
INTEROPERABILITY AND REPRODUCIBILITY CHALLENGES OF BIG EO DATA: LESSONS
FROM THE TRENCHES

Gilberto Camara, Rolf Simoes, Felipe Souza, Karine Ferreira, Gilberto Queiroz, Pedro R. Andrade

National Institute for Space Research (INPE), Brazil

ABSTRACT

This paper examines challenges to achieve interoperabil-
ity and reproducibility in big Earth observation (EO) data
applications. We consider the problems involved in ac-
cessing image collections in cloud providers, sharing
training data, defining EO data cubes, designing a robust
software architecture, and describing and implementing
machine learning methods. The paper argues that, due to
the inherent complexity of spatiotemporal data, achiev-
ing full interoperability is unlikely. Instead, the authors
propose an increased emphasis on collaboration between
the various on-going efforts for developing open source
EO data analytical software.

Index Terms— Big EO analytics, EO data cubes,
interoperability, software reuse.

1. INTRODUCTION

The current standard approach for big Earth observation
(EO) data analytics is to use cloud computing services.
These include commercial providers like Google Earth
Engine (GEE), Amazon Web Services (AWS), and Mi-
crosoft Planetary Computer (MPC). There are also public
services such as Digital Earth Africa (DEAfrica), FAO’s
SEPAL, the Brazil Data Cube (BDC), and the Coperni-
cus Data Space Ecosystem [1]. Since most data available
in these providers comes from the same sources, one
might presume that it would be straightforward to design
multi-provider applications for EO data analytics. Users
would be able to run the same code in different services;
they would reuse software developed in one platform in
another with minimal effort. Such is not the case today.
Instead, there are significant differences between those
services, which create a customer lock-in effect. Thus,
one might ask: can the barriers to interoperability and
reproducibility in big EO data analysis be removed?

To answer this question, we consider the main is-
sues faced when designing applications that run in mul-
tiple EO cloud computing services. Our arguments are
derived from the experience of developing the R open
source package sits[2]. This package provides an end-
to-end environment for big EO data analytics based on
a user-focused API. It supports land classification with
machine learning and deep learning methods using a time-
first, space-latter approach. In what follows, we present
the main design choices faced by the authors, consider-
ing inevitable compromises between options available.
We hope that by sharing our experience, other develop-
ers may find helpful insights to support their decision-
making process.

2. CHALLENGES FOR BIG EO ANALYTICS
SOFTWARE DESIGN

2.1. How to access cloud collections?

Most EO cloud providers offer an endpoint that employs
the SpatioTemporal Asset Catalog (STAC) specification
to access their collections. STAC adoption has been
a major advance for big EO data applications. There
are working R and Python APIs that implement STAC,
available in https://stacspec.org. Ideally, all
providers would implement STAC consistently, which
should enable interoperability of data access methods. In
reality, STAC implementations have major variations.

Cloud services use different criteria for geographical
area selection and access control. Collection and band
names are also not standardised. Such lack of confor-
mance is a challenge for software developers. Each new
provider requires a customisation effort. Achieving inter-
operability when accessing cloud collections requires a
better alignment between providers and software devel-
opers than the current situation.

Platform Ecosystem, Interoperability, and Challenges

Proc. of the 2023 conference on
Big Data from Space (BiDS’23) doi:10.2760/46796

89 6–9 November 2023



2.2. How can training data be shared?

Selecting good training samples for machine learning
classification of satellite images is critical to achieve accu-
rate results. Experience with machine learning methods
has shown that the number and quality of training sam-
ples are crucial factors in obtaining good outcomes. Nev-
ertheless, there are currently no standards nor community-
driven formats to share training samples for big EO data.

Defining standards for sharing training data is further
complicated by the variety of associated formats. The
most common data structure is a set of labels associated
with points or polygons in a single image. However, ad-
vanced machine learning methods require other formats.
Deep-learning methods in 2D use labels associated to
image chips, while image time series analysis use points
or polygons associated to EO data cubes. Given the lack
of well-accepted protocols, software developers have to
spend much effort to design APIs capable of reading dif-
ferent training data formats. Thus, there is a need for
consistent efforts by standards bodies or by communities
to mitigate this problem.

2.3. What is an EO data cube?

Despite the term data cube being widely used by the
EO community, it is not simple to provide a all-inclusive
definition. An influential proposal has been made by
Appel and Pebesma [3]. They state that a data cube is “a
four-dimensional array with dimensions x (longitude or
easting), y (latitude or northing), time, and bands”. They
also propose that “spatial dimensions refer to a single
spatial reference system (SRS), while cells of a data cube
have a constant spatial size with regard to the cube’s SRS
and have constant temporal duration”. This definition
is useful, but needs to be extended for EO data cubes
that cover large areas. In these cases, it is natural to use
the tile-based organisation of collections such as Landsat
and Sentinel-2, so that the resulting data cubes will use
multiple SRSs.

A second point concerns Appel and Pebesma’s inter-
pretation of dimension, which refers to spatial, temporal,
and attribute components of data cubes. This choice al-
lows space, time, and attribute-based operations to be
generalised. Consider operations that combine one of
the data dimensions to produce a result. To average
each pixel in a image time series, one uses an API call
such as reduce dimension[time, mean]. Sim-

ilar reduce dimension calls can be applied to space
and attribute operations. The resulting API is more con-
cise than alternatives that require explicit mention of
temporal, spatial, and attribute components.

In contrast, there is a line of thought in GIScience that
considers space and time to be quite different, since time
is directional while space is not [4, 5]. In this view, tem-
poral interval operators such as before and during
[6] are semantically different from spatial operators like
touches and crosses [7]. Since we share this per-
spective, the authors opted for keeping space, time, and
attribute operations separate in sits.

Both views on what is an EO data cube and what
would be a matching API are valid and justified. At heart,
there is a compromise between flexibility and strictness.
This fact shows how hard it is to reach a universally-valid
EO data cube definition.

2.4. Client-based or a server-based architecture?

A critical design decision involves how to distribute soft-
ware between client and server machines. Client-based
software uses an API on a single machine. This approach,
adopted by sits and by Open Data Cube [8], builds
an end-to-end environment wherein a single script can
execute complex tasks. The downside is that users are
constrained by the capacity of their computing environ-
ment. Optimal big data performance requires a large
virtual machine, which may incur in significant process-
ing costs.

An alternative is a server-based API, as in Google
Earth Engine (GEE) [9]. GEE provides a collection of
proprietary functions, optimised for pixel-based paral-
lel processing. Tasks that align well with this API are
executed efficiently. The drawback lies in its limited
extensibility. New developments are hindered by the in-
ternal GEE pixel-based architecture. In GEE, it is hard to
run deep learning algorithms that use image time series.
The GEE case shows that it is not easy to build a server-
based API that works equally well for different kinds of
EO data analytics.

A third approach involves specifying an open-source
API that can be implemented by different services, as in
openEO [10]. The openEO initiative aims to allow users
to choose between cloud services that implement its spec-
ification. This an ambitious solution for reproducibility
across different EO services. To achieve its goals, it needs
to solve issues such as how to deal with training samples

Platform Ecosystem, Interoperability, and Challenges

Proc. of the 2023 conference on
Big Data from Space (BiDS’23) doi:10.2760/46796

90 6–9 November 2023



and deep learning algorithms in a language-independent
way. While it is clear that openEO will have a positive
impact on the area, its merits will be fully assessed when
reference implementations of a complete API for big EO
data are available.

These alternatives are not mutually exclusive. For
example, as part of the EU-funded Open Earth Mon-
itor project (https://earthmonitor.org/), the
authors are implementing a back-end to the openEO spec-
ification using sits. This is an example of how open
source initiatives can cooperate.

2.5. Implementing data cubes: open-ended scripting
or structured APIs?

Given an abstract description of an EO data cube, de-
velopers need to consider how to implement it. The
solution chosen by the Open Data Cube [8] and other
efforts such as Pangeo is to use the Python data structure
xarray to represent data cubes. Xarrays contain mul-
tidimensional numeric array data and metadata. When
data fits in main memory, xarrays work well; scripts
can use metadata to perform calculations, produce results,
and view maps in a coordinate-aware fashion. Given its
qualities and the popularity of Python, there has been
significant progress in xarray-based scripts for big EO
data analysis [8].

Despite their advantages, using xarrays as a foun-
dation for big EO analytics is not without challenges.
One significant issue arises when working with big areas
—such as the Brazilian Amazon— that exceed the main
memory capacity. A second problem relates is combin-
ing xarrays with Dask for parallel processing, which
requires advanced software skills. Arguably, most users
find it easier when parallel processing of large data runs
under the hood, as in the case of GEE, openEO, and
sits.

Further questions arise in terms of reuse. Since
xarray is a data structure, related scripts tend to per-
form low-level actions that could have been encapsulated
in a well-designed API. As a result, there are multiple
implementations of the same base functions. Remote
sensing experts without strong programming skills may
find it difficult to understand such scripts. As a result,
they might not be able to reuse and reproduce them eas-
ily. What works well for good programmers may be a
limiting factor for capacity development.

When designing sits, we aimed at an audience

of remote sensing experts without strong programming
skills. For this reason, we opted for a high-level API that
hides data structures and algorithm details. Each task of
a typical land use classification workflow is mapped to
an API function. The aim is to allow simple scripts to
achieve complex tasks. The drawback of this approach is
that is difficult for the community to extend the package.
In practice, the tight API integration in sits compels all
new developments to be done by the core programming
team.

Comparing the two approaches, there is no unique
best solution. Both open-ended scripting as is done by
Open Data Cube and high-level APIs such as the ones
used in GEE, openEO and sits are possible ways to
process EO data. Each approach has drawbacks and
advantages that need to be considered by software de-
signers.

2.6. How to describe and share machine learning al-
gorithms?

One key area of innovation in EO analytics is the de-
velopment of machine learning (ML) algorithms. This
is an active field with many new developments. How-
ever, there is limited availability of new AI methods in
the current generation of EO analytic services and tools.
Recent surveys of AI methods published in conferences
show that only 6% of the papers include code [11]. The
first author surveyed 1,300 papers presented in IGARSS
2019, and found out that only 35 (2.5%) included code.
Furthermore, many papers are published without the full
details that would allow reproducibility [12]. Therefore,
despite alleged advances in EO deep learning methods,
most claims made in the literature are unverifiable [13].

Consider also the split between EO researchers and
EO platform developers. Even when shared, most new al-
gorithms are developed in toy environments with limited
data sets. Current platforms are not interoperable; algo-
rithms developed using the TensorFlow and Torch
libraries are not compatible. In sits, we spent consid-
erable effort adapting published algorithms to a big EO
data environment. In practice, the so-called last mile
from research to operations is a long one.

A further problem concerns integration of deep learn-
ing algorithms in an existing API. This is an open prob-
lem with many possible solutions. The sitsAPI has
a single function for all machine learning models. This
function takes two mandatory parameters: the training

Platform Ecosystem, Interoperability, and Challenges

Proc. of the 2023 conference on
Big Data from Space (BiDS’23) doi:10.2760/46796

91 6–9 November 2023



data and the ML algorithm. The result is a trained
model that contains all information required for predic-
tion. Training and classification are independent. This
implementation is a compromise between user-friendly
interfaces and internal software complexity. While users
get the benefit of having simple API for model train-
ing, programmers need good skills to include new algo-
rithms. In this respect, the open-ended approach used
by xarray-based environment is more accessible to
community contributions than the sits design. This is
another example of the tradeoff between usability and
extensibility that is a feature of big EO data analytics.

3. CONCLUSION: HOW FAR TO
INTEROPERABILITY AND REPRODUCIBILITY?

The previous sections presented challenges that devel-
opers of big EO analytics software face, and decisions
taken in sits to answer them. Designs that work well
for 2D images are in general not compatible with the
needs of time series analysis. Meeting the full abstract
requirements for space-time data analytics while building
operational software is hard. Thus, all current solutions
have advantages and drawbacks.

Achieving broad interoperability in EO analytics
would require an all-embracing definition of EO data
cubes. It would also need an abstract API that handles
training data and machine learning methods in a lan-
guage independent way. Conflation between specification
and implementation should be avoided. Cloud providers
would implement access protocols in consistent ways.
Users could run the same scripts in both client-based and
server-based architectures. As discussed in the paper,
none of these conditions holds currently.

There are on-going efforts by OGC to promote inter-
operability in EO applications. Differing responses to
OGC testbeds show that it is hard to achieve consensus
on an generic model that can be implemented is a consis-
tent way. There is presently no agreement on an abstract
API for data cubes, since current API are bottom-up and
language-dependent. Thus, we are far from achieving
interoperability in big EO data analytics.

Given the challenges to interoperability, arguably
the community should focus on reuse and collaboration.
Once the EO community acknowledges that unified stan-
dards are not achievable, it can focus on working together.
If that happens, collective solutions can provide support
to a broad range of applications that use big EO data.

Acknowledgments

The authors would like to thank Edzer Pebesma for many
positive discussions on the issues covered in the paper.
They also acknowledge the support of Microsoft Plane-
tary Computer, the Amazon Fund (contract 17.2.0536.1)
and EU-funded Open-Earth-Monitor Cyberinfrastructure
project (grant No. 101059548).

Bibliography
[1] Vitor C. F. Gomes et al. “An Overview of Platforms for

Big Earth Observation Data Management and Analy-
sis”. In: Remote Sensing 12.8 (2020), p. 1253.

[2] Rolf Simoes et al. “Satellite Image Time Series Analy-
sis for Big Earth Observation Data”. In: Remote Sensing
13.13 (2021), p. 2428.

[3] Marius Appel and Edzer Pebesma. “On-Demand Pro-
cessing of Data Cubes from Satellite Image Collections
with the Gdalcubes Library”. In: Data 4.3 (2019).

[4] Antony Galton. “Time Flies but Space Does Not: Limits
to the Spatialisation of Time”. In: Journal of Pragmat-
ics 43.3 (2011), pp. 695–703.

[5] Karine Ferreira et al. “An Algebra for Spatiotemporal
Data: From Observations to Events”. In: Transactions
in GIS 18.2 (2014), pp. 253–269.

[6] James F. Allen. “Maintaining Knowledge about Tem-
poral Intervals”. In: Communications of the ACM 26.11
(1983), pp. 832–843. ISSN: 0001-0782, 1557-7317.

[7] Max Egenhofer and Robert Franzosa. “Point-Set Topo-
logical Spatial Relations”. In: Int Journal of Geograph-
ical Information Systems 5.2 (1991), pp. 161–174.

[8] Adam Lewis et al. “The Australian Geoscience Data
Cube — Foundations and Lessons Learned”. In: Remote
Sensing of Environment 202 (2017), pp. 276–292.

[9] Noel Gorelick et al. “Google Earth Engine: Planetary-
scale Geospatial Analysis for Everyone”. In: Remote
Sensing of Environment 202 (2017), pp. 18–27.

[10] Matthias Schramm et al. “The openEO API: Harmonis-
ing the Use of Earth Observation Cloud Services Using
Virtual Data Cube Functionalities”. In: Remote Sensing
13.6 (2021), p. 1125.

[11] Matthew Hutson. “Artificial Intelligence Faces Repro-
ducibility Crisis”. In: Science 359.6377 (2018).

[12] Joelle Pineau et al. “Improving Reproducibility in
Machine Learning Research”. In: Journal of Machine
Learning Research 22 (2021), p. 20.

[13] Daniel Nüst and Edzer Pebesma. “Practical Repro-
ducibility in Geography and Geosciences”. In: Annals
of the AAG 111.5 (2021), pp. 1300–1310.

Platform Ecosystem, Interoperability, and Challenges

Proc. of the 2023 conference on
Big Data from Space (BiDS’23) doi:10.2760/46796

92 6–9 November 2023


