑
j R

Xτ ,Y τ ′

ij

∑
j R

Y,Y τ ′

ij

⎞
⎠

⎤
⎦.

(16)

Notice that the lags τ and τ ′ represent how many times the
sample is shifted back into the variable’s past. Whenever
τ = τ ′, RMCD incorporates the recurrence behavior into
the transfer entropy definition, i.e., it captures the influence
of the past of Xτ into the present of Y by excluding any
contemporaneous self-influence of Y τ .

C. Statistical test

Due to the finiteness of the sampled data, we resort on a
null hypothesis test to determine the significance of RMCD
in signaling a possible causal relation between the X and Y

variables. The null hypothesis assumes the trajectories in the
embedding space are independent realizations of the system,
corresponding to a different initial condition. The statistical
significance is tested using a twin surrogate hypothesis
test [26,27]. The procedure finds points in the trajectory that
are neighbors and also share the same neighborhood in phase
space. These points are called twins, and although the points
are indistinguishable regarding their recurrent neighbors, their
past and future are different. Surrogates of the original
trajectories are produced by replacing the future of the current
point of the trajectory by either its original subsequent points
or by the subsequent points of its twin (if it has one). The Nsurr

surrogates have the same dynamical invariants as the original
sample, but with different recurrence structure. The 99.9%
percentile of the distribution of the surrogates RMCD values
is defined as the confidence interval.

The RMCD value of the original time series is compared
with its respective confidence interval at different lags τ . If the
RMCD is higher than the confidence interval, we reject the null
hypothesis, i.e., the variables are not independent with respect
to the surrogate test with significance 0.001. Otherwise, the
hypothesis is accepted, meaning the variables are independent
in the recurrence sense. Therefore, the rejection of the null
hypothesis for a particular τ indicates a causal interaction
with the time scale τ .

Finally, we perform a multiple comparison analysis be-
tween all lags investigated using the Dunn-Sidák test [28]. The
significance per comparison α = 0.001 yields a familywise
error rate around 0.03.

III. RESULTS

As a proof of concept, we apply RMCD to some paradig-
matic models to validate the causal inference. The models con-
sider variables coupled with a given time lag. The recurrence
calculations were made using the CRP TOOLBOX [8,29,30].
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FIG. 2. RMCD value (solid black) and the respective confidence
interval (dashed red) versus the lag for the ARMA[1,1] model,
Eq. (17). Cross marks pinpoint the lags that pass the multiple
comparison analysis.

A. Coupled ARMA model

Consider two coupled autoregressive-moving-average
models ARMA[1,1] X and Y such that X influence Y after
τ = 10 time steps,

xi = 2
5xi−1 + 1

2ξx
i−1,

yi = 2
5yi−1 + 1

2ξ
y

i−1 + ηxi−10, (17)

where η = 0.5 is the coupling parameter and ξ is an uniformly
distributed random number in the interval (0,1). In this
example, we use the following embedding parameters: m = 2,
d = 27, and ε defined as 20% the size of the phase space. The
embedding parameters are chosen to maximize the RMCD
between the variables.

Figure 2 reveals that RMCD can pinpoint the lag of the
coupling. It shows the RMCD values (solid black) and the
respective confidence interval (dashed red).

The confidence interval is calculated from the 99.9th
percentile of 2000 twin surrogates. The cross marks represent
lags that pass the multiple comparison analysis with a
familywise error rate of 0.03. With a sharp maximum at lag
τ = 10, the method accurately pinpoints the interaction time
scale. However, the null hypothesis procedure presents some
uncertainty. In this particular case, the multiple comparison
analysis highlights the lag interval from 9–12 as significant
outcome, having τ = 10 the maximum of the flow of informa-
tion between X and Y .

RMCD also plays an important role in detecting causalities
in multivariate time series. For instance, consider three coupled

ARMA[1,1] X, Y , and Z such that X influences Y after τ = 10
time steps, analogous to Eq. (17); and Y influences Z after
τ = 5 time steps,

zi = 2
5zi−1 + 1

2ξz
i−1 + ηyi−5. (18)

Figure 3(a) shows the RMD unveiling the influence between
X and Z, which in fact is indirect. To distinguish direct from
indirect influence, one should resort to RMCD. Figure 3(b)
shows the IRMCD(Xτ ,Z|Y 5) rules out this indirect influence of
X over Z by conditioning the lagged Y .

B. Coupled logistic maps

Analogously to the previous section, we construct two
coupled logistic maps inspired by the study of Gyllenber [31]
and Hastings [32] to describe migration dynamics within two
populations with a normalized carrying capacity.

In this model, the X and Y population have two governing
terms. The first is the local logistic growing rate, and the
second one represents the migration of individuals from one
population to the other. We modify the latter by adding a lagged
migration influx so that one variable influences the other after
ten time steps. Both populations have the same growth rate
r , and the two governing terms are balanced by the migration
parameter η, i.e.,

xi = (1 − η)rxi−1(1 − xi−1) + ηyi−10,

yi = (1 − η)ryi−1(1 − yi−1) + ηxi−10, (19)

where the coupling or migration parameter is η = 0.5 and the
growth rate is r = 3.9. For the recurrence analysis, we employ
the following embedding parameters: m = 2, d = 27, and ε is
20% the size of the phase space. The RMCD and its respective
confidence interval is evaluated from lag τ = 0 up to τ = 30.
The embedding parameters are chosen to maximize the RMCD
between the variables.

Figure 4 shows the result of the RMCD of the original series
X and Y (solid black) and the confidence interval (dashed
red). The solid line is the RMCD calculated from a sample of
the time series of the coupled logistic map model. The cross
marks at the bottom represent the lags that pass the multiple
comparison analysis with a familywise error rate of 0.03. Once
more, the null hypothesis is rejected in a range of lags, and
the multiple comparison analysis points out the ones between
9 and 11 as significant. Nevertheless, the resulting interval
correctly includes the real time scale of coupling, and the
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FIG. 3. Analysis of indirect influence between X and Z, Eqs. (17) and (18), using: (a) RMD and (b) RMCD, versus the lag. The solid-black
line is the RMD or RMCD value and the dashed red line is the respective confidence interval.
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FIG. 4. RMCD value (solid black) and the respective confidence
interval (dashed red) versus the lag for two coupled logistic maps
whose coupling is lagged by τ = 10 from one another, Eq. (19). Cross
marks pinpoint the lags that pass the multiple comparison analysis.

maximum value of the RMCD pinpoints the true coupling at
τ = 10.

One possible way to avoid such false positives is excluding
not only contemporaneous past Xτ and Y τ , but different
lags that may produce indirect pathways of interactions, i.e.,
IRMCD(Xτ ; Y |Y τ ,Y τ−1,Y τ+1, . . .). But this approach leads us
to the so-called curse of dimensionality, which makes the
computation highly expensive. To avoid this problem, one can
apply the preselected causal algorithm suggested by Runge
et al. [33]. Despite this technical improvement, it is not
the purpose of this article to dwell upon complementary
algorithms that enhance the method outcome. So we focus
on the recurrence properties and thus explore only past
contemporaneous influence.

C. Coupled Lorenz system

Inspired by the study of Frenzel and Pompe [34], we now
consider two coupled Lorenz systems such that system 1
influences system 2 with a time lag τ21 = 0.6 unit of time;
more precisely,

ẋi(t) = σ [yi(t) − xi(t)],

ẏi(t) = r xi(t) − yi(t) − xi(t)zi(t) +
∑
j �=i

Kij y
2
j (t − τij ),

żi(t) = xi(t)yi(t) − b zi(t) (20)

with i,j = 1,2 and the Lorenz systems parameters are
σ = 10, r = 28, b = 8/3; the coupling parameters are k21 =
1.5 and k12 = 0, this way, system 1 influences 2 but not
the other way around. We integrate the equations (20) using
the adaptative Bogacki-Shampine method [35] and interpo-
late the final solution to get a convenient uniform integrated
sample. After the transient dynamics has been discarded, we
record every fifth point leading to the time step 	t ≈ 0.0348.
For the recurrence analysis, we use the following embedding
parameters: m = 3, d = 23, and ε of 20% the size of the phase
space. The embedding parameters are chosen to maximize the
RMCD between the variables.

Figure 5 shows the result of the RMCD applied to time
series of the variables y2 and y1 (solid black) and the 99.9th
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FIG. 5. RMCD value (solid black) and the respective confidence
interval (dashed red) versus the lag for two coupled Lorenz system,
Eq. (20). Cross mark pinpoints the lags that pass the multiple
comparison analysis.

percentile confidence interval (dashed red) generated by
the twin surrogates method. The cross mark at the bottom
represents the lags that pass the multiple comparison analysis
with a familywise error rate of about 0.03. We find that the
null hypothesis is rejected by three lags around τ ≈ 0.5912
time units. However, according to the multiple comparison
analysis, only the lag τ ≈ 0.5912 is significant, close to the
lag τ = 0.6.

D. Climate data set

According to historical data, the Amazon River basin has
experienced several droughts in the past hundred years [36].
The droughts during 2005 and 2010 have been acknowledged
as the most intense and harmful ones for the communities
that depend on the river. Extreme events in the Amazon River
have distinctive characteristics, and not all can be attributed
or related to the same climatic forcing. The reason is that
interannual precipitation variability in the Amazon basin is
mainly associated with the sea-surface temperature (SST) in
the Pacific and Atlantic oceans [37–41].

Some droughts have been related to the tropical Pa-
cific Ocean macroclimatic system called El Niño Southern
Oscillation (ENSO), such as the ones of 1926, 1983, 1998,
and 2010 [36]. Others, such as the droughts of 1964, 1980,
and 2005 have shown to be unrelated to this macroclimatic
system [42]. In particular, the severe drought of 2005 is
suggested to be explained by warmer SST anomalies in the
Tropical North Atlantic, while the 2010 drought is related not
only with anomalous SST in the Tropical North Atlantic but
also with the ENSO event [16,43–45].

We apply the RMCD to investigate the possible influence
of the Pacific into the South Amazon region during the years
2005 and 2010. Therefore, we use the anomalous temperature
in the Pacific as the driver variable and the precipitation
anomalies in South Amazon region as the driven variable.
This investigation considers lags τ up to 240 days (eight
months). We create an ensemble of 500 surrogates for each
lag and calculate the 95th percentile.

In this study, we use daily precipitation from the Tropical
Rainfall Measuring Mission (TRMM) whose product 3B42
provides satellite-measured precipitation corrected with rain
gauge information [46]. Precipitation data is obtained from
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FIG. 6. Time lag influence of temperature anomaly of the Pacific Ocean (ENSO30) over the precipitation anomaly in the Southwest Amazon
during (a) 2005, and (b) 2010, respectively.

the Southwest Amazon (75◦W - 50◦W, 15◦S - 4◦S) region, as
defined by Zou et al. [15]. Precipitation records are averaged
over the region, and precipitation anomalies are then estimated
based on a climatology computed for the period 1999–2014.
The daily SST is obtained from the NOAA OI SST High
Resolution Dataset with spatial resolution of 0.25◦ × 0.25◦
and spanning from 1985–2014 [47]. The SST is averaged
over a region in the Pacific Ocean called Niño3.0, which is
bounded by 90◦W - 150◦W and 5◦S - 5◦N. The seasonality
is computed from the climatology throughout 1982–2014. Fi-
nally, the SST anomalies are obtained after removing seasonal
effects.

Figures 6(a) and 6(b) show the result of the RMCD of the
original data ocean’s temperature and Amazon’s precipitation
(solid black) and the confidence interval (dashed red) during
2005 and 2010 respectively. Figure 6(a) exhibits no significant
refusal of the null hypothesis in 2005 [48,49]. So, accordingly
to the RMCD method, in the year 2005, the anomalous SST in
the Pacific region Niño3.0 does not play a role in the Southwest
Amazon precipitation anomaly (up to a lag of eight months).
This result agrees with the literature conjectures [17]. On the
other hand, Fig. 6(b) exhibits an indication that the anomalous
Pacific’s SST influences the anomalous precipitation in the
Southwest Amazon from 170 days on—around five months.
The multiple comparison analysis pinpoint the lags between
seven and eight months as significant outcomes. So, the
anomaly in the SST responsible for causing the anomaly in
the precipitation of the Amazonia dates back May and June
2009, which are months preceding the moderate Niño of 2009–
2010. This result supports the premise that the Pacific has
significantly influenced Amazon’s drought in 2010 [36,44].
RMCD analysis agrees with a recent study about the difference
between the oceanic influence in the years 2005 and 2010 [50].
However, the time scale of the influence in 2010 found here
differs from that analysis of about two months. Further studies
are necessary to understand such difference that may be
related to the intrinsic nature of the probability estimation,
for instance, the embedding parameter definition prior to the
estimation.

IV. CONCLUSIONS

In this paper, we present a tool that employs recurrence
properties within the transfer entropy framework. This ap-
proach can reveal the coupling time scale of several paradig-
matic models. RMCD is able to identify the causal relation
between variables in the discrete linear coupled ARMA model,
the discrete nonlinear coupled logistic maps, and the continu-
ous nonlinear Lorenz coupled model. Additionally, the RMCD
results agree with the literature about the role of the Pacific’s
macroclimatic system in the Southwest Amazonia region.
RMCD is indeed able to distinguish the absence (presence) of a
Niño3.0’s anomalous temperature influence on the anomalous
precipitation in Southwest Amazon during 2005 (2010), and,
in the case of 2010, it also reveals the interaction time scale.
The RMCD functional reveal the causal interaction based
on the recurrent behavior of the underlying dynamic system.
The probability estimation procedure based on recurrence plot
analysis offers a dynamic binning that can outperform other
methods in a nonstationary scenario.
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