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Abstract: Transfer learning reuses a pre-trained model on a new related problem, which can be useful for monitoring 

large areas such as the Amazon biome. A given object must have similar spectral characteristics in the data used for 

this type of analysis, which can be achieved using relative calibration techniques. In this article, we present a relative 

calibration process in multitemporal images and evaluate its impacts on a subpixel classification process. MODIS 

images from the Amazon region, collected between 2013 and 2017, were relatively calibrated using a 2012 image as 

reference and classified by transfer learning. Classifications of calibrated and uncalibrated images were compared 

with data from the PRODES project, focusing on forest areas. A great variation was observed in the spectral responses 

of the forest class, even in images of proximate dates and from the same sensor. These variations significantly 

impacted the land cover classifications in the subpixel, with cases of agreement between the uncalibrated data maps 

and PRODES of 0%. For calibrated data, the agreement values were greater than 70%. The results indicate that the 

method used, although quite simple, is adequate and necessary for the subpixel classification of MODIS images by 

transfer learning. 

Keywords: Relative Calibration. Image Time-series. Samples Extension. Subpixel Analysis. Land Cover 

classification.  

 

Resumo: O aprendizado por transferência reutiliza um modelo pré-treinado em um novo problema relacionado, o 

que pode ser útil para monitorar áreas extensas como o bioma Amazônia. Para tal, é importante que um determinado 

objeto possua características espectrais semelhantes nos dados utilizados, sendo que variações nesses valores podem 

ser minimizadas com técnicas de calibração relativa. Neste artigo, apresenta-se um processo de calibração relativa em 

imagens multitemporais e como essa calibração impacta processos de classificação subpixel. Imagens MODIS da 

região Amazônica, coletadas entre 2013 e 2017, foram relativamente calibradas usando uma imagem de 2012 como 

referência e classificadas por apredizado por transferência. As classificações de imagens calibradas e não calibradas 

foram comparadas com dados do projeto PRODES, com foco nas áreas de florestas. Observou-se grande variação nas 

respostas espectrais da classe floresta, mesmo em imagens de datas próximas e do mesmo sensor. Essas variações 

impactaram significativamente nas classificações de cobertura da terra no subpixel, com casos de concordância entre 

os mapas de dados não calibrados e PRODES de 0%. Para os dados calibrados, os valores de concordância foram 

superiores a 70%. Os resultados indicam que o método utilizado, embora bastante simples, seja adequado e necessário 

para a classificação subpixel de imagens MODIS por transferência de aprendizado. 

Palavras-chave: Calibração Relativa. Série Temporal de Imagens. Extensão de Amostras. Análises Subpixel. 

Classificação da Cobertura da Terra. 
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1 INTRODUCTION  
 

Land cover changes in Amazon can impact important ecosystem elements such as the carbon and 

hydrological cycles, as well as regional and global climatic balance (FOLEY et al., 2017). Because Amazon’s 

importance to central aspects of the Earth System functioning and human sustenance (CHHABRA et al., 2006), 

mapping and monitoring land cover changes in this region is crucial to understand and mitigate the impacts of 

human actions and to better plan public policies. 

Orbital remote sensing images are one of the main data used for land cover monitoring in Amazon, as 

evidenced by many projects dedicated to this task (DINIZ et al., 2015; ALMEIDA et al., 2016; INPE, 2019). 

Many of these projects have been conducted using medium-resolution optical remote sensing data, which can 

be unavailable due to atmospheric conditions and cloud cover during certain times of the year. One solution to 

this problem is to select cloud-free images sensed by high-temporal resolution sensors, such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS), onboard the AQUA and TERRA satellites.  

MODIS data are collected with daily revisits and provided at no cost (JUSTICE et al., 2002), which 

enhances the chances of finding suitable images to use on a specific date. However, MODIS data present 

coarse spatial resolution (231 m) that led to the mixture of the spectral information of target land cover classes 

in the same pixel, resulting in mixed pixels (FOODY, 2004). Since a single land cover class cannot be 

appropriately assigned to a mixed pixel, the monitoring and adequate detection of changes are hindered in this 

type of data. The typical solution for the mixed pixel problem is performing a subpixel analysis (ZHANG, 

1998; FOODY, 2004). 

Subpixel analyses are those in which information about the land cover is extracted at a scale finer than 

the pixel resolution. Many approaches for subpixel analysis have been proposed in the literature, and subpixel 

scale information is usually represented as some measure of the proportion of each class in the pixel (FOODY, 

2004). Following this principle, it is possible to define different class typologies composed by different 

proportions of land cover classes, usually identified with higher spatial resolution images, and use these 

typologies as the actual classes to be analyzed in the images with lower spatial resolution. Collecting labeled 

samples (necessary for supervised classification, for example) of this type of class is only possible with 

extensive field data collection or the availability of higher spatial-resolution data, which generally is not the 

case for extensive time-series analysis. This detailed data usually is only available for a few dates, from which 

the spectral information can, potentially, be collected and used to classify images from different dates. This 

process is known as signature extension, spectral extensibility,  generalization of training samples 

(WOODCOCK et. al, 2001), or transfer learning (DEMIR; BOVOLO; BRUZZONE, 2012). The effectiveness 

of this method is highly dependent on the radiometric consistency of images (OLTHOF; BUTSON; FRASER, 

2005). However, the radiometric consistency between separate images from any given optical sensor is 

difficult to maintain, due to different atmospheric conditions, variations in the solar illumination, variations 

within the sensor in time (DU; TEILLET; JOSEPH, 2002), and phenological changes. These differences may 

be minimized in a preprocessing step known as radiometric calibration (YUAN; ELVIDGE, 1996; YANG; 

LO, 1996). 

Radiometric calibration techniques are usually divided into two main categories: absolute and relative. 

In absolute radiometric calibration, measures related to physical characteristics of targets in Earth surface, 

usually expressed as radiance or reflectance values, are calculated using models based on sensor calibration 

coefficients, atmospheric/imaging conditions, and/or ground truth data (DU; TEILLET; JOSEPH, 2002; 

HU; LIU; JIAO, 2011). This type of calibration, although indispensable for deriving physical properties of 

land objects, does not, generally, permit the use of transfer learning to classify imagery for dates where one 

does not have training data, mainly because of phenological changes between dates. Transfer learning is a re-

use of a pre-trained model in a new related problem; in this case, aiming to classify an image of different dates, 

but using the same sensor and classes. The process of transferring classification models estimated in one date 

to another one requires that the class patterns occupy the same region in the feature space. Phenological 

changes alter the feature space, precluding the classification models’ re-use. Relative radiometric corrections, 

however, can be used to normalize the feature space. In these cases, images are normalized to a reference 

image, based on a given set of statistical parameters. These parameters may vary depending on the used 

https://www.spiedigitallibrary.org/profile/notfound?author=Yong_Hu
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method, being the most common ones the adjustment of average and standard deviation values, histogram 

matching, and application of gain and offset values by linear regression (DU; TEILLET; JOSEPH, 2002; 

HU;  LIU; JIAO, 2011; PONZONI; SHIMABUKURO, 2007). 

The relative calibration of remote sensing data is an established practice and has been used in many 

types of research (HALL et al., 1991; CHANDER; MEYER; HELDER, 2004; PAHLEVAN; SCHOTT, 2012). 

The impacts of using these techniques for transfer learning, however, have not been fully analyzed, mainly 

because traditional softwares do not permit the training of the classifier independently of the image to be 

classified. In this sense, it is also not usual to use multi-resolution imagery to define different typologies to be 

used to classify mixed pixels in images of lower spatial resolution.  Given this scenario, the present study aims 

to evaluate the classifications obtained by transfer learning, after relative calibration results of a MODIS time-

series composed of six images from 2012 to 2017, covering a region within the Brazilian Amazon. A new set 

of tools, named Subpixel Analysis Tools (SPAT) and explained in Section 2, was used to perform the 

experiment. SPAT reunites important tools to enable subpixel and transfer learning analyses that were very 

expensive to perform previously. Therefore, the present research presents some important contributions: 1) the 

formalization of a methodological protocol for the subpixel classification of remote sensing image time-series 

using the proportion of land cover classes, instead of land cover elements, which allows for a more intuitive 

perception of change in classes of interest; 2) the land cover classes, class proportion, and used datasets have 

been adapted for a study case in Amazon, which highlights specific needs for future work in real monitoring 

situations; and 3) it presents a new set of tools that may facilitate the use of transfer learning and/or subpixel 

analysis in other remote sensing works. The study area, methods, and data used for subpixel analysis are also 

explained in Section 2. The results are presented and discussed in Section 3. Conclusions and suggestions for 

future works are drawn in Section 4. This manuscript is an extended, updated, and improved version of Moreira 

et al. (2019), presented in the XX Brazilian Symposium on GeoInformatics (GEOINFO 2019). 

 

2 MATERIALS AND METHODS 
 

In this study, we calibrated and classified six MODIS images collected over a region within Brazilian 

Amazon, described in Section 2.1, using different methods implemented in SPAT and the auxiliary data 

described in Sections 2.2 and 2.3. The used methodology encompassed 5 basic steps: 1) the exploratory 

analysis of data (Section 2.4); 2) the relative calibration of the MODIS image time-series. This step was 

conducted using simple linear regression models and labeled samples of pure pixels, which were collected 

using auxiliary higher resolution images of proximate dates (Section 2.5); 3) the determination of land cover 

typologies, based on the clustering analysis of the proportion of land cover classes in a higher resolution land 

cover map (Section 2.6); 4) the use of labeled samples of these typologies to train supervised classifiers used 

to classify all images of the MODIS time-series (Section 2.6); and 5) evaluation of results. The methodology 

used is summarized in the flowchart from Figure 1 and explained in Sections 2.4 to 2.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.spiedigitallibrary.org/profile/notfound?author=Yong_Hu
https://www.spiedigitallibrary.org/profile/Liangyun.Liu-13154
https://www.spiedigitallibrary.org/profile/Quanjun.Jiao-84622


Rev. Bras. Cartogr, vol. 72, n. 4, 2020                           DOI: http://dx.doi.org/10.14393/rbcv72n4-54044  

   

 561 

Figure 1- Methodological flowchart. 

 
Source: The authors (2020). 

 

2.1 Study area 
 

The study area is located in the Belterra and Santarém municipalities, both in the southwest of Pará 

state in Brazil, as illustrated in Figure 2. This area covers a subset of the National Tapajós Forest, part of the 

Tapajós River, and part of the BR-163 highway. It is a highly dynamic and heterogeneous area that presents 

patches of secondary vegetation, pasture, and agriculture within the forest matrix, thus being adequate for the 

proposed analysis. In this area, we can identify four major land cover classes (REIS et al., 2018): Forest, 

Pasture/Agriculture, Bare Soil, and Water. 
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Figure 2 - Location of the study area concerning political-administrative limits, along with a MODIS image from 

August 04, 2012. 

 
Source: The authors (2020). 

 

2.2 Remote sensing images and land cover data collection 
 

In this section, we present the remote sensing images used in this study. We calibrated one MODIS 

image from each year between 2013 and 2017 using another MODIS image from 2012 as reference. 

Additionally, five Landsat-08/Operational Land Imager (OLI) images, one ResourceSat-01/ Linear Imaging 

Self-Scanner (LISS) image, and two more MODIS images were also used as auxiliary data. Auxiliary MODIS 

images were only used to analyze the spectral behavior of an unchanged forest region on consecutive 

observations, as detailed in Section 2.4. OLI images were used to collect labeled samples for the relative 

calibration process (Section 2.5). The LISS image was classified in four land cover classes and this 

classification was used to determine the typologies for the subpixel analysis, as explained in Section 2.6.  

The dates of the used images are presented in Chart 1. The choice of date was made to maximize 

proximity among dates and to minimize cloud cover. MODIS images were acquired from the tile h12v09 in 

MOD09GQ (bands Red and NIR) and MOD09GA (bands Blue and MIR), with respectively 231 m and 462 m 

of spatial resolution, from the Land Processes Distributed Active Archive Center (LP DAAC). These bands 

were selected empirically, based on the good results previously obtained by the research group using different 

MODIS products. ResourceSat-01/LISS and Landsat-08/OLI images, respectively with 23 m and 30 m of 

spatial resolution, were downloaded from National Institute for Space Research (INPE) catalog.  
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Chart 1 – Used images. Dates are expressed as day/month/year. 

MODIS time-series 
Auxiliary images 

MODIS Higher spatial-resolution 

04/08/2012 (reference) 01/08/2012 ResourceSat-1/LISS: 01/08/2012 

04/08/2013 02/08/2012 Landsat-08/OLI: 25/09/2013 

29/09/2014  Landsat-08/OLI: 30/10/2014 

16/07/2015   Landsat-08/OLI: 29/07/2015 

30/06/2016   Landsat-08/OLI: 15/07/2016 

17/07/2017   Landsat-08/OLI: 18/07/2017 

Source: The authors (2020). 

 

The geometric adjustment of MODIS, ResourceSat-01/LISS, and Landsat-08/OLI images was 

checked. Since MODIS and Landsat-08/OLI data were found to be suitably aligned, the ResourceSat-01/LISS 

image was registered to MODIS data using a first polynomial transformation and nearest neighbor resampling 

method, using ENVI version 4.7 image processing software (Exelis Visual Information Solutions, Boulder, 

Colorado). The images from the MOD09GA product were re-sampled to 231 m of pixel size and then stacked 

with those from MOD09GQ using ENVI version 4.7. 

 

2.3 SubPixel Analysis Tools - SPAT 

 

SPAT is a set of tools focused on different steps of subpixel analysis, developed using the open-source 

TerraLib library (CÂMARA et al., 2008) and available for free download. The current version, namely 

SPAT_0_1_12-alpha-develop (CASTEJON, 2017), is composed of five modules illustrated in Figure 3. These 

are:  

 

a) Classproportions: creates a synthetic image with a given pixel size based on a classified image 

of higher spatial resolution. Each pixel in the generated image depicts the proportion of land cover 

classes in the corresponding areas in the classified images. Each class is represented in one channel; 

b) Clusteranalysis: computes the cluster statistics of a classified image, i.e. the average vector 

and the covariance matrix used to train the classifiers based on transfer learning, depending on the 

selected classification method; 

c) Rastercalibration: performs the relative calibration in one or more images, using another one 

as the reference. Samples of correspondent classes are collected over the reference image and those to 

be calibrated. These samples are used to calculate values of gain and offset to be applied in the images 

to be calibrated. Current calculation methods include normalization of average and standard deviation 

and simple linear regression by the least square error method; 

d) Classifier: applies supervised or unsupervised classification algorithms to classify one image. 

Supervised classifiers are configured to use training samples collected over an independent image, 

which allows the use of transfer learning. Maximum Likelihood Classifier, Minimum Distance 

(Euclidian), K-Means and ISOData classifiers are implemented; 

e) Changeanalysis: detect changes between pairs of classified images (post-classification 

comparison method). It is possible to define specific transitions as change and the tool provides the 

relative amount of changed pixels. 

 

The parameters used in the present study are detailed in Chart 2.  
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Figure 3- Modules in SPAT. 

 
Source: The authors (2020). 

 
Chart 2 – Input and parameters for each module in SPAT. 

  Input Parameters Input used in this research 

Classproportions 

Image of low resolution  

- 

MODIS image from 2012 

Land cover classification 

Classification of the 

ResourceSat-01/LISS 

image 

Grouping factor Value of pixel proportion 100% 

Cluster analysis 
Map of typical clusters 

- 
Map of typical clusters 

Reference image of low resolution MODIS image from 2012 

Raster calibration 

Reference image 

- 

MODIS image from 2012 

Uncalibrated image MODIS image (2013 to 2017) 

Labeled samples from the reference 

image  

Labeled samples of 3 land 

cover classes 

Labeled samples from uncalibrated image 
Labeled samples of 3 land 

cover classes 

Calibration method 

1 – equalization of average 

and standard deviation; 

2- linear regression (least 

square method) 

2 -linear regression (least 

square method) 

Classifier 

Image for classification 

- 

MODIS images (2012 to 2017) 

Training samples  
Clustering of 2012 land cover 

classification 

Method 
ED= Minimum Distance and 

MV= Maximum Likelihood 

ED and MV 

Source: The authors (2020). 
 

2.4 Exploratory analysis of data 
 

As previously explained in Section 1, remote sensing images from the same sensor can present 

variation in signal values that are not related to changes in the land cover, even for proximate dates. A 
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preliminary analysis of the MODIS images from 2012 was performed to assess this variation. We selected 576 

pixels that corresponded to forested areas of no change in three images of very proximate dates (August 01, 

02, and 04). We then analyzed variations in the digital number values of each band from the uncalibrated 

images. The values from each band were illustrated as line graphics and analyzed in terms of values variation 

in time and space.   

  

2.5 Relative calibration 
 

Each one of the five MODIS images from 2013 to 2017 was radiometric calibrated using the MODIS 

image from 2012 as reference. For each band of each image, we calculate the average value of digital numbers 

for each one of the three classes ‘Forest’, ‘Pasture/Agriculture’, and ‘Bare Soil’, using the labeled samples of 

the respective years. Labeled samples of ‘Water’ were not used in this step because of the presence of many 

pixels of no value. The collection of labeled samples was done over the Landsat-08/OLI images, so the selected 

regions do not represent mixed classes in MODIS images, as illustrated by Figure 4. 

Based on Du, Teillet and Joseph (2002),  we assumed that pixels of the same classes sampled at two 

different times are linearly related. We calculated the average value of the pixels of each class in each band of 

the MODIS image of each date. From these values, we used the least square method to fit a straight line that 

relates the uncalibrated image band to the reference image (MODIS 2012) by a value of gain and offset, as 

illustrated in Figure 5. Relative calibration was performed by the application of these gain and offset values. 

The results of the calibration process were evaluated by comparing the average and standard deviation values 

from each class before and after calibration.  

 

Figure 4 – Selection of labeled samples of 3 land cover classes. 

 
Source: The authors (2020). 
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Figure 5 - Illustration of the relative calibration method used, in which Y = reference value, x = adjust image, a 

= Gain value, b = Offset value, µBS = average value of Bare Soil, µF = average value of Forest, µPA = average value 

of Pasture/Agriculture. 

 

 
Source: The authors (2020). 

 

2.6 Typology definition and time-series classification 
 

We generated a land cover map from 2012 containing the four land cover classes, by the classification 

of the ResouceSat-1/LISS image. The classes ‘Water’, ‘Forest’, ‘Agriculture/ Pasture’, and ‘Bare Soil’ were 

classified using a Maximum Likelihood Classifier and the correspondent labeled samples. From this map, we 

calculated the proportion of each land cover class in the 231 m pixels of the 2012 MODIS image. These 

proportions were then grouped in 11 clusters using the Isodata algorithm and the parameters confidence level 

= 5% and number of iterations = 20, following previous results presented in Moreira et al. (2018). These 

clusters are related to different typologies of mixed pixels and will be referred to as ‘proportion clusters’ in 

this study. 

The proportion clusters were then used to train the two classifiers within Classifier (Maximum 

Likelihood and Minimum Euclidian Distance), later used to classify the MODIS images from 2013 to 2017. 

We classified both the calibrated and original images, to assess the impacts of calibration in the classification 

process. 

 

2.7 Evaluation of the results 
 

We analyzed the resulting proportion clusters and identified those that had a correspondent class within 

the data from the System for Monitoring the Brazilian Amazon Forest by Satellite, also known as PRODES. 

For this task, we then randomly selected 320 random points in PRODES data from 2017, since these areas can 

be considered as forest in all the analyzed dates, and evaluated the percentage of these samples that were 

classified as each one of our used typologies. 

 

3 RESULTS AND DISCUSSION 
 

3.1 Signal variation in 2012 images of proximate dates 
 

The values of labeled samples of Forest class collected in the MODIS images from 2012 are illustrated 
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in Figure 6. This figure shows 576 pixels in areas that did not suffer any change in land cover. As can be seen, 

these pixels can present distinct values in images of very proximate dates (less than three days of difference). 

Nonetheless, the format of the curves of each channel is similar for different dates, which indicates that the 

simple application of a linear transformation is capable to diminish the observed differences. Furthermore, it 

is possible to see that differences in the values vary depending on the observed band, further justifying the 

need to normalize data band by band.  

 

Figure 6 - Variation of signal in samples from Forest class in MODIS images from 2012 represented by the ordered 

reading of 576 pixels 

 
Source: The authors (2020). 

 

3.2 Effects of radiometric calibration on signal 
 

Chart 3 and Figure 7 present the average values of samples for each class before and after calibration, 

with the values of the reference image for comparison. Overall, the majority of values were adjusted to decrease 

the difference between the calibrated image and the reference. Nonetheless, there are some cases in which the 

difference between these values increased, such as occurred for the Red and MIR bands for the Bare Soil class 

in 2016 and 2017. Although this type of behavior for single classes is expected given the mathematical 

approach of the calibration model, analysis with more than three classes may reveal other characteristics. 

As can be seen in Chart 3, there are significant differences among the average values for labeled 

samples of the same targets of uncalibrated and reference images. The relative calibration process was effective 

in decreasing these differences, which is an essential feature for the application of transfer learning. These 

results can be more easily observed in Figure 7, in which the average values for samples of each class, before 

and after calibration, are represented along with the average value of the samples of each class in the reference 

image.  As can be seen, the most dramatic adjustment was conducted for the images of 2013 and 2014, which 

presented a higher variation in the average of each class. It is also worth note that the band NIR presented very 

varied values for each year in uncalibrated images. The calibration process was particularly effective for this 

band since results show much more standardized values. 
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Chart 3 – Average values of labeled samples of each class in reference, calibrated, and uncalibrated images. 

  AVERAGE FOREST 
AVERAGE 

PASTURE/AGRICULTURE 
AVERAGE BARE SOIL 

  Red NIR Blue MIR Red NIR Blue MIR Red NIR Blue MIR 

Reference 

Image 
206.83 2877.60 147.80 433.54 442.57 3137.41 258.27 826.91 1540.97 2520.32 650.42 2184.21 

2013 

uncalibrated 
282.09 3584.98 199.23 573.38 493.67 4092.49 299.84 842.51 914.76 3872.19 411.57 1141.14 

2014 

uncalibrated 
468.47 4527.67 330.28 886.09 880.47 4038.76 523.74 1473.38 2258.46 3770.46 1177.60 3105.40 

2015 

uncalibrated 
270.54 3225.29 201.02 551.50 490.58 4222.59 293.01 824.78 1325.32 2945.43 555.41 1937.00 

2016 

uncalibrated 
236.65 3022.51 158.79 549.56 387.50 4209.84 234.66 788.09 1534.33 2783.02 613.53 2263.30 

2017 

uncalibrated 
177.42 2800.79 121.93 392.30 351.27 3410.27 206.17 742.41 1306.24 2474.16 592.09 2122.01 

calibrated 

2013 
116.76 2732.50 103.05 280.63 577.91 2948.24 343.32 1117.63 1495.71 2854.59 610.12 2046.40 

calibrated 

2014 
173.46 2990.28 145.80 401.63 485.93 2819.41 260.87 870.31 1531.00 2725.64 649.83 2172.73 

calibrated 

2015 
186.66 2743.65 138.64 456.47 468.07 3166.76 270.65 798.36 1535.66 2624.92 647.21 2189.84 

calibrated 

2016 
246.55 2730.15 160.68 506.75 397.63 3162.16 242.81 741.87 1546.20 2643.01 653.00 2196.05 

calibrated 

2017 
221.55 2785.75 157.62 452.10 425.17 3169.46 246.31 803.65 1543.65 2580.12 652.56 2188.92 

Source: The authors (2020). 

 

Figure 7- Average values of each land cover class from MODIS data. These values are scaled by 10,000. 

 
Source: The authors (2020). 
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3.3 Classification of images from 2013 to 2014 
 

The 11 proportion clusters obtained from the clustering of the land cover classification of 2012 were 

overlaid on the MODIS image from 2012 (reference) and used as labeled samples to train the classifiers. These 

clusters were used to train two classifiers and to classify the MODIS time-series. Given the high quantity of 

pixels without values (No data) in the MODIS time-series over areas of water, the proportion clustering 7 was 

extracted from 2012 and masked over the classifications of the remaining years. The classification results from 

2013, and 2014 are presented in Figures 8 and 9, for illustration, along with the reference map from 2012. 

 

Figure 8- MODIS classification results using the Minimum Euclidian Distance Classifier. In which F= Forest, 

W=Water, PA=Pasture/Agriculture, and BS=Bare Soil. 

 
Source: The authors (2019). 

 

Figure 9 – MODIS classification results using the Maximum Likelihood Classifier. In which F= Forest, W=Water, 

PA=Pasture/Agriculture, and BS=Bare Soil. 

 
Source: The authors (2019). 

 

For the results of both classifiers, it is possible to notice that the calibration process greatly enhances 

the classification of Cluster 5, which represents areas predominantly occupied by Forest. When classifying the 
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original images with training samples collected over the reference data, this class is misclassified to varied 

Clusters depending on the analyzed year and used classifier. This effect was further assessed by the comparison 

of the classified images to PRODES data. Note that Cluster 5 is correspondent to the class Forest in PRODES 

data. The concordance between the classifications of the years 2013 a 2017 and Forest class in PRODES data 

are presented in Chart 4. Please notice that correspondent classes are highlighted in bold font. In this chart, 

only results of the Maximum Likelihood classifier were presented. 

 
Chart 4 – Ratios of agreement between the proportion cluster 5 (98%F) and Prodes Forest areas. In which 

U=Uncalibrated images, and  C=Calibrated images. 

Class proportion 
2013 2014 2015 2016 2017 

U C U C  U C  U C 

1 - (60%BS, 28%PA, 11%F) 2 11 28 8 2 1 2 4 2 2 

2 - (56%PA, 36%BS) 1 0 0 1 1 1 1 1 1 3 

3 - (61%PA, 34%F) 167 1 0 0 33 1 78 55 3 9 

4 - (34%PA, 63%F) 29 6 69 8 5 13 52 125 2 3 

5 - (98%F) 66 229 0 286 260 284 86 91 304 296 

6 - (60%W, 35%F) 7 48 2 4 6 2 17 15 2 2 

7 - (99%W) 0 0 1 0 0 0 0 0 0 0 

8 - (93%BS) 1 21 14 9 1 13 0 0 1 2 

9 - (46%F, 27%BS, 25%PA) 1 3 173 1 2 2 12 1 2 1 

10 - (91%PA) 0 0 1 2 1 1 6 1 0 2 

11 - (82% PA, 15%F) 46 1 32 1 9 2 66 27 3 0 

Total random points 320 320 320 320 320 320 320 320 320 320 

Of Agreement rate 21% 72% 0 89% 81% 89% 27% 28% 95% 93% 

Source: The authors (2020). 

 

As can be seen, the use of the relative calibration method improved the classification of the Forest 

98% class for the majority of the analyzed images. This result was particularly expressive for years 2013 and 

2014, in which the agreement rate improved from 21 to 72% and 0 to 89%, respectively. For the remaining 

years, the difference in classification was less expressive, with a slight decrease in the agreement rate for the 

year 2017.  

By the analysis of Chart 4, it is also possible to observe that the main misclassifications of Cluster 5 

(98% Forest) in original images varies depending on the analyzed date. In 2013, for example, this class is 

mainly misclassified as Clusters 3 (61% Pasture/Agriculture, 34% Forest) and 11(82% PA, 15% Forest). For 

2014, this cluster was confused with Cluster 9 (46% Forest, 27% Bare Soil, 25% Pature/Agriculture) and 4 

(34% Pasture/Agriculture, 63% Forest). 

 The year 2016 is particularly interesting for this type of analysis, because of intrinsically differences 

in the characteristics of the forested areas. This year is marked by the existence of a large scale fire that changed 

the structure of forest class without changing the overall classification as forest. In this sense, we observe that 

although the agreement with PRODES data remained low (27 and 28% for uncalibrated and calibrated data, 

respectively), the use of calibrated images led to a more realistic classification: using calibrated images, these 

areas of degraded forests were classified almost evenly as any type of clustering that contained Forest and 

Pasture/Agriculture classes in any proportion whereas the classification of the calibrated images returned main 

clusters 4 and 5, which are dominated by forest classes. In this sense, this type of analysis may be useful to 

evaluated forest degradation, by the identification of a decrease in the forest percentage within classified 

clusters. 

 

4 CONCLUSIONS 
 

In the present study, we assessed the impacts of using relatively calibrated images for subpixel 

supervised classification of a MODIS time-series using generalized training data for one reference MODIS 

image. Image calibration was performed by the application of a simple linear regression model over average 

values of labeled samples of land cover classes. Overall, the calibration process was effective in decreasing 

the spectral differences between images of different dates in areas of correspondent land cover. 

We showed that there may be great variance in the spectral response of same-class targets on the 
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Earth’s surface even in images of the same sensor and very proximate dates. Furthermore, these differences 

can greatly impact the performance of supervised classification when using transfer learning in subpixel 

analysis. As evidenced by the comparison of the classified maps and PRODES data, the supervised 

classification of Forest predominant classes was very poor when based on labeled samples of other images and 

uncalibrated MODIS data, with agreement rate as low as 0%. However, these results were dramatically 

improved when using calibrated images, achieving agreement rates values higher than 70%. These results 

confirm the importance of the calibration process for transferring the classification model among different 

dates in subpixels analysis using MODIS data in Amazon. The tools and methodology in this study are still in 

development. However, the analysis here presented indicate the need to test the calibration method using more 

types of land cover classes and in very small time intervals, and also with other configurations of MODIS data. 

Another perceived limitation is the inexistence of reference data for the analysis of all the proposed typologies 

which hindered the accuracy assessment of the complete map and further analysis of change in the area. Further 

steps include the development of tools and methods to properly measure the quality of this type of mapping, 

as well as how to properly perform change detection with this type of data. It is also interesting to further assess 

the potential of deforestation and forest degradation detection using the proposed methodology.  
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