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Abstract—The implementation of condition-based maintenance
continues to face several challenges especially in the aeronautics
field. While it is true that time-based maintenance dominates
the industry today, it is believed that condition monitoring
could yield promising results with a better compromise on cost
over effectiveness in the long run. The aim of condition-based
monitoring in aeronautics is, based on the available system
data (e.g., flight, event and maintenance data), to evaluate the
current health state of an aircraft component and to estimate
its remaining useful life. Several approaches have been studied
in condition-based maintenance with the most promising being
data-driven modeling. This paper proposes a comparison of a
set of data-driven modeling techniques to perform prognostics
on a critical component of the jet engine bleed system. The
novelty of our work is twofold. First, we perform this compara-
tive study on a real case study of a critical valve of the aircraft
bleed system. Fielded data from different data sources are used
in the models. To our knowledge, this is the first case study
that merges data from the computer central maintenance system
(fault messages), maintenance data, and flight data on a prog-
nostics system. Second, a variety of data-driven techniques are
compared from neural nets to regression support machines. The
models are compared using the standard metrics of absolute,
mean, and squared errors. A regressive accuracy curve is also
used to compare the models along different prediction window
sizes. The results show the best model comprised information
from all data sources. The data that most contributed to the
performance improvement was the maintenance, flight and fault
data, in this order. This result comes to reinforce the notion that
it is more difficult to extract quantitative information from fault
events than flight data with data-driven regressive methods.
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1. INTRODUCTION
Damage prognostics is concerned with predicting the residual
life of an asset or the time until the next failure is expected [1].
Prognostics is key to perform condition-based maintenance
(CBM). The concept here is to track the system degradation
from on-line monitoring instruments and to minimize the sys-
tem downtime by balancing the risk of failure and achievable
profits [2].

As with diagnostics, prognostics methods are typically cat-
egorized as either model-based or data-driven [3]. Model-
based approaches usually employ mathematical models to
describe the physical processes that have a direct or indirect
influence on the structural health of the system. These models
are usually developed by domain experts based on their prac-
tical and theoretical knowledge of the failure mechanisms
that are likely to cause degradation. Despite the ability of
these models to incorporate a physical understanding of the
system working, their main disadvantages are their reliance
on technical expertise and the need for large sets of data to
validate the model parameters.

In contrast with model-based methods, data-driven ap-
proaches do not rely on a physical description of degradation
phenomena [4]. Instead, these techniques use monitored
operational data related to the system health to derive esti-
mates of the system remaining useful life (RUL) and end of
life (EOL) predictions. Data-driven methods are appropriate
when the understanding of the first principles is not compre-
hensive or when the system complexity does not warrant the
development costs of a model-based approach.

An effective CBM requires a good understanding of failure
degradation. Understanding what to monitor for a given asset
requires obtaining useful reliability data, eventually from
multiple sources. In this paper we propose to address the
influence of diagnostics data (fault messages) and other im-
portant data, such as sensory and environmental conditions,
on data-driven on-condition models. We use the comparative
research method to test our main hypothesis:

H1: The combination of data-intensive parametric and non-
parametric data about the maintenance past history, envi-
ronment conditions, structural health monitoring signals and
fault events can significantly lead to significant performance
enhancements of structural prognostics models.

The novelty of our work consists in the use and combina-
tion of parametric and non-parametric data to assess aircraft
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performance. The paper proposes a data-driven prognostics
framework that uses supervised machine learning methods,
the auto-regressive moving average methodology, stepwise
model selection, and principal component analysis (PCA) for
remaining useful life estimation.

As a case study, we consider a bleed valve from the aircraft
air management system. We run a comprehensive set of
prognostics experiments to demonstrate distinct data-driven
approaches and establish that prognostics may be performed
for air bleed valves using different data sets. We also compare
the framework results to a model-based life usage model.
Experimental results from real aircraft data are presented.

The paper is organized as follows. Section 2 formally defines
the prognostics problem and describes the computational ar-
chitecture. Section 3 presents the modeling methodology and
describes the case study involving the air bleed valve. Section
4 discusses the damage estimation approach using particle fil-
ters, and Section 5 provides the prediction algorithm. Section
4 presents experiment results and the demonstration of the
approach on real data. Section 5 discusses and concludes the
paper. Future work is also discussed.

2. BACKGROUND
Experience-based, life usage or failure rate models are con-
sidered the most widely used and accepted form of prog-
nostics in aviation [5]. They are often considered the most
suitable alternative when the the failure risk of the equipment
is low, or when the equipment exhibits a linear or constant
failure event rate [6].

There are a number of published studies in modeling the
maintenance prognostics using life usage methods − they
work by fitting probability distribution functions to the past
histories of repair events. This approach had been used
extensively in reliability theory and a number of distribution
functions are available. The most commonly used parametric
distribution is the Weibull, given its flexibility to model all the
range of the bathtub curve. For example, jet engine deteriora-
tion is modeled using the Weibull process in [7]. The authors
found that the Weibull process yielded a good fit to represent
maintenance policies. The authors also found that the Weibull
had difficulties to forecast the maintenance pattern of an
airline that had several “hard-time” repair events. The authors
argued that in this latter case, the mandated removals resulted
in a premature overhaul due to a cycle limited part.

Other authors used the Weibull process to model equipment
reliability. In [8], engine reliability is determined by com-
bining individual component distributions, approximated by
the Weibull function. Here, the whole-engine reliability is
a function of the individual reliabilities of the most critical
modules of the engine. A finite mixture model was used
to capture the combination of the individual reliabilities. A
finite mixture model is a convex combination of two or more
probability density functions. By combining the properties of
the individual probability density functions, mixture models
are capable of approximating any arbitrary distribution [9].
The authors found that such model could help not only to
describe the engine reliability but also to investigate the
interdependent effects among the disruption modes.

A finite mixture model is also used to describe jet engine
failure modes in [10]. The mixed Weibull distribution is esti-
mated from a large data set comprised of 325 jet engines. The

estimation is subject to censoring at various times. Parametric
uncertainty is derived analytically from the inverse Fisher
information matrix and is mapped visually onto the functions
of use in reliability theory such as the hazard function and
survival function.

Despite the popularity of life usage models, most modern
day maintenance programs in aeronautics are starting to
be based on the on-condition concept. In this approach,
maintenance activities occur when the equipment condition
demands it. Here, the idea is that if equipment can be
evaluated while still in service, the maintenance can be
scheduled and planned and the overall cost of maintenance
goes down. On-condition maintenance reduces the need for
life usage “hard-time” intervals but requires routine moni-
toring of performance parameters of the equipment such as
temperature, pressure, vibration, fuel flow, oil consumption,
and rotor speed. Changes in any of these parameters beyond
specified limits can warrant a removal of an aircraft system or
component for maintenance.

A side effect of the on-condition maintenance paradigm is
greater reliance on statistical data-driven analysis to predict
the frequency and timing of maintenance events and their
corresponding costs [11]. This approach uses statistical and
artificial intelligence techniques on large sets of performance
and degradation data to forecast the engine future state. In
data-driven reliability models, degradation is estimated using
only the data provided by the monitoring system, disre-
garding the analytic model of the system and its physical
parameters.

Data-driven methods range from multivariate statistical meth-
ods to neural networks and Markovian processes. Artifi-
cial neural networks (ANN) are perhaps the most popular
approach in remaining useful life (RUL) estimation. For
example, [12] apply ANN methods to forecast the remaining
useful life (RUL) of pump bearings. Their ANN model
used age and condition monitoring data as inputs and the
bearings life percentage as output. The proposed approach
was validated using real-world vibration monitoring data.
Other more sophisticated ANN approaches have been used
for RUL forecasting. For example, a self-organizing map
(SOM) and back propagation neural network using vibration
signals was used to predict the remaining useful life of a ball
bearing [13].

Even though ANNs are good at mapping non-linear informa-
tion, much of the practical data for describing repair events is
ambiguous or approximate. Thus, neuro-fuzzy systems have
been proposed for RUL forecasting. An interesting example
of a neuro-fuzzy approach is the work of [14] to predict the
health state of a pinion.

Another popular data-driven approaches to RUL estimation
are Kalman filters. The validity of this technique has been
demonstrated in steel bands [15] and other applications. An
alternative to Kalman filters and other space-state approaches
are integrated autoregressive/moving average (ARIMA) mod-
els [16]. In [17] linear regression methods and autoregressive
integrated moving average (ARIMA) are used to forecast
jet engine removals. There has been a number of studies
comparing these two approaches [18]. Overall, compared
to ARIMA, state-space models allow the modeling of more
complex processes, and can more easily handle data irreg-
ularities. Nevertheless, ARIMA alternatives are easier to
parameterize and have less complex implementations.
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Another statistical approach used to estimate the underlying
RUL are Hidden Markov models (HMMs). In [19] HMMs are
used to model bearing degradation. The authors considered
degradation as a stochastic process with several states. In
their model, each state represents a health state of the bearing.
These states are learned by using vibration data. Once the
current state is identified, together with its stay duration, the
remaining useful life (RUL) of the bearing is predicted.

Other techniques from artificial intelligence and machine
learning field have started to be applied to RUL estimation.
For instance, some authors argue that support vector ma-
chines represent a promising approach [20]. Other authors
propose ensemble approaches such as the one in [21] which
combines multiple member algorithms with a weighted-sum
formulation.

Despite the different models and techniques that have been
proposed, few studies compare the different approaches on
real case studies. An exception to this is the work in [22]
that compares 13 forecasting methods for the management
of spare parts in the aviation industry. The authors found
that exponentially weighted moving average and Croston’s
methods outperformed the other forecasting methods. Never-
theless, the mean absolute percentage errors (MAPE) of the
considered methods were greater than 80%, above what the
authors considered the acceptable level for the case.

Another comparison study on data-driven techniques is the
work in [23]. The authors compare a wide range of binary
classifiers to predict the probability of servicing a jet engine
component at a major shop visit. The techniques are dis-
cussed according to their ability to capture better or worse
different perspectives of the data. The authors consider that
ensemble models based on trees (random forests and boosted
trees) present the best compromise between performance
and interpretability while neural nets offer the best absolute
performance.

3. METHODOLOGY
A) Problem Formulation

The problem of engineering prognostics is predicting the end
of life (EOL) and/or the remaining useful life (RUL) of a
technical system or component. In this section, we first
formally define the data-driven prognostics. We assume the
system can be described by

y(t) = f(t, x(t), θ(t)) (1)

where t ∈ R is the continuous time variable, x(t) ∈ R
n

is the input vector, θ(t) ∈ R
n is the parameter vector, f

is the output function, and y(t) ∈ R
n is the output vector.

This representation considers a general nonlinear data-driven
model with no restrictions on the functional forms of f .

The goal of the model is to predict the remaining useful life
(RUL) at a given time point ti using the discrete sequence
of observations up to time ti , defined as x0:ti . Remaining
useful life here is defined as the remaining time to a main-
tenance event: it marks the end of the life (EOL) of the
component, that is, the point where it no longer meets one
of a set of functional requirements (e.g., the valve no longer
complies with the threshold limits of its leakage class). In
general, we may express this as a function of the system state,
TEOL(x(t)), which determines whether the system has failed,
that is TEOL(x(t), θ(t)) = 1. Seemingly, the remaining

useful life (RUL) can be defined with

RUL(ti) = tf − ti, tf ∈ R : tf ≥ ti ∧ TEOL(x(tf )) = 1 (2)

where ti is the actual time, tf is the time of failure and
TEOL is a function which determines whether the system has
reached the EOL.

We adopt a data-driven approach, meaning the model f does
not depend on a physical description of how the faults evolve
in time. Instead, it is a learning approach that estimates
the behavior of the system from a time series of inputs and
outputs − it enables the extraction of general and abstract
rules governing degradation processes from a large amount
of data.

In discrete time i, we estimate y(ti) = RUL(ti), based on a
set of training data x(t) and corresponding output data y(t).
Accordingly, our solution to the prognostics problem takes
the perspective of a supervised learning estimation.

The prognostics architecture is in Figure 1. The model
proceeds in two steps. In the first step the system is provided
with inputs x(t) and corresponding measured outputs y(t).
With this data and the parameter vector θ(t) the system is
able to estimate function f . After this, prognostics may begin
at i = 0, with the prognostics module determining estimates
of RUL, represented as ŷ(ti). 10-fold cross-validation is used
to estimate and validate the model.

In the remainder of this section, we apply this modeling
framework to an aircraft bleed valve, which serves as the case
study for this paper.

B) Data Modeling

We develop a data-driven model of the system based on four
classes of data:

x(t) = [xm(t) xf (t) xh(t) xa(t)]T (3)

where each xm(t), xf (t), xh(t) and xa(t) represents a vector
of characteristics from four distinct data sources: a) mainte-
nance logs, b) fault messages generated during flight by the
aircraft central maintenance computer, c) health monitoring
signals collected during flight by the aircraft sensor network
and d) environmental parameters. Table 1 describes the
variables considered.

Vector xm(t) comprises 12 variables related to the past his-
tory of maintenance actions. Statistical distribution functions
are used to estimate the parameters of this vector, such as the
interquartile range, kurtosis or skewness. The idea here is to
have a set of descriptors that capture the central tendency and
variation of the maintenance interval times. Two traditional
measures from reliability theory, operational time and time
since last failure are also considered.

Also included in vector xm(t) are the predictions of an auto-
regressive moving average model (ŷARMA). This inclusion
allows to capture the past series of maintenance events not
only as a function of its values but also as a moving average
(unevenly weighted) of past noise or residual values. In other
words, the autoregressive moving average model includes
lagged terms on the time series itself (auto-regressive AR pa-
rameters) and lagged terms on the noise or residuals (moving
average MA parameters). The ARMA(p,q) model is given
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Figure 1: Prognostics architecture.

Table 1: Input vector: categorical and numerical variables.

Symbol Description

xm(t)

tf − t Time since failure
Inf(t) Min time between failures
Sup(t) Max time between failures
μ(t) Mean time between failures
μ̃(t) Median time between failures
Q1(t) 1st quartile of time between failures
Q3(t) 3rd quartile of time between failures
σ(t) Standard deviation of time between failures
β2(t) Kurtosis of distribution of time between failures
γ1(t) Skewness of distribution of time between failures
ŷARMA(t) Auto-regressive moving average (ARMA) prediction

xf (t)

csum(t) Cumulative sum of fault events
csumc(t) Cumulative sum of fault events of same code
csumw(t) Windowed cumulative sum of fault events
csumw

c (t) Windowed cumulative sum of fault events of same code
t− tFC Time since last fault event
t− tFCc

Time since last fault event of same code

xh(t)
h1 to h7 7 continuous health monitoring parameters
hT
1 to hT

7 7 categorical health monitoring parameters
xh(t) a1 to a7 7 continuous environmental parameters

by:

(1−
p∑

j=1

αjL
j)ti = (1 +

q∑
j=1

θjL
j)εi (4)

where L is the lag operator, the αj are the AR parameters, the
θj are the MA parameters and the εi are error terms. Please
note that p and q refers to the number of AR and MA terms,
respectively. To estimate the parameters of the ARMA we fit
the model to the univariate time series of maintenance events
by least squares estimation (LSE).

Vector xf (t) comprises 9 variables related to the past history
of fault events. Fault events result from the processing of
parametric sensory data and aim to enhance their diagnos-
tics usefulness. The processing involved in transforming
health monitoring signals into fault events include outlier
removal, noise reduction, and transformation into other do-
mains, among others. Here, a fault event is described by a
timestamp and a fault categorical code. To convert the non-
parametric information of fault events into parametric data
(see Table 1) we first construct a fault code matrix for each
individual component:

Fault codes

FC(t, j) =

⎡
⎢⎢⎣
x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n

...
...

...
. . .

...
xt1 xt2 xt3 . . . xtn

⎤
⎥⎥⎦Time

(5)

where each cell of the matrix indicates if a fault code has
occurred. Each row of the fault code matrix represents a
timestamp and each column represents a fault code.

The cumulative conversion functions use the above matrix to
estimate the prognostic parameter of csum(t), csumc(t) and
their windowed versions (see Table 1):

csum(t) =
t∑

i=1

n∑
j=1

FC(i, j) (6)

csumc(t) =

t∑
i=1

FC(i, j = c) (7)

csumw(t) =

t∑
i=t−w

n∑
j=1

FC(i, j) (8)

csumw
c (t) =

t∑
i=t−w

FC(i, j = c) (9)

These parameters allow measuring time as a function of the
past number of fault events. In particular, the windowed
cumulative sum functions of csumw(t) and csumw

c (t) allow
measuring the rate of fault events at pre-defined window
sizes. The selection of window size w was based on a
criterion-based backward regression method (see Algorithm
1) using the root mean squared error (RMSE). Figure 2
illustrates the results of the method. As shown, the best
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Figure 2: Criterion-based selection of window size for
cumulative mean computation.

cumulative predictors correspond to the window sizes of 0,
10 and 80 days (1 - all messages and 2 - all messages of same
code).

Other parameters related to fault codes include time since
previous fault event (t − tFC) and time since previous fault
event with same code (t− tFCc

).

Vector xh(t) comprises 7 categorical and 7 numerical vari-
ables that are related to and are calculated from the continu-
ous measurements on the different health monitoring signals.
The numerical variables represent continuous measurements
of different sensory signals such as temperature, vibration,
pressure. The categorical variables are binary flags that
indicate when a sensory signal goes above or below a given
threshold.

Vector xa(t) comprises 7 numerical variables related to the
past history of environmental conditions.

Given the high number of variables considered (see Table 1)
we use principal component analysis (PCA) [24] to reduce
the dimension of the feature set.

C) Modeling Approaches

Two modeling approaches are compared: the baseline time-
based approach and the data-driven on-condition approach
described in Section IIIA. The time-based approach applies
the two-parameter Weibull-Pareto distribution to the data set
of removal times {ti}0:n. Cross-validation is used to evaluate
the approach by dividing the original data set in k = 10 equal
sized samples and using each sample of data as a testing
fold. For each testing fold a Weibull distribution is fitted
to the remaining data using maximum likelihood estimation
(MLE) and the characteristic life α of this distribution is
used to predict the next failure ti+1 and trigger the needed
maintenance of the equipment.

D) Case Study

Air Management systems (AMS) can vary widely in design
and operation from one aircraft to another, but they all

Figure 3: Left-wing air management system and engine
bleed valve.

Figure 4: Probability Density Function (PDF) of time
between removals.

perform the same basic group of functions. These critical
systems ensure the tasks of monitoring and controlling the
cabin temperature and air flow to the cockpit, passenger, and
cargo areas as well as the secondary cooling of avionics. In
addition to these functions, air bleed systems are responsible
for managing the engine bleed air and providing ice protec-
tion for flight control surfaces. A schematic of the studied
AMS is presented in Figure 3. As shown, the system consists
of a complex structure of ducts, tapes, valves and regulators.
The valve of interest is the bleed valve (EBV), a shutoff valve
located near the aircraft engine.

Engine bleed valves are line-replaceable units (LRUs) – they
are designed to be removed and replaced quickly in order to
restore them to an operational condition. Our data set consists
of 585 removals recorded between 2010 and 2015 of the bleed
engine valves of 39 aircrafts from 3 airline companies. In
the data set, the interval between two sucessive removals is
a random variable with a probability density that resembles a
Weibull distribution (see Figure 4).

In addition to removal events, our data set also comprises
around 100 thousand fault events for the 39 jets. These
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data consists of all the automatic fault messages exchanged
between the aircraft central maintenance computer (CMC)
and ground facilities between 2010 and 2015. For each fault
message, we have the following information: (1) time of mes-
sage transmission and (2) indication of the processing code.
Eleven crew-alerting system (CAS) codes were considered.
It is important to note that the recorded fault events do not
provide direct information on the condition of the aircraft
EBVs. Instead, the message codes convey information about
the overall health of the AMS, such as when the system
overall temperature goes beyond a given threshold.

Our data set also comprised structural health monitoring
(SHM) data and information about the environmental con-
ditions during flight. Data exploration is described in more
detail in [25].

4. RESULTS
To investigate hypothesis H1 we performed a number of
experiments with distinct data-driven techniques using the
prognostics framework of Section IIIA.

H1: The combination of data-intensive parametric and non-
parametric data about the maintenance past history, envi-
ronment conditions, structural health monitoring signals and
fault events can significantly lead to significant performance
enhancements of prognostics models.

The models used in the experiments are described in Table
2. Estimation was evaluated based on the predictions of the
remaining time to a removal. Estimation accuracy was com-
puted using the median absolute error (MdAE) and the root
mean squared error (RMSE). The prognostics performance is
summarized in Table 3. All times are given in days. The
performance metrics are defined in the Appendix. We also
include a brief description of each technique in the Appendix.

In Table 3 the results of the baseline model (Weibull model)
are compared to the results of data-driven models of type I,
that is, the models which are based solely on the data set of
removal times (xm(t)). As shown, regarding the mean error
(ME), the best data-driven models were the generalized linear
model (glmStepAIC), nearest neighbors (kknn) and decision
trees (rf). These models had comparable results to the
baseline Weibull model on this metric. On the contrary, the
neural nets (nnet) and the regressive support vector machines
(svmLinear) exhibited poor performance with negative errors
indicating underestimation bias, that is, these forecasts tended
on average to be smaller than the forecasted values.

In regards to model accuracy, as measured by the median
absolute error (MdAE), the data-driven approach based on
removal times (xm(t)) was able to outperform the baseline.
Concretely, the generalized linear model (glmStepAIC I)
and the regressive support machines (svmLinear I) exhibited
positive results. In particular, the regressive support machines
(svmLinear) had a MdAE of 67 days compared to the MdAE
of 76 days (↑12%) of the baseline.

The root mean squared error (RMSE) allowed to compare the
accuracy of the data-driven models of type I and the baseline.
Here, all models of type I had similar results to the baseline
not showing a significant difference, with the exception of
the neural networks (nnets) which had a considerably lower
performance and the support vector machines (svmLinear)
model which had a slightly worse performance.

Overall, in the class of data-driven models of type I the
regressive support vector machines (svmLinear) exhibited
the best accuracy in regards to the median absolute error
(MdAE). However, the random forests model exhibited the
best compromise between the considered metrics. The model
had a MdAE, ME and RMSE comparable to the baseline and
the longest mean time between failures (MTBF) of its class.

The comparison between the baseline and the models of class
I comes in line with the results reported in [26]. The main
finding here is that for certain goals, such as when a low
MdAE is needed, it may be useful to employ a data-driven
technique on the data set of removal times rather than a life
usage model.

It is also possible to compare the results of the baseline model
(Weibull model) to the results of data-driven models of type II
from Table 3. The models of type II are based on the data set
of removal times (xm(t)) and on the data set of fault messages
(xf (t)). The intention here was to analyze the influence of the
fault events on prognostics.

As shown, the data-driven approach of type II, with the
support vector machines technique (svmLinear), was able to
outperform the baseline (and the techniques of type I) on me-
dian absolute error (MdAE), root mean squared error (RMSE)
and mean error (ME). Also, the random forests technique
showed better results to the baseline and to approach I, on
MdAE and RMSE. On the downside, the technique exhibited
a large mean error (ME).

The generalized linear model (glmStepAIC) and nearest
neighbor (kknn) model also registered a better performance
than baseline and I version on the MdAE and RMSE metrics.
Overall, these results suggest that the use of data-intensive
analytics both on the maintenance history and fault events
can lead to a better understanding of the equipment future
reliability.

To test the influence of the health monitoring and environ-
mental variables we used the data-driven models of type III.
These models were based both on maintenance data (xm(t))
and on health monitoring (xh(t)) and environmental variables
(xa(t)). From Table 3 it is possible to compare the results of
these models to the baseline. Here, the performance of some
models was significantly better than their type II version in
MdAE, ME and RMSE. Regarding the baseline, again the
data-driven techniques has a significantly better performance.
This comes to show that not only the technique but also the
data set is important to obtain reliable structural prognostics.
Particularly, it also shows that some data-driven techniques
may work better with certain types of data than others. For
instance, a technique that showed a performance decrease
from its I version was the nearest neighbors (kknn) technique.
Despite the technique having a performance similar to the
baseline, its MdAE and RMSE were larger than for the group
of models of type II. These results suggest that the inclusion
of new data may not always be well captured by a given
data-driven technique. These findings suggest that some data-
driven techniques may work better with certain types of data
than others and that parametric data is easier to analyze with
regression techniques.

The neural networks had an MTBF of 1 day across the models
(see Table 3). The technique attempted to capture the high
percentage of short removals (see Figure 4), by prescribing
a maintenance action every day (MTBF = 1.00 days, σ =
0). Despite the acceptable performance results, this is not
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Table 2: Evaluated approaches.

Baseline Data-driven Techniques
Life Usage Data-driven I Data-driven II Data-driven III Data-driven IV

Maintenance data ({x}m(t)) × × × × ×
Fault events ({x}f (t)) × ×
Health monitoring signals ({x}h(t)) × ×
Ambient variables ({x}a(t)) × ×

Table 3: Prognostics performance results.

Error Measures

Data ME MdAE RMSE MTBF
Weibull (Baseline) {xm(t)} 7.66 76.21 101.45 90.79
Data-driven I {xm(t)}

glmStepAIC -0.14 73.39 101.86 82.99
kknn -1.28 77.64 108.97 81.85
nnet -82.13 82.28 136.39 1.00

svmLinear -36.01 66.72 111.63 47.12
rf 3.75 76.09 104.63 86.88

Data-driven II {xm(t), xf (t)}
glmStepAIC 62.31 67.8 70.54 85.77

kknn 2.34 74.54 101.83 53.09
nnet -61.06 61.13 83.39 1.00

svmLinear 5.22 62.64 78.77 49.99
rf 24.81 67.86 89.26 67.55

Data-driven III {xm(t), xh(t), xa(t)}
glmStepAIC 54.64 60.98 63.99 80.3

kknn 23.37 78.09 108 68.86
nnet -59.38 59.45 80.1 1.00

svmLinear 9.12 51.93 64.98 52.7
rf 63.76 66.4 68.23 87.59

Data-driven IV {xm(t), xh(t), xa(t), xf (t)}
glmStepAIC 61.33 64.34 67.1 85.38

kknn 22.42 72.2 100.91 66.24
nnet -59.38 59.45 80.1 1.00

svmLinear 16.44 44.98 53.41 55.25
rf 59.01 59.86 65.27 81.18

* ME stands for Mean Error (days) where ME = mean(simulated - observed), MdAE
for Median Absolute Error (days), MTBF for Mean Time Between Failures (days) and
RMSE for Root Squared Mean Error.

(a) Removal I (b) Removal II

Figure 5: Estimation results for different removals.

a feasible solution in aeronautics due to the high maintenance
costs involved. Please note that an unscheduled removal is
not a catastrophic incident that must be avoided at all costs
since there is a certain level of redundancy in the bleed

system. Alternative solutions could include a customized
parameterization of the technique or the use of a different
neural network architecture for this class of models.
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(a) Data-driven II (b) Data-driven III (c) Data-driven IV

Figure 6: Accuracy vs Window size.

Finally, the most balanced results were obtained by the
models of type IV (svmLinear). In this class of models,
data about the removal times (xm(t)), fault events (xf (t))
and the environmental (xa(t)) and sensor variables (xh(t))
were used to predict the remaining useful life (RUL) of the
valves. In this set, and as shown in Table 3, the majority of
the techniques had a better performance than models of type
II or type III. Our results hence provide enough evidence to
support the hypothesis that the combination of data on fault
events, health monitoring signals, environmental conditions
and maintenance records can provide enhanced prognostics
performance.

We were also interested in studying how the different mod-
els changed its performance along the prognostics window.
Figure 5 compares the support vector machines (svmLinear)
across approaches II (fault events), III (HM + ambient) and
IV (fault events + HM + ambient). Please note that this was
the technique with the lowest median absolute error (MdAE)
of all the models. Two removals are shown comparing the
true RUL with the predicted RUL. We show the evolution
of the predictions between two consecutive valve removals,
starting immediately after the first removal. Even far from
the next removal models are still converging, especially for
the removal in Figure 5a, which is the longest. Afterwards,
the error of the prediction starts to decrease. Close to
the end of life, RUL is predicted with reasonable accuracy,
with moderately confident predictions for all model types.
Accordingly, this example shows that the SVM models take
time to converge but can provide good estimates near the end
of life of the equipment.

Figure 5 compares the models of type IV, III and II in how
they were able to estimate the remaining useful life of the
valve for different time horizons. On the x-axis we have
the time horizon and on the y-axis we show the accuracy
of the prognostics model measured by the median absolute
error (MdAE). The lower the MdAE the more accurate the
model performs its predictions. As shown, the support
vector machines (svmLinear) yielded the best results for the
different classes of models. Also, the models of type IV tend
to show a better performance than models of type II and I.

5. CONCLUSION
In recent years, airlines have steadily started to adopt on-
condition data-driven policies to reduce costs and optimize
their fleet performance [5]. Introducing on-condition main-

tenance leads to new challenges and opportunities within
maintenance engineering. On one hand, CBM offers potential
benefits such as increased system reliability and availability
as well as more effective maintenance actions. On the other
hand, the success of CBM relies on multiple factors from
design of sensors to the sophistication of the used techniques.

In this paper, we developed a condition-based prognostics
framework using data-driven methods, auto-regressive mov-
ing average methodology, stepwise model selection, and
principal component analysis (PCA) for remaining useful life
estimation. We applied the framework to a bleed air valve,
performing a series of experiments that included different
predictor variables as well as distinct data-driven techniques.
The results demonstrated the effectiveness of the data-driven
approach, and gave insight into the way parametric and
non-parametric data can be combined and used to enhance
structural prognostics.

The goal of this work was two-fold: (1) to compare the use of
data intensive analytics on different types of parametric and
non-parametric variables and (2) to compare five regression
techniques. Here, we have shown that our proposed prog-
nostics framework can outperform the baseline approach of
the life usage model in regards to mean, absolute and squared
errors.

We studied the influence of maintenance, fault and flight/am-
bient data on prognostics. We have shown that while data-
driven algorithms can learn the evolution of a degradation
process considerably well, the RUL estimates depend signif-
icantly on the predictor variables. Our results suggest that
it is possible to obtain reliable prognostics estimates from
fault events and from traditional health monitoring variables
(e.g. temperature, vibration, pressure) as well as from a
combination of these two types of data. Most importantly,
the main finding of this paper is that the combination of these
data sources can yield better overall performance than the
single use of each of these sources, confirming the overall
hypothesis of this study.

We have also shown that RUL estimates depend not only on
the chosen data predictors but also on the technique used. In-
terestingly, we have shown that the inclusion of new data may
yield positive results on some techniques but not on others.
For instance, the generalized linear model technique had a
considerable decrease of performance from model III (flight
data) to model IV (flight + fault data). This was despite all the
other techniques having registered a significant performance
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increase from approach III to IV. We hypothesize that this
was due to the generalized linear model not being able to
discern significance in the new predictors, fitting to noise and
resulting in increased variance of the prediction. In future
work, we may work on strategies against overfitting such as
complexity reduction and early stopping [27].

The results showed how the different techniques tended to
converge to the end of life: accuracy of RUL estimations
improved closer to failure. The rate of the convergence again
varied from models II to IV: the models of type IV (flight +
fault data) were more likely to converge than models of type
III (flight) and II (fault data). This result is promising for the
aeronautics field. Please note that nowadays, the prognostics
of these valves is performed on a daily basis by maintenance
and repairing operations experts. To be able to know in
advance that there is going to be a failure for a larger time
interval can significantly improve maintenance operations.

The regressive support vector machine distinguished itself
as the most promising data-driven technique. Using this
method we were able to reach a considerably low absolute
and squared error. Random forests also exhibited a good
performance. In the future, it might be worthwhile to under-
stand why some models, such as the support vector machines,
were better able to capture the dynamics of the data sets
than other models. It might also be interesting to study how
to combine the models using combination methods such as
bootstrap aggregating, boosting or stacking [28]. Applying
the framework to additional data sets is also part of future
work.

APPENDICES

A. PERFORMANCE EVALUATION
Estimation performance of our proposed framework and
baseline is evaluated based on the estimate of the remaining
useful life (RUL). In this section we describe the metrics used
to assess reliability performance.

The window size w of the windowed cumulative sum was
computed using the root mean squared error (RMSE) crite-
rion:

RMSE =

√
Meani

[(
ŷi − yi

)2
]

(10)

where ŷi denotes the estimated RUL at time t, yi denotes the
true RUL at t, and Meani denotes the mean over all values of
t.

Estimation accuracy is estimated based on the above RMSE
metric. To estimate performance accuracy we also use the
median absolute error (MdAE), which takes the absolute
value of forecast errors and averages them over the entirety
of the forecast time periods.

MdAE = Mediani

(
|ŷi − yi|

)
(11)

Estimation bias is estimated from the mean error (ME):

ME = Meani

[(
ŷi − yi

)]
(12)

The mean error measures the bias of the forecasts. A positive
error indicates that, on average, the forecast tends to be larger

than the outcome (overestimation bias) while a negative error
indicates forecasts tends to be smaller than the outcome
(underestimation bias).

B. DATA-DRIVEN TECHNIQUES
Our framework features a number of statistical regression
techniques, such as generalized linear model, nearest neigh-
bors, neural networks, regressive support vector machines,
and decision trees. A brief explanation of these techniques
is given in the following subsections.

Generalized Linear Model

The generalized linear model (GLM) was proposed as a way
of unifying various other statistical models, such as linear
regression, logistic regression and Poisson regression [29].
This kind of model allows for the response variables to that
have an error distribution other than a normal distribution.
Formally, a generalized linear model can be described by the
following assumptions [30]:

• There is a response y observed independently at fixed
values of stimulus variables x1, . . . , xp
• The stimulus variables influence the distribution of y
through a linear function η = β1x1 + . . .+ βp1xp
• The distribution of y has density of the form

f(yi, θi, ϕ) = exp[Ai{yiθi − γ(θi)}/ϕ+ τ(yi, ϕ/Ai)] (13)

where ϕ is a scale parameter, Ai is a known prior weight and
parameter θi depends on the linear predictor
• The mean μ is a smooth invertible function of the linear
predictor:

μ = m(η), η = m−1(μ) (14)

The inverse function is called the link function. This function
describes how the mean, E(yi) depends on the linear predic-
tor.

In this paper we use a generalized linear model with stepwise
regression in which the choice of predictive variables is
carried out by bidirectional selection.

K-Nearest Neighbours

The k-Nearest Neighbors (KNN) algorithm is one of the
most fundamental and simple supervised methods in machine
learning. The algorithm consists in finding the k closest train-
ing examples in the feature space, using a distance function
such as the Euclidean distance function. With this function,
the distance between sample xi and xj (l = 1, 2, . . . , l) is
defined as

d(xi, xj) =
√

(xi1 − xj1)2 + . . .+ (xip − xjp)2 (15)

where p is the total number of predictors and l is the total
number of input samples. In k-NN regression, the output is
the average of the values of its k nearest neighbors:

Ni = {x ∈ R
p : d(x, xi) ≤ d(x, xm), ∀i �= m} (16)

Neural Networks

An artificial neural network (ANN) can be defined as a
computing system made up of a number of simple, highly in-
terconnected processing elements, which process information
by their dynamic state response to external inputs [31].
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The architecture considered are layered feed-forward net-
works [32], that is, networks with one layer of input units, one
layer of output units, and one or several layers of hidden units.
We assume that there are T input patterns Xt (1 ≤ t ≤ T )
and T corresponding target output patterns Yt which are used
to train the network. The error function is defined as E =
||Yt − F (xt)|| where F is the function implemented by the
network. During the training stage, the weights, and hence
F , are successively modified, according to one of several
possible algorithms, such as backward propagation, in order
to reduce the quadratic function error E.

Regressive Support Vector Machines

As other machine learning methods, the Support Vec-
tor Machines (SVM) [33] assume a set of training data
{(x1, y1), . . . , (xl, yl)} ⊂ X × R. Accuracy here is defined
as a function f that has at most an ε deviation from targets
yi in the training data. Prediction is based on a function
f(x) : X → R defined over the input space X where
SVM learning is used to infer the parameters of this function.
Generally, for a linear SVM, this function takes the form:

f(�x;w) = 〈w, x〉+ b, b ∈ R (17)

where 〈·, ·〉 denotes the dot product and w = (w0, w1, ..., wN )T

is a weight vector.

This problem can be written as a convex optimization prob-
lem:

minimize
1

2
‖w‖2

subject to

{
yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− yi ≤ ε

(18)

Random Forests

Random forests (RF) or random decision forests are an en-
semble learning method for classification, and regression,
which operate by constructing a multitude of decision trees
at training time and outputting the class that is the mode of
the classes (classification) or mean prediction (regression) of
the individual trees.

Formally, a random forest is a predictor consisting
of a collection of randomized base regression trees
{rn(x, θm, Dn),m ≥ 1} where θ1, θ2, . . . are outputs of a
randomizing variable θ. These random trees are combined to
form the aggregated regression estimate

rn(xi, Dn) = Eθ[xi, θ,Dn] (19)

where Eθ denotes expectation with respect to the random
parameter, conditionally on xi and the data set Dn =
{(x1, y1), . . . , (xl, yl)}. The expectation function is evaluated
by Monte Carlo, that is, by generating M random trees and
taking the average of the individual outcomes.The randomiz-
ing variable θ is used to determine how the successive cuts
are performed when building the individual trees, such as
selection of the coordinate to split and position of the split.

NOMENCLATURE

ANN = Artificial Neural Network

ARIMA = Auto-regressive Integrated Moving Average

ARMA = Auto-regressive Moving Average

CMC = Central Mainenance Computer

EOL = End of Life

GLM = Generalized Linear Model

HM = Health Monitoring

KNN = K-Nearest Neighbours

LSE = Least Squares Estimation

MdAE = Median Absolute Error

ME = Mean Error

MTBF = Mean Time Between Failures

PCA = Principal Component Analysis

PRMSE = Percentage Root Mean Squared Error

RF = Random Forests

RMSE = Root Mean Squared Error

RUL = Remaining Useful Life

SVM = Support Vector Machines

t = Time (continuous)

ti = Time of prediction

tf = Time of failure

x = State vector
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