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Abstract: The use of remote sensing data for tree species classification in tropical forests is still a 
challenging task, due to their high floristic and spectral diversity. In this sense, novel sensors on 
board of unmanned aerial vehicle (UAV) platforms are a rapidly evolving technology that provides 
new possibilities for tropical tree species mapping. Besides the acquisition of high spatial and 
spectral resolution images, UAV-hyperspectral cameras operating in frame format enable to 
produce 3D hyperspectral point clouds. This study investigated the use of UAV-acquired 
hyperspectral images and UAV-photogrammetric point cloud (PPC) for classification of 12 major 
tree species in a subtropical forest fragment in Southern Brazil. Different datasets containing 
hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy height model (CHM), and 
other features extracted from hyperspectral data (i.e., texture, vegetation indices-VIs, and 
minimum noise fraction-MNF) were tested using a support vector machine (SVM) classifier. The 
results showed that the use of VNIR hyperspectral bands alone reached an overall accuracy (OA) of 
57% (Kappa index of 0.53). Adding PPC features to the VNIR hyperspectral bands increased the 
OA by 11%. The best result was achieved combining VNIR bands, PPC features, CHM, and VIs 
(OA of 72.4% and Kappa index of 0.70). When only the CHM was added to VNIR bands, the OA 
increased by 4.2%. Among the hyperspectral features, besides all the VNIR bands and the two VIs 
(NDVI and PSSR), the first four MNF features and the textural mean of 565 and 679 nm spectral 
bands were pointed out as more important to discriminate the tree species according to Jeffries–
Matusita (JM) distance. The SVM method proved to be a good classifier for the tree species 
recognition task, even in the presence of a high number of classes and a small dataset. 

Keywords: tree species mapping; tropical biodiversity; imaging spectroscopy; photogrammetry; 
support vector machine 
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1. Introduction 

Tropical forests are among the most complex ecosystems on Earth, hosting an overwhelming 
proportion of global tree diversity: approximately 53,000 tree species in contrast to only 124 across 
temperate Europe [1], they play a crucial role in biodiversity conservation and in ecological 
dynamics at global scale [2]. 

According to Viana and Tabanez [3], the Atlantic Rain Forest (Mata Atlântica) is one of the most 
endangered tropical biomes in the world, as it is reduced to less than 16% of its original area [4]. This 
biome has been particularly affected by anthropogenic disturbances, such as industrial activities, 
urbanization, and agricultural expansion, which transformed it in an archipelago of small forest 
patches embedded into a mosaic of degraded areas, pasture, agriculture, forestry, and urban areas 
[5]. Currently 1544 plant species [6] and 380 animal species [7] are endangered in this biome, and 
they represent the equivalent of 60% of the threatened species for both flora and fauna in Brazil [8]. 
Despite these threats, the Atlantic Rain Forest and its associated ecosystems (sandbanks and 
mangroves) are still rich in terms of biodiversity, containing high rates of endemism and species 
diversity, even greater than that observed in the Amazon Forest [9]. 

Due to the importance of this biome, it is crucial to build a reliable tree species mapping system 
for several applications, such as resource management, biodiversity assessment, ecosystem services 
assessment and conservation [10]. In this respect, remote sensing data represents an efficient and 
potentially economical way of inventorying forest resources and mapping tree species [11,12]. 
However, so far, few studies focused on tree species classification with remote sensing in tropical 
forests [13–19], and, in general, they have been limited to the classification of only three to eight 
dominant canopy species [14–19]. Most of the aforementioned studies reported some common issues 
that hamper tree species classification in tropical forests, such as high number of species with similar 
spectral responses, irregularly stratified canopy, overlap between canopies leading to the absence of 
clear boundaries between individual trees, and the presence of dominant and minority classes, 
resulting in an imbalanced training data set in which only a small number of samples are available 
for the less frequently occurring tree species. 

Fortunately, some of these problems could be minimized thanks to the improvement of the 
spatial resolution of the remote sensing sensors in the last decades, which enables the identification 
of isolated trees even in dense forest canopies. Hyperspectral sensors mounted on manned aircrafts, 
for instance, could provide data at both high spatial and spectral resolution, being extensively used 
in tree species classification [14,16,18,20–22]. Recently, small-format hyperspectral cameras on-board 
unmanned aerial vehicles (UAVs) have been on the spotlight and they began to be explored for tree 
species classification in boreal forests [23,24]. Compared to satellite and airborne data acquisition, 
UAV-borne methods have many advantages, such as the possibility to collect data even under poor 
imaging conditions, e.g., under cloud cover, which makes it very operational in a wide range of 
environmental measuring applications [25]; the cost-efficient data collection with the desired spatial 
and temporal resolutions; and the nondependence on airports for take-off, or satellite availability in 
the desired area [26]. As they operate at a lower flight altitude than conventional aerial platforms, 
they offer a finer spatial resolution [23]. On the other hand, UAVs have limited payload, short flight 
endurance and they present instability in windy conditions, which restrict their use in small scale 
applications [27,28]. 

Spectral UAV sensors can be built using different approaches: point, push broom, or 2D imager 
[29]. 2D imagers can be classified based on the imaging principle as the ones capturing all bands 
simultaneously (snapshot imaging), a system that synchronously records spectral bands with 
several cameras (multicamera), or as those capturing time-sequential bands [29]. Sequential band 
systems record bands or sets of bands sequentially in time, with a time lag between two consecutive 
spectral bands. These systems have often been called image frame sensors [25,29]. 

Besides the high spatial resolution and a considerable number of spectral bands, frame sensors 
record spectral data in two spatial dimensions within every exposure, opening new ways of imaging 
spectroscopy [29]. Computer vision algorithms can be used to compose a scene from individual 
images, and spectral and 3D information can be retrieved from the same data and composed to 
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(hyper)spectral digital surface models [25,30]. Indeed, they allow generation of dense 
photogrammetric point clouds (PPCs) and digital surface models (DSM), which are not available for 
conventional hyperspectral instruments based on whiskbroom or push broom scanning [31]. This 
3D information can capture differences in vertical structure among species (i.e., tree height, tree 
patterns, and leaf distributions) [24,31] that can be useful for tree species classification. However, to 
the best of our knowledge, there is no study on tree species classification using both hyperspectral 
images and derived PPC features in a tropical forest environment, while few exists in temperate and 
boreal environments, e.g. Nevalainen et al. [23] and Tuominen et al. [24]. 

Besides the data, the right choice of the classification method is also decisive for a successful 
land use and cover mapping [32]. In this respect, the current literature generally recognizes the 
support vector machine classifier (SVM) for its ability to work well with limited training samples 
[33], since it utilizes only the subset of the training samples that defines the location of the SVM 
hyperplane [34]. Some authors even suggest that data reduction is unnecessary for such classifiers 
[12]. Thus, this makes the SVM preferred in case of many tree species classes and with imbalanced 
training datasets and it has been widely used in tree species classifications [12,16,18,21,35–40]. 

In this general context, we focus our attention on the analysis of a Mixed Ombrophilous Forest 
(MOF) fragment belonging to the Atlantic Rain Forest biome. In these areas, there are often many 
tree species mixed together, including both coniferous and broadleaves. Thus, it is necessary to have 
high spatial resolution and hyperspectral data, as well as 3D information, to distinguish individual 
tree species, which can be provided by an UAV-hyperspectral camera operating in frame format. 
The main objective of this study is to test the UAV-hyperspectral images and their integration with 
3D features derived from the PPC for tree species classification using the SVM classifier. The effect of 
the applied classifier and the importance of different spectral and 3D features for tree species 
classification in this highly diverse forest were also investigated. 

2. Dataset Description 

2.1. Study Area 

The study area has an extension of approximately 25 ha and it is located in the municipality of 
Curitibanos, Santa Catarina state, south of Brazil (Figure 1), near the Marombas River. The area 
belongs to the Atlantic Rain Forest biome and shelters the MOF phytophysiognomy, characterized 
by the presence of the Araucaria angustifolia tree species. The climate, according to Köppen–Geiger 
classification, is Cfb, moist mesothermal with no clearly defined dry season, mild summers, and an 
average annual temperature of 15 °C [41]. The area is slightly steep, with an altitude ranging from 
767 m to 838 m (Digital Terrain Model-DTM of Figure 1), and it has a gradient of successional forest 
stages, presenting pioneer, early and late secondary, and climactic tree species. 
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Figure 1. Study area location. (A) Santa Catarina State. (B) Curitibanos municipality. (C) 
Hyperspectral UAV image R (535 nm) G (769 nm) B (679 nm). (D) Digital Terrain Model. 

2.2. Field Survey and Samples Acquisition 

The field surveys were conducted in December 2017 and October 2018. In the first field work, a 
survey of the area in terms of tree species diversity and structure of the forest fragment was carried 
out. The second field work was carried out after the acquisition of the UAV data, and it aimed at the 
identification of trees, the crowns of which were mostly visible in the images. The selected 
individual tree crowns (ITCs) were visited in the field and identify at species level. If there was any 
doubt about the species identification, the ITC was discarded. After that, seventy-six ITCs, 
representing 12 tree species (~80% of the dominant tree species), were then selected and identified. 
Due to the low number of samples of Ocotea puberula, this specific tree species was associated with 
the Ocotea pulchella species, composing the Ocotea sp. class. Figure 2 shows the tree species in the 
UAV-RGB image with 4 cm spatial resolution acquired to help the species recognition and the 
corresponding crown in the hyperspectral images (used in this study). The number of ITCs 
manually delineated and the corresponding number of pixels per class are shown in Table 1. 

It should be pointed out that it was conducted a careful inspection regarding the presence of 
epiphytes and lianas over the crowns, since previous studies showed the influence of these plants 
cover on crown reflectance and species discrimination at the canopy level [42]. However, despite 
being a subtropical environment, the MOF phytophysiognomy present less diversity of epiphytes 
and lianas compared to other phytophysiognomies as dense ombrophilous forest [43], which is 
possibly related to the lower rainfall indexes and the colder winters to which it is subject [44]. 



Remote Sens. 2019, 11, 1338 5 of 25 

 

 

Figure 2. Tree species classes delimitated in the unmanned aerial vehicle (UAV)-RGB image and the 
corresponding UAV-hyperspectral image. 

Table 1. Species list, number of individual tree crowns (ITCs), pixels, and average pixels per ITC. 

ID Class (Tree Species) ITCs Pixels X̄ Pixels/ITC 
1 Luehea divaricata 5 23,624 4724 
2 Araucaria angustifolia 8 27,191 3399 
3 Mimosa scabrella 7 25,449 3636 
4 Lithrae brasiliensis 5 17,458 3492 
5 Campomanesia xanthocarpa 5 18,837 3767 
6 Cedrela fissilis 5 24,368 4874 
7 Cinnamodendron dinisii 5 6927 1385 
8 Cupania vernalis 5 12,475 2495 
9 Matayba elaeagnoides 8 48,231 6029 

10 Nectandra megapotamica 8 11,247 1406 
11 Ocotea sp. 9 101,884 11,320 
12 Podocarpus lambertii 6 12,387 2064 

2.3. Hyperspectral Data Acquisition 

The flight was conducted in December 2017, at the end of the spring, by means of a quadcopter 
UAV (UX4 model) and a frame format hyperspectral camera based on a Fabry–Perot interferometer 
(FPI), model 2015 (DT-0011), belonging to São Paulo State University (UNESP). This commercial 
camera was constructed in 2015 by Senop Ltd. [45], and it comprises one irradiance sensor and one 
global navigation satellite system (GNSS) receiver. A single frequency GNSS receiver (NSRAW) was 
integrated to acquire raw data which can be postprocessed to provide the coordinates of the 
exposure station of the first band [46]. A low cost RGB camera (GoPro) was also used to provide 
higher resolution images. 

The FPI technology offers a frame-format hyperspectral imager operating on the 
time-sequential principle [47]. The camera has an adjustable air gap, which allows the acquisition of 
25 different spectral bands in the range of 500 to 900 nm with the best spectral resolution of 10 nm at 
the full width at half maximum (FWHM) [48]. While this camera allows flexibility in selecting the 
spectral bands, increasing the number of acquired bands, increases the acquisition time. In mobile 
applications, the bands in individual cubes have spatial offsets that need to be corrected in the 
processing phase (c.f. Section 3.1) [25,30,47]. The frame rate, the exposure time, the number of bands, 
and the flying height limit the flight speed in tunable filter-based systems [30]. Regarding the 
spectral bands, we opted for the configuration shown in Table 2, containing bands in the visible and 
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near-infrared regions (VNIR). This configuration was also chosen because it enabled us to compute 
some specific vegetation indices (VIs). 

Table 2. Spectral settings for the hyperspectral camera selected for this study (λ = central wavelength 
of the spectral band). 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

λ 
(nm) 

FWHM 
(nm) 

506 15.65 580 15.14 650 15.85 700 21.89 750 19.43 
519 17.51 591 14.81 659 24.11 710 20.78 769 19.39 
535 16.41 609 13.77 669 21.7 720 20.76 780 18.25 
550 15.18 620 14.59 679 21 729 21.44 790 18.5 
565 16.6 628 12.84 690 21.67 740 20.64 819 18.17 

The study area was covered by six image strips (640 m long and 65 m wide) with a forward 
overlap exceeding 70% and a side overlap greater than 60%, allowing the creation of a high spatial 
resolution PPC. The aerial survey was carried out between 12:55 and 13:16 (UTC-3) with stable 
illumination conditions and sunny weather. The characteristics of the camera, of the flight and of the 
data acquired in the study area are shown in Table 3. More details about the camera can be found in 
Miyoshi et al. [48] and Oliveira et al. [49]. 

Table 3. Characteristics of the camera, flight, and data acquired in the study area. 

Sensor CMOSIS CMV400 Sensors 
Spectral bands 25 spectral bands ranging from 506 to 819 nm 

FWHM Ranging from 12.84 to 21.89 nm 
Focal length 8.6 mm 

Field of view (FOV) 37° 
Ground sampling distance (GSD) 11 cm 

Image dimensions 1023 × 648 pixels 
Flight height 150 m 
Flight speed 4 m/s 

3. Methods 

3.1. Data Processing 

Primarily, the digital numbers (DN) of the hyperspectral images were transformed into 
radiance values with units of photon pixel−1 s−1, and then the dark signal correction was calculated 
using a black image collected just prior to the data capture with the lens covered. The software 
Hyperspectral Imager, provided by Senop Ltd., was used in this phase. 

The next step involved the geometric processing of the data by means of several steps 
performed in the Agisoft PhotoScan Professional software. The interior orientation parameters 
(IOPs) and the exterior orientation parameters (EOPs) were estimated using the on-job calibration to 
reconstruct the camera geometry and the orientation of each band, which were refined from initial 
values. The initial values for the camera positions were determined by the GNSS, comprising 
latitude, longitude, and altitude (flight height plus the average terrain height). The coordinates of six 
ground control points (GCPs) were added to the project and measured in the corresponding 
reference images. These points were previously located and surveyed in the field with lime in the 
same day of the flight, and had their coordinates collected with a GNSS RTK Leica GS15. After the 
bundle adjustment, the final errors in the GCPs (reprojection errors) were 0.03 pixels in the image 
and 0.001 m in the ground control points. Next, the orthorectification with the dense point cloud 
creation was performed. The dense matching method was used to generate the DSMs of the area 
with an 11 cm GSD. In the last stage, we generated the orthomosaics of all bands. This whole 
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procedure was repeated for each of the 25 spectral bands in order to coregister them, since due to the 
time sequential operating principle of the camera, there is a slight positioning difference among 
bands of the same image [25,48]. After that, the final discrepancies between the orthorectified image 
bands were measured based on the GCPs and four independent points chosen in the image, 
resulting in an error of ~0.03 ± 0.06 m. 

The orthomosaics of each band were merged to compose the VNIR dataset. The PPC and the 
DSM corresponding to the band of 565 nm wavelength with approximately 35 points/m2 were also 
exported in order to use them in the further steps: generation of PPC features and of the canopy 
height model (CHM). The root mean squared error (RMSE) of the DSM z value, computed with six 
GPCs, was 0.44 m. The CHM was obtained subtracting from the DSM a DTM created using the 
LAStools software [50] and airborne LiDAR data acquired by the company SAI Brasil in 2013, using 
the Optech Model 3033 sensor, with a density of 1 point/m2. 

3.2. Feature Extraction 

Six sets of features were considered in this study: (i) VNIR: the VNIR hyperspectral bands; (ii) 
MNF: minimum noise fraction [51] components extracted from the VNIR hyperspectral data; (iii) 
GLCM: gray-level co-occurrence matrix [52] textural features extracted from the VNIR hyperspectral 
data; (iv) CHM: canopy height model; (v) VI: vegetation indices; and (vi) PPC: features extracted 
from the photogrammetric point cloud. 

MNF is a well-known technique for hyperspectral imagery denoising. It transforms a noisy data 
cube into a data cube with images with steadily increasing noise levels, which means that the MNF 
output images contain steadily decreasing image quality [53]. According to Fassnacht et al. [13], this 
approach is commonly applied for tree species classification purposes [12,54–56]. On the basis of 
eigenvalue stats of the output uncorrelated bands, we selected the first eight MNF components. 

Texture-based methods are commonly used for effectively incorporating spatial information in 
image interpretation. In the case of tree crowns, texture information is mainly related to 
crown-internal shadows, foliage properties (size, density, and reflectivity), and branching [57]. In 
this study, we adopted GLCM-based textural metrics proposed by Haralick et al. [52], as it is a 
common approach used to compute texture information for vegetation types and tree species 
classification [22,58–61]. In their initial study, Haralick et al. [52] defined 14 textural features that 
were derived from the co-occurrence matrices. As these features are correlated with each other, only 
six of them are considered the most relevant for the analysis of remote sensing images: angular 
second moment (SM), contrast (con), variance (var), homogeneity (hom), correlation (cor), and 
entropy (ent) [62]. In addition to these six features, we also computed the dissimilarity (dis) and the 
textural mean (mean) since previous studies conducted by Sothe et al. [63] showed that these two 
features were among the most important ones for identifying vegetation successional stages in a 
patch of Atlantic Forest. To generate the GLCM-based textural features, it was necessary to define 
four parameters: window size, spectral bands, level of quantization, and the spatial component. The 
latter corresponds to the distance between the pixels and the angle (direction). The window size has 
an impact on the GLCM textural features’ performance for land use and cover classification. Small 
windows may amplify differences and increase the noise content in the texture image, while larger 
windows cannot effectively extract texture information due to the smoothing of the texture variation 
[64,65]. Preliminary tests using the Jeffries–Matusita (JM) distance [66] indicated that the textural 
parameters extracted using a 5 × 5 window size, in the southwest direction and at the level of 
quantization of 64 bits were the most appropriate for separating the tree species classes in our data. 
In order to select different regions of the spectrum and less correlated bands without greatly 
increasing the dataset, the textural metrics were calculated only for three spectral bands (565, 679, 
and 780 nm). 

Hyperspectral VIs have been developed based on specific absorption features in order to 
quantify biophysical and biochemical indicators. VIs allow combining information contained in 
different spectral bands and they can normalize external effects, e.g., solar and viewing angles, and 
internal effects such as soil variation or topographic conditions [67]. The first indices were meant to 
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enhance the strong reflectance of vegetation in the NIR region in relation to its marked absorption 
due to chlorophyll in the red region of the spectrum, such as the Normalized Difference Vegetation 
Index (NDVI) [68]. With the advent of hyperspectral sensors, new indices were developed, such as 
the photochemical reflectance index (PRI), the plant senescence reflectance index (PSRI), and the 
pigment specific simple ratio (PSSR) (Table 4). According to Gamon et al. [69], PRI is related to the 
changes in the xanthophyll cycle in the vegetation and the light efficiency in the photosynthesis 
process, which may not be perceived by NDVI. PSRI is sensitive to the ratio between carotenoids 
and leaf chlorophyll, which is altered during the senescence of the vegetation and also during its 
fruiting period [70], while PSSR was created for the study of chlorophyll concentration [71]. These 
four VIs, as well as MNF and GLCM features were computed using the ENVI 5.3 software. 

Table 4. Vegetation indices used in the study with their respective formulas and the references. Note: 𝜌 is the reflectance at a specific wavelength in nm. 

Vegetation Index Equation Reference 
Normalized Difference Vegetation Index (NDVI) NDVI = ఘళఱబିఘలఱబఘళఱబାఘలఱబ Rouse et al. [68] 

Photochemical Reflectance Index PRI = ఘఱయఱିఘఱలఱఘఱయఱାఘఱలఱ Gamon et al. [69] 

Plant Senescence Reflectance Index (PSRI) PSRI = ఘలళవିఘఱబలఘళఱబ  Merzlyak et al. [70] 

Pigment Specific Simple Ratio (PSSR) PSSR = ఘఴభవఘలళవ Blackburn [71] 

Six elevation metrics (Table 5) were also extracted from the UAV-PPC in order to explore the 
use of 3D information for tree species classification. The features were computed using the lidR 
package [72] of the R program [73] through an area-based approach with 0.5 m spatial resolution 
chosen to ensure that there were no missing values in the resulting data. Before this procedure, the 
PPC was normalized based on a DTM extracted from LiDAR data. 

Table 5. Features extracted from the high density photogrammetric point cloud. 

PPC Feature Description 
Zmax maximum height of all points within each pixel 

Zmean mean of all height points within each pixel 
zq90 90th percentile of height distribution within each pixel 
zq70 70th percentile of height distribution within each pixel 
zq5 5th percentile of height distribution within each pixel 

zentropy entropy of height distribution within each pixel 

3.3. Feature Selection and Datasets Composition 

In order to check the importance of each feature in the classification process, we used the JM 
distance. This distance has upper and lower bounds that vary between 0 and √2 (≈1.414), with the 
higher values indicating the total separability of the class pairs in the bands being used [74]. The JM 
distance was also associated with the searching strategy sequential forward floating selection (SFFS) 
algorithm [75] as a separability criterion in the feature selection (FS) process. In this case, the JM 
increases when the separability between the considered classes increases. When this distance 
reaches the saturation point, the features added do not increase the separability [37]. Thus, we 
selected the set of features that corresponds to the saturation point of the JM distance to compose the 
last dataset, named FSJM. A total of 13 datasets were defined for the classification step, according to 
the considered features (Table 6). The full dataset was composed by all the available features. 
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Table 6. Classification experiments according to the features used in the classification process. 

Dataset Name VNIR CHM PPC MNF GLCM VIs Total Features 
VNIR 25      25 

VNIR_CHM 25 1     26 
VNIR_PPC 25  6    31 

VNIR_PPC_CHM 25 1 6    32 
VNIR_PPC_CHM_MNF 25 1 6 8   40 

VNIR_PPC_CHM_GLCM 25 1 6  24  56 
VNIR_PPC_CHM_VIs 25 1 6   4 36 

VNIR_PPC_CHM_MNF_VIs 25 1 6 8  4 44 
VNIR_MNF_GLCM_VIs 25   8 24 4 61 

MNF_PPC_CHM  1 6 8   15 
MNF_PPC_CHM_VIs  1 6 8  4 19 

FSJM 25 1 6 7 5 4 48 
full 25 1 6 8 24 4 68 

Note: VNIR—Visible and Near-Infrared; CHM—Canopy Height Model; PPC—Photogrammetric 
Point Cloud; MNF—Minimum Noise Fraction; GLCM—Gray-Level Co-occurrence Matrix; 
Vis—Vegetation Indices; FJSM—Feature Selection Jeffries–Matusita. 

3.4. Semiautomatic Classification 

The pixel classification was carried out using a SVM classifier. The SVM algorithm [76] is a 
supervised machine learning classifier, trained to find the optimal separating hyperplane by 
minimizing the upper limit of the classification error [77]. The main characteristics of this classifier 
are (a) a high generalization ability and attainment of high classification accuracies with respect to 
other classifiers; (b) convexity of the cost function, which always allows one to reach the optimal 
solution; (c) robustness in the treatment of high-dimensional data (such as hyperspectral data); and 
(d) limited effort required for architecture design and training phase compared to other machine 
learning algorithms (such as multilayer perceptron neural networks) [38,78]. In addition, the SVM 
extracts the general parameters that allow for generalization, noise storage, and peculiarities, 
tolerating the recognition of patterns not observed during the training phase, and works well with 
limited training samples [33]. Further details of this classifier and their use with hyperspectral data 
can be found in Melgani and Bruzzone [34]. 

For mapping not linearly separable classes, SVM has different kernel functions, among which 
the radial basis function (RBF) have shown superiority in relation to other functions in several 
studies [79,80]. This kernel function has two user-defined parameters that can affect the classification 
accuracy [81]: cost (C) value used to fit the classification errors in the training data set [77] and 
gamma (g). A high value of C may produce a model overfit to the training data, while the adjustment 
of the g parameter will have an influence on the shape of the separating hyperplane [82]. Both 
parameters g and C depend on the data interval and distribution and differ from one dataset to 
another. 

A 5-fold cross validation was carried out on the samples set to tune the C and g parameters of 
the SVM. During this process, the ITC as the basic unit was respected, i.e., training and validation 
pixels of the same species came from different ITCs. The value of 100 for parameter C was found to 
be suitable for all datasets, while the g value varied between 0.0058 and 0.0283. 

In order to treat both large and small crowns equally, the same amount of pixel per ITC was 
used in the classification. This amount was based on the smallest ITC sampled (229 pixels), and the 
selection considered the pixels with highest NDVI values. This procedure also aimed at balancing 
the sample datasets and not incurring in a pseudoreplication case [83], in which a great number of 
small pixels could be considered ‘pseudoreplicas’. After that, the difference in the number of pixels 
per class varied between 1145 and 2061, much smaller than what can be seen in Table 1. 
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3.5. Accuracy Assessment and Tree Species Mapping 

The validation was conducted based on the leave-one-out-cross-validation (LOOCV) 
procedure. LOOCV is a reliable and robust method that does not depend on a particular set of 
samples, capitalizing all the available ground information, which is particularly relevant when the 
number of samples is small [84]. The method is a k-fold cross-validation computed with k = n, where 
n corresponds to the size of the original data set. Each validation set is therefore of size 1, which 
implies that the model is trained n times [84]. In this case, the model was trained 76 times, using 229 
pixels of one ITC in turn as validation set, with the remaining 229 pixels per 75 ITCs being the 
training set. The accuracy metrics were computed using all predicted values of the 229 pixels per 
ITC. 

The confusion matrices were generated on the basis of the LOOCV process. These matrices 
allowed the calculation of the following agreement indices (a) overall accuracy (OA), (b) producer’s 
accuracies, (c) user’s accuracies, and (d) Kappa index [85]. 

The overall accuracy is the total number of correctly classified samples divided by the total 
number of samples. The producer accuracy (i.e., precision) is the proportion of the examples that 
truly belong to a specific class among all those classified as that specific class. The user accuracy (i.e., 
recall) is the proportion of trees which were classified to a specific class among all trees that truly 
belong to that class [23]. The Kappa index measures the agreement of prediction with the true class. 
This metric compares an observed accuracy with an expected accuracy, considering the random 
chance of classifying correctly [85]. 

The z test was applied to the Kappa indices of all classifications with a significance level of 5%, 
i.e., a confidence interval of 95%. The value of the normal distribution of z is obtained by the ratio of 
the difference between two given Kappa indices to the difference between their respective variances 
[86]. If z > 1.96, the test is significant, and the null hypothesis is rejected, leading us to conclude that 
there exists significant difference between the obtained results. 

In the final stage, a thematic map based on the best result model was created. The nonforest 
areas were removed by a CHM mask, considering pixels values below 2 m. It should be pointed out 
that the classified map extrapolated the classification over the entire area, and we are aware that not 
all the tree species of the area were considered in the model. For less frequent occurring species and 
for the ones that are usually located below the dominant canopy layer, it was not possible to collect a 
sufficient amount of reference samples. Those species are therefore misclassified in the final map, 
but they do not appear in the confusion matrices. A probability map was also created to show the 
uncertainty variability of the classified map. 

4. Results 

4.1. Feature Selection and Variable Importance 

In Figure 3 the mean spectral radiance of each class is showed. In the region corresponding to 
the visible range (506–700 nm), the difference in radiance values of the tree species was limited. In 
the green peak region (535 to 580 nm), Matayba elaeagnoides and Cinnamodendron dinisii had the 
greatest radiance values. Araucaria angustifolia and Campomanesia xanthocarpa, on the other hand, had 
the lowest radiance values in the entire spectrum. The discrimination between tree species seems to 
be more pronounced in the NIR range (700–819 nm). However, even in this region, some groups of 
species are hardly differentiable, such as Araucaria angustifolia and Campomanesia xanthocarpa, and 
Podocarpus lambertii, Mimosa scabrella, and Ocotea sp. 
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Figure 3. Spectral radiance curves of the tree species obtained by the Fabry–Perot interferometer 
(FPI) camera. 

Figure 4 shows the importance of each feature according to the JM distance. It is evident that the 
elevation metrics extracted from the PPC are the most important features to discriminate the tree 
species classes. Other important features were the CHM, two VIs (NDVI and PSSR), the GLCM 
texture mean of the bands centered at 565 nm and 679 nm, and the first four MNFs. All the VNIR 
spectral bands showed similar JM values except for a slight increase for red spectral bands. 
Regarding the remaining features, the PPC entropy, the VIs PSRI and PRI, the last MNFs, and most 
of the GLCM features presented lower JM values compared to the other bands. 

 

Figure 4. Jeffries–Matusita distance mean among all classes according to each feature. 

Forty-eight features were selected by the FS process, comprising all the groups of generated 
features: all 25 VNIR bands, all the PPC features, the CHM, all VIs, seven MNFs, and only five 
textural features. 

4.2. Classification Accuracies 

Table 7 shows the OA and Kappa index for each dataset using the SVM classifier. The best 
result was achieved with the VNIR_PC_CHM_VIs dataset: 72.4% of OA and 0.70 of Kappa index. 
According to the z test, this result was significantly better than all datasets without the PPC features 
(i.e., VNIR, VNIR_CHM, and VNIR_MNF_GLCM_VIs), and also than the VNIR_PPC and 
MNF_PPC_CHM datasets. The poorest performance was attained by the VNIR dataset (57% of OA 
and Kappa of 0.53), which was almost equal to the results of the VNIR_MNF_GLCM_VIs (OA of 
58.7% and Kappa of 0.55) dataset. 
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The incorporation of the PPC features improved the accuracy by 11.2% when they were added 
to the VNIR dataset and by 10.9% when they were added to the VNIR_CHM dataset. The addition of 
the CHM band to the VNIR dataset led to an improvement of 4.2%. Regarding the hyperspectral 
features, the inclusion of other features (VIs, MNF, and GLCM) in VNIR_CHM_PPC dataset did not 
bring significant improvement in accuracy: 0.1% and 0.3% when added MNF or VIs, respectively, 
and a decrease of 2.1% with the inclusion of GLCM features. When these features were included in 
the VNIR dataset, an increase of 1.7% was observed. The use of all features in the full dataset resulted 
in an accuracy 1.4% smaller than that observed using the VNIR_CHM_PPC dataset. Forty-eight of 
the 68 features of the full dataset were selected in the FS process, which resulted in almost the same 
accuracy for these both datasets (full and FSJM). When VNIR bands were replaced by the MNF 
components (MNF_CHM_PPC and MNF_CHM_PPC_VIs datasets), the results were slightly worse, 
but in this case the inclusion of VIs led to an improvement of 1.7% (compared with 0.3% when added 
to the VNIR_CHM_PPC dataset). Kappa values were slightly smaller than the OA, which indicates a 
small effect of the imbalanced training dataset [22]. 

Table 7. Overall accuracy and Kappa index for each dataset associated with the support vector 
machine (SVM) classifier. 

Dataset Overall Accuracy (%) Kappa  
VNIR 57.0 0.53 

VNIR_CHM 61.2 0.58 
VNIR_PPC 68.2 0.65 

VNIR_PPC_CHM 72.1 0.70 * 
VNIR_PPC_CHM_MNF 72.2 0.70 * 

VNIR_PPC_CHM_GLCM 70.0 0.67 * 
VNIR_PPC_CHM_VIs 72.4 0.70 * 

VNIR_PPC_CHM_MNF_VIs 72.3 0.70 * 
VNIR_VIs_MNF_GLCM 58.7 0.55 

MNF_PPC_CHM 69.0 0.66 
MNF_PPC_CHM_VIs 70.7 0.68 * 

FSJM 71.8 0.69 * 
full 70.7 0.67 * 

* Best results that do not significantly differ among themselves. 

Figure 5 shows the producer’s and user’s accuracies for each tree species class. As expected, the 
tree species were not equally classified, however it can be noticed that the inclusion of PPC features 
led to a marked increase in accuracy for almost all the classes. The user’s and producer’s accuracies 
for most tree species were typically well over 70% when CHM and PPC features were included in 
the dataset. For some species such as Luehea divaricata, Nectandra megapotamica, and Podocarpus 
lambertii, the inclusion of these information markedly increased their recognition. Luehea divaricata 
presented an increase of up to 25% and 35% in user’s and producer’s accuracies, respectively, and for 
Podocarpus lambertii, the increase was up to 34% and 32%. For Nectandra megapotamica, this increase 
was up to 35% and 30%. For some species, like Araucaria angustifolia and Ocotea sp., the inclusion of 
PPC features did not lead to significant differences in user’s and producer’s accuracies. 
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Figure 5. Producer’s and user’s accuracies of tree species classes according to the dataset. 

Adding the CHM band to the VNIR dataset improved the accuracies of some classes such as 
Mimosa scabrella and Podocarpus lambertii, which were incorrectly assigned to each other in the VNIR 
dataset. However, the CHM was not as useful for discriminating some species as Nectandra 
megapotamica, Matayba elaeagnoides, and Ocotea sp., since these species tend to present similar heights 
[87]. When features derived from hyperspectral images (MNF, GLCM, and VIs) were added to the 
dataset containing VNIR bands and CHM and PPC features, the results varied little according to the 
species. 

The confusion matrices (Table 8) revealed that the incorporation of the PPC features helped to 
differentiate some specific pair classes. In the VNIR dataset, the main confusion among the species 
occurred between Nectandra megapotamica and Matayba elaeagnoides, which were were incorrectly 
classified as Ocotea sp., and Nectandra megapotamica and Matayba elaeagnoides, which were confused 
with each other. Similarly, Nectandra megapotamica presented some confusion with Cinnamodendron 
dinisii, and Matayba elaeagnoides with Cupania vernalis. In this dataset, some confusion also occurred 
among the species Mimosa scabrella and Podocarpus lambertii, and Luehea divaricata presented some 
confusion with Cedrela fissilis and Lithrae brasiliensis. When the PPC features and the CHM were 
incorporated to the dataset, these confusions were reduced for most of these species, and in 
particular for some pair classes such as Nectandra megapotamica and Cinnamodendron dinisii, and for 
Luehea divaricata and Cedrela fissilis. For the latter, this confusion was reduced to almost zero. 
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Table 8. Confusion matrices of the classification using the VNIR dataset and the dataset with the best 
result (VNIR_CHM_PPC_VIs). 

VNIR 
ID 1 2 3 4 5 6 7 8 9 10 11 12 
1 528 16 0 333 19 167 0 11 38 154 32 16 
2 3 1379 164 6 34 9 7 68 62 24 131 91 
3 0 34 1033 0 0 0 0 0 0 1 0 418 
4 166 22 0 691 48 55 0 0 23 24 53 13 
5 18 38 0 17 996 4 0 3 0 0 32 0 
6 224 5 0 22 6 679 0 116 40 45 40 21 
7 0 12 6 0 0 0 789 5 127 430 87 44 
8 7 41 0 0 12 88 2 694 146 52 31 52 
9 59 55 5 0 0 45 33 185 810 158 265 88 
10 120 26 3 55 0 46 256 36 261 763 214 124 
11 4 130 7 14 30 31 49 16 263 94 1116 58 
12 16 74 385 7 0 21 9 11 62 87 60 449 

VNIR_CHM_PPC_VIs 
ID 1 2 3 4 5 6 7 8 9 10 11 12 
1 949 0 0 308 0 0 0 0 22 48 70 23 
2 1 1357 41 9 15 10 10 43 24 45 160 103 
3 0 0 1337 0 0 0 0 0 0 1 0 212 
4 164 64 0 742 16 3 0 0 21 0 42 8 
5 0 24 0 11 1041 0 0 0 0 0 23 0 
6 8 3 0 0 0 961 0 2 133 6 37 15 
7 0 51 0 0 0 0 1047 3 109 32 73 9 
8 0 62 0 0 0 0 2 970 226 0 22 28 
9 8 64 0 4 0 116 45 119 946 197 316 19 
10 4 24 0 40 0 7 4 0 99 1295 223 57 
11 7 128 4 28 73 43 37 8 251 152 1076 16 
12 4 55 221 3 0 5 0 0 1 56 19 884 

4.3. Classification Map 

Figure 6 illustrates the final classification and the probability map with VNIR_CHM_PPC_VIs 
dataset. It was observed that the map captured the area’s successional stages gradient. In the west 
side, for instance, the vegetation is shorter and composed by pioneer tree species such as Mimosa 
scabrella. On the other hand, in the east side the vegetation became taller and denser, composed by 
late secondary and climactic tree species such as Ocotea genus and Campomanesia xanthocarpa species. 
It can be noticed as well that the Araucaria angustifolia tree species is prevailing throughout the study 
area, since it presents both pioneer and late succession characteristics [88]. The probability map 
shows that areas with low probability (i.e., high uncertainty) are mainly associated with species that 
presented more confusion in the classification result, as Ocotea sp. (Figure 6b) and Podocarpus 
lambertii. 
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Figure 6. Classified (A) and probability map (B) with VNIR_CHM_PPC_VI dataset. Zoom (a,b) 
demonstrate a high uncertainty area classified as Ocotea sp. 

5. Discussion 

5.1. Effects of Feature Selection and Data Fusion 

This study showed that the combination of UAV-PPC features with the VNIR bands led to a 
significant increase in tree species classification accuracies. The best result was achieved with the 
VNIR_PPC_CHM_VIs dataset, with 72.4% of OA, significantly better when compared with the use 
of VNIR bands alone (57% of OA). The first work involving the investigation of UAV-based 
photogrammetry and hyperspectral imaging in individual tree detection and tree species 
classification was made by Nevalainen et al. [23], in which they tested features extracted from UAV 
hyperspectral data and from PPC to classify tree species in a boreal forest, achieving 95% of OA. 
Contrary to our study, they did not find any improvement with the addition of PPC features. On the 
other hand, Tuominen et al. [24] tested the use of UAV hyperspectral data and PPC features to 
classify 26 tree species in an arboretum located in Finland and reported an increase of 0.07 in Kappa 
index when they combined the VNIR bands with 3D features (Kappa of 0.77). The aforementioned 
studies reached better or similar accuracies to our study, but none of them involved tropical 
environments. Nevalainen et al. [23] only classified four tree species in a boreal forest and, despite 
the high number of tree species, the study of Tuominen et al. [24] was conducted in an arboretum 
area with the tree species distribution in homogeneous stands, which makes the area suitable for 
testing tree species recognition both at the stand and individual tree level. Our study is the first 
study involving this type of data to classify a high number of tree species in a subtropical forest. 

Despite the study made by Nevalainen et al. [23] did not find improvements with the addition 
of PPC features, the importance of using 3D information, such as that derived from LiDAR, for tree 
species classification have been reported in several other studies. Deng et al. [89] performed the 
classification of tree species in a temperate forest and obtained an improvement of up 14% when the 
LiDAR-derived features were employed together with an RGB ortophoto. Shen and Cao [19] had an 
improvement of 0.4% to 5.6% when using both hyperspectral and airborne LiDAR features to 
classify tree species in a subtropical forest. Similarly, Piiroinen et al. [55] found an increase of 6% 
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when LiDAR features were added to the hyperspectral bands for classifying tree species in a diverse 
African agroforestry. Dalponte et al. [11] and Jones et al. [35] reported that LiDAR combined with 
hyperspectral data increased the classification accuracy of ~2%, with a greater improvement for 
some tree species. It can also be noticed in this study that the improvement was more evident for 
some species, such as Ocotea sp./Nectandra megapotamica and Luehea divaricata/Cedrela fissilis. Ocotea 
sp. class comprises two species of Ocotea genus (O. pulchella and O. puberula), which result in a more 
diverse spectral behavior. Furthermore Ocotea sp. and Nectandra megapotamica belong to the same 
family (Lauraceae), having similar spectral characteristics. In this case, the spectral similarity among 
these tree species can be solved with the inclusion of PPC features. Luehea divaricata and Cedrela 
fissilis can reach similar heights, thus, the addition of CHM band was not as useful as the inclusion of 
PPC features to discriminate them. In this case, the PPC features may captured differences in their 
crown structure, since the former has a wider and denser top with irregular branching, while the 
latter has a smaller and rounded top, with forked branching [87]. 

The inclusion of the height information (CHM) also improved accuracies, but to a lesser extent 
than PPC features: approximately 4% compared with the use of the VNIR bands alone. In the studies 
of Cho et al. [90], Naidoo et al. [91] and Asner et al. [92], the tree height derived from LiDAR was an 
important variable for mapping tree species in two completely different forest ecosystems (savannas 
and tropical forest). On the other hand, Ghosh et al. [12] concluded that there is no significant effect 
of the height information on tree species classification accuracies in a temperate forest. According to 
Fassnacht et al. [13], the canopy height per se is not a good predictor to classify tree species as the 
height of a tree varies with age, site conditions, and competition, and only to a minor degree with 
species. However, in tropical forests, this predictor can be useful to discriminate species belonging to 
different successional groups as pioneer, secondary, and climactic, since they tend to have different 
heights. In this study, there was a great confusion between Mimosa scabrella and Podocarpus lambertii 
in the datasets without the CHM information. Mimosa scabrella is considered a pioneer species, 
reaching between 4 and 18 m. Podocarpus lambertii, a late secondary tree, usually is taller, reaching 
more than 20 m [89]. For this reason, when the height information was incorporated, there was an 
increase in accuracies of these species, mainly for Mimosa scabrella. 

Araucaria angustifolia, the most frequent tree in the study area, presented stable accuracies even 
with the inclusion of 3D information, showing that even the use of the VNIR bands alone can 
discriminate this tree species. It can be observed that this species presents the lowest radiance values 
in all spectra of FPI bands (Figure 3). According to Roberts et al. [93], coniferous trees generally have 
lower reflectance values in the NIR region compared to broadleaves trees, which is closely related to 
their needle structure and the higher absorption of coniferous needles. Furthermore, crown size and 
shape of coniferous trees influence the hemispherical directional reflectance factor (HDRF) and thus 
their reflectance as well [94]. On the other hand, Podocarpus lambertii, another conifer of the area, 
tended to be more confused with some broadleaf species. This may have occurred because its shape 
is not conic as a normal pine, and its branch structure led to confusion with broadleaves species with 
small leaves, such as Mimosa scabrella. 

All the VNIR bands showed similar importance according to JM distance (Figure 4). Only 
slightly higher importance values can be noticed for four bands between 659 and 690 nm. This 
region included the chlorophyll absorption features, previously reported to contain useful 
information for the separation of tree species with hyperspectral data [18,54]. The NIR bands, 
pointed as an important region for tree species classification [15,37], did not stand out in this study. 
In this region, the tree structure has the strongest impact [95] and the changes in view angle may 
reduce the relative spectral differences between the species [23]. Furthermore, due to the limited 
spectral range of the FPI camera (506–819 nm), the complete infrared region (including SWIR) could 
not be fully tested and assessed. 

The inclusion of hyperspectral features (MNF, GLCM, and VIs) in the VNIR_PPC_CHM dataset 
did not bring significant improvement in accuracy, or even worsened with GLCM features. When all 
of them were added to the dataset composed solely by VNIR bands (VNIR_VIs_MNF_GLCM) an 
increase of 1.7% in OA was observed. This increase was also observed when VIs were added to the 
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MNF_PPC_CHM dataset. Ferreira et al. [18] reported an increase in the classification accuracy (of up 
to 5%) adding the VIs to the VNIR dataset. Maschler et al. [22] found great improvement in tree 
species classification accuracies when VIs and principal components were aggregated to the 
classifications, while the inclusion of textural metrics only had a small effect. Although it was not the 
most important spectral region according to the JM distance, the VIs containing at least one NIR 
band (PSSR and NDVI) were more important than PSRI and PRI for tree species classification. In the 
study of Naidoo et al. [93], the NDVI was also scored as one of the most important VIs to classify 
eight savanna tree species with hyperspectral data. Some studies suggested that band ratios and VIs 
generated using different band combinations [18,38,89,91] have advantages for species 
differentiation and biomass estimation because these features can reduce bidirectional reflectance 
distribution function (BRDF) errors and do not saturate as quickly as single band data [96]. The use 
of MNF features (MNF_CHM_PPC dataset) instead of VNIR bands (VNIR_CHM_PPC dataset) led 
to a decrease of 3.1% in OA. Ghosh et al. [12] and Piiroinen et al. [55] reported an improvement when 
MNF components were used instead of spectral bands, but it is worth noting that in those cases they 
had hyperspectral data with more than 100 bands. In those cases, MNF transformation reduced the 
dimensionality and redundancy inherent in high spectral resolution data and, thus, provided better 
accuracies [12]. Nevertheless, in this study the first four MNF features showed equal or even higher 
JM values than the VNIR bands. 

The use of all VNIR bands, hyperspectral features and CHM and PPC features in the full dataset 
did not improve the accuracy when compared with the datasets involving the VNIR, PPC, and 
CHM. In the FS process 48 of the 68 features were selected, resulting in a nonsignificant increase in 
accuracy when compared with the full dataset. It should be pointed out that studies that performed 
the FS in hyperspectral data for tree species classification, generally dealt with more than 100 
spectral bands [18,22,37,54,55]. However, our hyperspectral data contain only 25 bands, and thus the 
spectral information is not as redundant as when more than 100 hyperspectral bands are used. 
Furthermore, according to Fassnacht et al. [13], the FS is commonly applied to reduce the processing 
time and to enable a meaningful interpretation of the selected predictors, not necessarily resulting in 
significant increases in classification accuracies. Deng et al. [89], when testing a FS process for tree 
species classification, stated that for the same feature there were different contribution degrees to 
species classification in different loops, indicating that the importance of a feature is changeable and 
greatly depends on the combination with other features. Therefore, it is difficult to determine a 
combination of features that can benefit all tree species classes at the same time. 

5.2. Consideration about the Number of Samples, Tree Species Classes, and Classification Method 

Most previous studies concerning tree species classification using UAV (as well as airborne) 
datasets have been carried out in forests with less-diverse species structure, like boreal and 
temperate forests (e.g., [12,22,23,37,38,40,56,61,89]), in which is common to find accuracies over 85% 
(e.g., [12,38,40,89]). However, our findings are consistent with other studies involving airborne 
hyperspectral data for tree species classification in tropical forest environments. Féret and Asner [21] 
reached an OA of 73.2% using the pixel-based approach to classify 17 tree species in a Hawaiian 
tropical forest with airborne hyperspectral data, and 74.9% when they classified only 10 species. 
When testing machine learning algorithms to classify eight tree species of a subtropical forest in 
Brazil, Ferreira et al. [18] achieved an average classification accuracy of 70% using the VNIR 
hyperspectral bands. In that case, the inclusion of shortwave infrared (SWIR) bands increased the 
accuracy to 84%. Using hyperspectral data with visible, NIR and SWIR bands, Clark and Roberts [15] 
reached an OA of 71.5% in the pixel-based approach to classify seven emerged-canopy species in a 
tropical forest in Costa Rica. Regarding studies involving other high diverse environments, Piironen 
et al. [55] reached 57% of OA when classifying 31 tree species in a diverse agroforestry landscape in 
Africa. Graves et al. [97] classified 20 tree species and one mixed-species class in a tropical 
agricultural landscape in Panama and reported an OA of 62%. 

According to Ferét and Asner [21], the minimum number of samples per species required to 
perform optimal classification is a limiting factor in tropical forest studies due to the difficulty and 
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high cost of tree localization on the ground. Our study, similarly to other studies involving the 
classification of a considerable number of tree species, e.g., Féret and Asner [21], Tuominen et al. [24] 
and Piiroinen et al. [55], had only few ITC samples for some classes. This, coupled with the fact that 
not all the species were considered in the SVM model, is an obstacle to extrapolate the classification 
model over the entire area, since it may result in a map with many uncertainties (Figure 6). Even so, 
this kind of map could be used in some general ecological applications such as assessing patterns of 
species composition and abundance across environmental gradients or land management units, 
identification of areas of high or low tree cover and species diversity, identification of ecological 
groups of tree species (as pioneer, secondary, and climax) assisting the successional forest stage 
classification, and providing landscape estimates of aboveground biomass [97]. For more focused 
applications where accurate predictions of species location and identity is needed, such as 
monitoring endangered tree species (e.g., Araucaria angustifolia and Cedrela fissilis), classification and 
mapping errors may be too large. For these applications, techniques such as semisupervised 
methods where a focal group of species is identified from a background of unknown species [16,98], 
can be a better approach [97]. 

The SVM classifier proved to be a suitable choice for this study, maintaining a relatively stable 
performance with few samples, even when the complexity of the datasets increased with the 
addition of several features. This algorithm has proved to be a promising approach for tree species 
classification, having a similar [12,40] or even surpassing the Random Forest algorithm performance 
[18,37,55,56,89,99]. Some studies showed that SVM performs better than RF in the presence of small 
or imbalanced datasets. In this situation, RF tends to focus more on the prediction accuracy of the 
majority class, which often results in poor accuracy for the minority classes [37,100]. On the other 
hand, RF has the advantage of having fewer parameters to be tuned, a lower computational cost [37] 
and it is less affected by correlated variables [15]. 

This work adopted a pixel-based approach for tree species level classification. According to 
Heinzel and Koch [36], object-based approaches using individual ITCs as classification units may 
reduce the negative effects of spectral variability of pixels. However, most of studies that indicated 
advantages in object-based approaches did not use the ITC as a classification unit, but instead 
grouped the pixels into segments after the classification, using a majority class rule procedure 
[18,20,21]. Clark and Roberts [15] compared the object-based approach, composed by the mean 
spectra of each ITC, with pixel and majority rule approaches. The pixel classification had roughly the 
same performance (~70% OA) as when using the average spectra from ITCs, however the 
pixel-majority classification had much better accuracy, 87%. Féret and Asner [21] reached better 
results in an object-based approach (79.6%) when compared with the pixel classification (74.9% of 
OA) to classify tree species in a tropical forest. However, for the object-based classification, they had 
to reduce the number of classes from 17 to 10, due to the limited number of pixels and the tree 
crowns labeled to train the classifiers. Furthermore, according to the authors, the segmentation did 
not delineate ITCs correctly, but each crown was composed by several segments. 

Indeed, a proper ITC delineation in a high diversity tropical forest is a complicated task, 
because of its complex structure. In this sense, most of the published studies focusing on ITC 
delineation are concentrated in coniferous forests, since most algorithms assume a basic conical 
crown shape, which is more appropriate for conifers [101]. If an object-based methodology can 
integrate spectral information with crown-shape parameters, it will greatly assist the process of tree 
mapping and more accurately fit the needs of tropical forest ecosystem management [10,67]. 
Therefore, the production of reliable species maps in a high diversity tropical forest with 
object-based approaches is still a topic to be explored. 

5.3. Considerations about the UAV-Camera 

The use an UAV hyperspectral camera proved to be a cheap and fast way to acquire data for 
tree species classification in a highly diverse forest. When considering different UAV sensors, the 
advantages of the image frame approach over the traditional push broom or whiskbroom scanning 
approaches include the possibility to collect image blocks with stereoscopic multiple object views 
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maintaining the geometric and radiometric constraints provided by the rigid rectangular image 
geometry [25]. On the other hand, the current first-generation frame format hyperspectral cameras 
have a poorer spectral resolution (FWHM of 10 to 30 nm), and less spectral bands respect to more 
mature push broom techniques, which typically provide hundreds of spectral bands with FWHMs 
of 2 to 10 nm [102]. In the future, the spectral performance of the FPI cameras is expected to improve, 
and the latest commercial cameras already offer improved performances [29,102]. 

6. Conclusions 

This study investigated the ability of UAV-based photogrammetry and hyperspectral imaging 
for tree species classification in a subtropical forest area. The results were very promising, since the 
VNIR bands associated with PPC features had the potential to provide accurate results to classify 12 
tree species of a highly diverse and complex forest. The inclusion of PPC features to the VNIR bands 
increased the OA of 11%. The best result was achieved when the CHM and VIs were combined with 
the VNIR_PPC dataset, reaching an OA of 72.4% and a Kappa index of 0.70. 

The OA increased by 4.2% when a CHM band generated subtracting the photogrammetric 
dense surface model and the DTM derived from LiDAR data was added to the VNIR dataset. 
Among the other hyperspectral features (VIs, MNF and GLCM), two VIs (NDVI and PSSR), the first 
four MNF and the textural mean of the bands centered at 565 nm and 679 nm showed to be more 
important to discriminate the tree species according to the JM distance. In the same way, the spectral 
bands located in the red region presented a slightly higher JM distance values than other bands. The 
FS process had no significant effect in accuracies, since our original dataset can be considered small 
when compared with traditional airborne hyperspectral data. 

The SVM method proved to be a good classifier for the tree species recognition task, even in the 
presence of a small sample dataset. In further studies, a feasible approach for improving the 
classification performance might be to explore ITC delineation methods for tropical forest 
environments, associated with an object-based classification at the ITC level, and also to explore 
methods focused on imbalanced sample datasets. 

Author Contributions: Conceptualization, C.S., C.M.A., and M.B.S.; Methodology, C.S., C.M.A., M.D., M.B.S., 
and C.L.L.; Software, C.S., M.D., and M.B.S.; Investigation, C.S., C.L.L., and G.T.M.; Resources, M.B.S., V.L., 
G.T.M., and A.M.G.T.; Data Curation C.S., M.D., and M.B.S.; Writing—Original Draft Preparation, C.S. and 
M.D.; Writing—Review and Editing, All Authors; Supervision, C.M.A., M.D., and M.B.S. 

Funding: This research was funded by the Coordination for the Improvement of Higher Education Personnel 
(CAPES), under Grant nº 1578589; Excellence Academic Program (PROEX) nº 0487; Brazilian National Council 
for Scientific and Technological Development (CNPq) (153854/2016-2; 303670/2018-5; 436863/2018-9; 
313887/2018-7); the Foundation for Support of Research and Innovation, Santa Catarina State (FAPESC) 
(2017TR1762); the Sao Paulo Research Foundation (FAPESP) (13/50426-4); and FAPESC/CAPES 
(88887.178653/2018-00). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 

CHM canopy height model 
con contrast 
cor correlation 
dis dissimilarity 
DN digital number 
DSM Digital Surface Models 
DTM Digital Terrain Models 
ent entropy 
EOP External Orientation Parameters 
FOV field of view 
FPI Fabry–Perot Interferometer 
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FS feature selection 
FWHM full width at half maximum 
GCP  ground control point 
GLCM Gray-Level Co-occurrence Matrix 
GNSS global navigation satellite system 
GSD ground sampling distance 
hom homogeneity 
IOP Interior Orientation Parameters 
ITC individual tree crown 
JM Jeffries–Matusita 
LiDAR Light Detection and Ranging 
mean textural mean 
MNF minimum noise fraction 
MOF Mixed Ombrophilous Forest 
NDVI Normalized Difference Vegetation Index 
OA overall accuracy 
PPC photogrammetric point cloud 
PRI Photochemical Reflectance Index 
PSRI Plant Senescence Reflectance Index 
PSSR Pigment Specific Simple Ratio 
RBF radial basis function 
RF random forest 
SM angular second moment 
SVM support vector machine 
var variance 
UAV unmanned aerial vehicle 
VIs vegetation indices 
VNIR visible/near-infrared 

References 

1. Slik, J.W.F.; Arroyo-Rodrguez, V.; Aiba, S.-I.; Alvarez-Loayza, P.; Alves, L.F.; Ashton, P.; Balvanera, P.; 
Bastian, M.L.; Bellingham, P.J.; van den Berg, E.; et al. An estimate of the number of tropical tree species. 
Proc. Natl. Acad. Sci. USA 2015, 112, 7472–7477. 

2. Zhang, Z.; Zang, R.; Wang, G.; Huang, X. Classification of landscape types based on land cover, 
successional stages and plant functional groups in a species-rich forest in Hainan Island, China. Trop. 
Conserv. Sci. 2016, 9, 135–152. 

3. Viana, V.; Tabanez, A.J. Biology and Conservation of Forest Fragments in Brasilian Atlantic Moist 
Forest. In Forest Patches in Tropical Landscapes; Scheilas, J., Greenberg, R., Eds.; Island Press: Washington, 
DC, USA, 1996. 

4. Ribeiro, M.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How 
much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009, 
142, 1141–1153. 

5. Joly, C.A.; Metzger, J.P.; Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings 
and conservation initiatives. New Phytol. 2014, 204, 459–473. 

6. Martinelli, G.; Moraes, M.A. Livro Vermelho da Flora do Brasil; Centro Nacional de Conservação da Flora: Rio 
de Janeiro, Brazil, 2013. 

7. Paglia, A.P.; Fonseca, G.A.; Silva, J.M. A Fauna Brasileira Ameaçada de Extinção: Síntese taxonômica e 
geográfica. In Livro Vermelho da Fauna Brasileira Ameaçada de Extinção; Machado, A.B.M., Drummond, G.M., 
Paglia, A.O., Eds.; Biodiversidade, Ministério do Meio Ambiente: Ministério da Educação: Brasilia, Brazil, 
2008; pp. 63–70. 

8. Rezende, C.L.; Scarano, F.R.; Assad, E.D.; Joly, C.A.; Metzger, J.P.; Strassburg, B.B.N.; Tabarelli, M.; 
Fonseca, G.A.; Mittermeier, R.A. From hotspot to hopespot: An opportunity for the Brazilian Atlantic 
Forest. Perspect. Ecol. Conserv. 2018, 16, 208–214. 

9. Colombo, A.F.; Joly, C.A. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a 
biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 2010, 70, 697–708. 
  



Remote Sens. 2019, 11, 1338 21 of 25 

 

10. Wagner, F.H.; Ferreira, M.P.; Sanchez, A.; Hirye, M.C.M.; Zortea, M.; Gloor, E.; Phillips, O.L.; de Souza 
Filho, C.R.; Shimabukuro, Y.E.; Aragão. L.E.O.C. Individual tree crown delineation in a highly diverse 
tropical forest using very high resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 362–
377. 

11. Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LIDAR remote sensing data for 
classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. 

12. Ghosh, A.; Fassnacht, E.F.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining 
hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. 
Earth Obs. Geoinf. 2014, 26, 49–63. 

13. Fassnacht, F.E.; Latifi, H.; Stereczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. 
Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 
64–87. 

14. Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at 
leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. 

15. Clark, M.L.; Roberts, D.A. Species-level differences in hyperspectral metrics among tropical rainforest trees 
as determined by a tree-based classifier. Remote Sens. 2012, 4, 1820–1855. 

16. Baldeck, C.A.; Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E.; Kellner, J.R.; Wright, S.J. Operational 
tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS ONE 2015, 10, 
e0118403. 

17. Cao, L.; Coops, N.C.; Innes, J.L.; Dai, J.; Ruan, H. Tree species classification in subtropical forests using 
small-footprint full-waveform LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 39–51, 
doi:10.1016/j.jag.2016.01.007. 

18. Ferreira, M.P.; Zortea, M.; Zanotta, D.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Mapping tree species in 
tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. Remote Sens. Environ. 
2016, 179, 66–78. 

19. Shen, X.; Cao, L. Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and 
LiDAR Data. Remote Sens. 2017, 9, 1180. 

20. Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests 
with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. 

21. Féret, J.; Asner, G.P. Tree species discrimination in tropical forests using airborne imaging spectroscopy. 
IEEE Trans. Geosci. Remote Sens. 2013, 51, 73–84. 

22. Maschler, J.; Atzberger, C.; Immitzer, M. Individual Tree Crown Segmentation and Classification of 13 Tree 
Species Using Airborne Hyperspectral Data. Remote Sens. 2018, 10, 1218, doi:10.3390/rs10081218. 

23. Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyypa, J.; Saari, H.; 
Polonen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based 
Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. 

24. Tuominen, S.; Näsi, R.; Honkavaara, E.; Balazs, A.; Hakala, T.; Viljanen, N.; Pölönen, I.; Saari, H.; Ojanen, H. 
Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and 
Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species 
Diversity. Remote Sens. 2018, 10, 714. 

25. Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. 
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV 
Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. 

26. Paneque-Gálvez, J.; Mccall, M.K.; Napoletano, B.M.; Wich, S.A.; Koh, L.P. Small drones for 
community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. 
Forests 2014, 5, 1481–1507. 

27. Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15, 
doi:10.1007/s12518-013-0120-x. 

28. Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, 
R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision 
viticulture. Remote Sens. 2015, 7, 2971–2990, doi:10.3390/rs70302971. 

29. Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High 
Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data 
Correction Workflows. Remote Sens. 2018, 10, 1091, doi:10.3390/rs10071091. 



Remote Sens. 2019, 11, 1338 22 of 25 

 

30. Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight 
UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. 
Photogramm. Remote Sens. 2015, 108, 245–259, doi:10.1016/j.isprsjprs.2015.08.002. 

31. Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; 
Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-based photogrammetry and hyperspectral 
imaging for mapping bark beetle damage at tree-level. Remote Sens. 2015, 7, 15467–15493. 

32. Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification 
Performance. Int. J. Remote Sens. 2007, 28, 823–870. 

33. Mountrakis, G.; Im, J.J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. 
Photogramm. Remote Sens. 2011, 66, 247–259. 

34. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector 
machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790, doi:10.1109/TGRS.2004.831865. 

35. Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR data for 
species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 2010, 114, 
2841–2852. 

36. Heinzel, J.; Koch, B. Investigating multiple data sources for tree species classification in temperate forest 
and use for single tree delineation. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 101–110. 

37. Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the southern alps based on the fusion 
of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. 
Environ. 2012, 123, 258–270. 

38. Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Naesset, E. Tree crown delineation and tree species 
classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317. 

39. Heenkenda, M.K.; Joyce, E.K.; Maier, S.W.; Bartolo, R. Mangrove Species Identification: Comparing 
WorldView-2 with Aerial Photographs. Remote Sens. 2014, 6, 6064–6088. 

40. Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree Species Classification Using Hyperspectral Imagery: A 
Comparison of Two Classifiers. Remote Sens. 2016, 8, 445. 

41. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate 
classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. 

42. Kalacska, M.; Bohlman, S.; Sanchez-Azofeifa, G.A.; Castro-Esau, K.; Caelli, T. Hyperspectral discrimination 
of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy 
levels. Remote Sens. Environ. 2007, 109, 406–415, doi:10.1016/j.rse.2007.01.012. 

43. Vibrans, A.C.; Sevgnani, L.; Lingner, D.V.; de Gasper, A.L.; Sabbagh, S. Inventário florístico florestal de 
Santa Catarina (IFFSC): Aspectos metodológicos e operacionais. Pesqui. Florest. Bras. 2010, 30, 291, 
doi:10.4336/2010.pfb.64.291. 

44. Bianchi, J.S.; Bento, C.M.; Kersten, R.A. Vascular epiphytes of an Araucaria-Atlantic forest ecotone at Pico 
do Marumbi State Park, Southern Brazil. Estud. Biol. 2012, 34, 37–44, doi:10.7213/estud.biol.6121. 

45. Senop. Datasheet VIS-NIR Snapshot Hyperspectral Camera for UAVs. Snapshot Hyperspectral Camera. 
Available online: http://view.24mags.com/mera/datasheet-hyperspectralcamera (accessed on 2 August 
2018). 

46. Miyoshi, G.T.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E. Impact of reduction of radiometric 
resolution in hyperspectral images acquired over forest field. In The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1, Proceedings of the ISPRS TC I 
Mid-term Symposium “Innovative Sensing—From Sensors to Methods and Applications”, Karlsruhe, Germany, 10–
12 October 2018; International Society of Photogrammetry and Remote Sensing: Hannover, Germany, 2018. 

47. Honkavaara, E.; Rosnell, T.; Oliveira, R.; Tommaselli, A. Band registration of tuneable frame format 
hyperspectral UAV imagers in complex scenes. ISPRS J. Photogramm. Remote Sens. 2017, 134, 96–109, 
doi:10.1016/j.isprsjprs.2017.10.014. 

48. Miyoshi, G.T.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E.; Näsi, R.; Moriya, É.A.S. Radiometric block 
adjustment of hyperspectral image blocks in the Brazilian environment. Int. J. Remote Sens. 2018, 39, 4910–
4930. 

49. Oliveira, R.A.; Tommaselli, A.M.; Honkavaara, E. Geometric Calibration of a Hyperspectral Frame Camera. 
Photogramm. Rec. 2016, 31, 325–347. 

50. Isenburg, M. LAStools: Software for Rapid LiDAR Processing. Available online: 
http://www.cs.unc.edu/~isenburg/lastools/ (accessed on 7 July 2018). 



Remote Sens. 2019, 11, 1338 23 of 25 

 

51. Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms 
of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74, 
doi:10.1109/36.3001. 

52. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. 
Syst. Man Cybern. 1973, 3, 610–621. 

53. Luo, G.; Chen, G.; Tian, L.; Qin, K.; Qian, S-E. Minimum Noise Fraction versus Principal Component Analysis as a 
Preprocessing Step for Hyperspectral Imagery Denoising. Can. J. Remote Sens. 2016, 42, 106–116. 

54. Fassnacht, F.E.; Neumann, C.; Förster, M.; Buddenbaum, H.; Ghosh, A.; Clasen, A.; Joshi, P.K.; Koch, B. 
Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central 
European test sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2547–2561. 

55. Piiroinen, R.; Heiskanen, J.; Maeda, E.; Viinikka, A.; Pellikka, P. Classification of Tree Species in a 
Diverse African Agroforestry Landscape Using Imaging Spectroscopy and Laser Scanning. Remote Sens. 
2017, 9, 875, doi:10.3390/rs9090875. 

56. Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network 
classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 
50,144–154. 

57. Sayn-Wittgenstein, L. Recognition of tree species on aerial photographs. In Information Report FMR-X-118; 
Forest management Institute: Ottawa, ON, Canada, 1978. 

58. Johansen, K.; Phinn, S. Mapping structural parameters and species composition of riparian vegetation 
using IKONOS and Landsat ETM+ data in Australian tropical savannahs. Photogramm. Eng. Remote Sens. 
2006, 72, 71–80. 

59. Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-Based Detailed Vegetation 
Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogramm. Eng. Remote 
Sens. 2006, 72, 799–811. 

60. Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird 
imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. 
Remote Sens. 2008, 63, 237–250. 

61. Franklin, S.E.; Ahmed, O.S. Deciduous tree species classification using object-based analysis and machine 
learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 2018, 39, 5236–5245. 

62. Lu, D.; Li, G.; Moran, E.; Kuang, W. A comparative analysis of approaches for successional vegetation 
classification in the Brazilian Amazon. GISci. Remote Sens. 2014, 51, 695–709. 

63. Sothe, C.; Schimalski, M.B.; Liesenberg, V.; de Almeida, C.M. Approaches for classifying successional 
forest stages in São Joaquim National Park using Landsat-8 and RapidEye images. Bol. Ciênc. Geod. 2017, 
23, doi:10.1590/s1982-21702017000300026. 

64. Lu, D.; Batistella, M.; Li, G.; Moran, E.; Hetrick, S.; Freitas, C.; Dutra, L.; Sant’Anna, S.J.S. Land 
use/Cover Classification in the Brazilian Amazon using Satellite Images. Braz. J. Agric. Res. 2012, 47, 
1185–1208. 

65. Attarchi, S.; Gloaguen, R. Classifying Complex Mountainous Forests with L-Band SAR and Landsat 
Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest. 
Remote Sens. 2014, 6, 3624–3647. 

66. Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer: New York, 
NY, USA, 2006. 

67. Lin, C.; Popescu, S.C.; Thomson, G.; Tsogt, K.; Chang, C-I. Classification of Tree Species in Overstorey 
Canopy of Subtropical Forest Using QuickBird Images. PLoS ONE 2015, 10, e0125554. 

68. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, W.D. Monitoring Vegetation Systems in the Great Plains with 
ERTS; Third ERTS Symp. NASA SP-351; NASA: Texas, USA, 1973; Volume 1, pp. 309–317. 

69. Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in 
photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. 

70. Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of 
pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. 

71. Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using 
senescent tree leaves. Int. J. Remote Sens. 1998, 19, 657–675. 



Remote Sens. 2019, 11, 1338 24 of 25 

 

72. Roussel, J.R.; Auty, D.; de Boissieu, F.; Meador, A.S. LidR: Airborne LiDAR Data Manipulation and 
Visualization for Forestry Applications. Available online: 
https://cran.rproject.org/web/packages/lidR/index.html (accessed 22 August 2018). 

73. R Development Core Team. R: A Language and Environment for Statistical Computing. Available 
online: http://www.r-project.org (accessed on 20 March 2018). 

74. Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction; Springer: Berlin/Heidelberg, Germany, 
1993. 

75. Pudil, P.; Novovicová, J.; Kittler, J. Floating search methods in feature selection. Pattern Recognit. Lett. 1994, 
15, 1119–1125. 

76. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. 
77. Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a 

heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random 
forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. 

78. Steinwart, I.; Christmann, A. Support Vector Machines; Springer: New York, NY, USA, 2008. 
79. Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover 

classification. Remote Sens. 2002, 23, 725–749. 
80. Duro, D.C.; Franklin, S.E.; Dube, M.G. A comparison of pixel-based and object-based image analysis 

with selected machine learning algorithms for the classification of agricultural landscapes using 
SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. 

81. Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 
1998, 2, 121–167. 

82. Li, W.; Du, Q. Support vector machine with adaptive composite kernel for hyperspectral image 
classification. In Satellite Data Compression, Communications, and Processing XI, Proceedings of the SPIE 
Sensing Technology + Applications, Baltimore, MD, USA, 20–24 April 2015; SPIE: Bellingham, WA, USA, 2015. 

83. Hurlbert, S H. Pseudoreplication and the Design of Ecological Field Experiments. Ecol. Monogr. 1984, 54, 
187–211. 

84. Brovelli, M.A.; Crespi, M.; Fratarcangeli, F.; Giannone, F.; Realini, E. Accuracy assessment of high 
resolution satellite imagery orientation by leave-one-out method. ISPRS J. Photogramm. Remote Sens. 2008, 
63, 427–440, doi:10.1016/j.isprsjprs.2008.01.006. 

85. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. 
86. Skidmore, A.K. Accuracy Assessment of Spatial Information. In Spatial Statistics for Remote Sensing; 

Stein, A., van der Meer, F.D., Gorte, B., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 
1999; pp. 197–209. 

87. Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil; 
Plantarum: Nova Odessa, Brazil, 1992; p. 351.  

88. Soares, R.V. Considerações sobre a regeneração natural da Araucaria angustifólia. Floresta 1979, 10, 11–18. 
89. Deng, S.; Katoh, M.; Yu, X.; Hyyppä, J.; Gao, T. Comparison of Tree Species Classifications at the Individual 

Tree Level by Combining ALS Data and RGB Images Using Different Algorithms. Remote Sens. 2016, 8, 
1034. 

90. Cho, M.A.; Mathieu, R.; Asner, G.P.; Naidoo, L.; Van Aardt, J.; Ramoelo, A.; Debba, P.; Wessels, K.; Main, 
R.; Smit, I.P.J.; et al. Mapping tree species composition in South African savannas using an integrated 
airborne spectral and LiDAR system. Remote Sens. Environ. 2012, 125, 214–226. 

91. Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger 
National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining 
environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. 

92. Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Jones, M.O.; Martin, R.E.; Boardman, J.; Hughes, R.F. 
Invasive species detection in Hawaiian Rainforests using Airborne Imaging Spectroscopy and LiDAR. 
Remote Sens. Environ. 2008, 112, 1942–1955. 

93. Roberts, D.A.; Ustin, S.L.; Ogunjemiyo, S.; Greenberg, J.; Dobrowski, S.Z.; Chen, J.; Hinckley, T.M. Spectral 
and Structural Measures of Northwest Forest Vegetation at Leaf to Landscape Scales. Ecosystems 2004, 7, 
545–562. 

94. Rautiainen, M.; Stenberg, P. Application of photon recollision probability in coniferous canopy reflectance 
simulations. Remote Sens. Environ. 2005, 96, 98–107. 



Remote Sens. 2019, 11, 1338 25 of 25 

 

95. Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto da Vegetação, 2nd ed.; Oficina de 
Textos: São Paulo, Brazil, 2012. 

96. Colgan, M.S.; Baldeck, C.A.; Féret, J.-B.; Asner, G.P. Mapping savanna tree species at ecosystem scales 
using support vector machine classification and BRDF correction on airborne hyperspectral and LiDAR 
data. Remote Sens. 2012, 4, 3462–3480. 

97. Graves, S.J.; Asner, G.P.; Martin, R.E.; Anderson, C.B.; Colgan, M.S.; Kalantari, L.; Bohlman, S. Tree species 
abundance predictions in a tropical agricultural landscape with a supervised classification model and 
imbalanced data. Remote Sens. 2016, 8, 161, doi:10.3390/rs8020161. 

98. Baldeck, C.A.; Asner, G.P. Single-species detection with airborne imaging spectroscopy data: A 
comparison of support vector techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 2501–2512. 

99. Burai, P.; Deak, B.; Valko, O.; Tomor, T. Classification of herbaceous vegetation using airborne 
hyperspectral imagery. Remote Sens. 2015, 7, 2046–2066. 

100. Chen, C.; Liaw, A.; Breiman, L. Using Random Forest to Learn Imbalanced Data; University of California, 
Berkeley: Berkeley, CA, USA, 2004. 

101. Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and 
Delineation—Evolution of LiDAR Data. Remote Sens. 2016, 8, 333, doi:10.3390/rs8040333. 

102. Honkavaara, E.; Eskelinen, M.A.; Pölönen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; 
Litkey, P.; Rosnell, T.; et al. Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production 
Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a 
Small Unmanned Airborne Vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 
doi:10.1109/TGRS.2016.2565471. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


