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Atomistically thin adsorbate layers on surfaces with a lattice mismatch display complex spatial patterns
and ordering due to strain-driven self-organization. In this work, a general formalism to model such ultrathin
adsorption layers that properly takes into account the competition between strain and adhesion energy of the
layers is presented. The model is based on the amplitude expansion of the two-dimensional phase field crystal
(PFC) model, which retains atomistic length scales but allows relaxation of the layers at diffusive time scales.
The specific systems considered here include cases where both the film and the adsorption potential can have
either honeycomb (H) or triangular (T) symmetry. These systems include the so-called (1 × 1), (

√
3 × √

3) R30◦,
(2 × 2), (

√
7 × √

7) R19.1◦, and other higher order states that can contain a multitude of degenerate commensurate
ground states. The relevant phase diagrams for many combinations of the H and T systems are mapped out as a
function of adhesion strength and misfit strain. The coarsening patterns in some of these systems is also examined.
The predictions are in good agreement with existing experimental data for selected strained ultrathin adsorption
layers.
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I. INTRODUCTION

When ultrathin films of just a few atomic layers in
thickness are grown on atomically smooth surfaces, there
is in general a competition between the strain energy in
the film and the adsorption potential energy resulting from
the interaction of the adsorbate atoms interacting with the
substrate. This competition can lead to commensurate states
as well as interesting striped and moiré patterns in the
incommensurate states. Understanding and predicting these
states and the transition between them has been of great
fundamental interest for many years. Most recently there has
been considerable work devoted to the study of the growth
and properties of two-dimensional (2D) films, in particular
graphene [1–11], and other films of honeycomb symmetry such
as so-called hexagonal boron nitride or hBN (which actually
forms a honeycomb structure) [12–19] and MoS2 [20–22].
These systems typically show 2D moiré patterns that are
defined by a triangular (honeycomb) array of commensurate
regions when grown on a substrate with an adsorption surface
potential having a triangular (honeycomb) array of minima.
More complex patterns emerge in other adsorption systems,
for example, when Cu is grown on Ru(0001), in addition
to honeycomb patterns, zig-zag, and one-dimensional (1D)
stripes can form [23–25]. In this work, additional patterns that
resemble twisted honeycombs are predicted to occur in some
adsorption systems.

Moiré patterns can emerge in nature in many different
circumstances, perhaps the simplest example being when a
screen or periodic lattice is overlaid on another with a slightly
different periodicity. As illustrated in Fig. 1, patterns emerge
even in the absence of coupling between the two screens
or layers. More interesting patterns emerge when they are

coupled as certain regions will become more energetically
favorable and tend to enlarge or even lead to a change in the
pattern. In this work, the moiré patterns that emerge when
a monolayer experiences an adsorption potential that has a
different lattice constant and in some cases also a different
symmetry are considered. For a film strained such that adatoms
can be at the adsorption potential minima locations, an increase
in the strain energy in the film will occur. In contrast, if the
film is completely incommensurate and unstrained, most of
the adsorbate atoms will be located away from the potential
minima. A competition between these two factors leads, in 1D
at a small misfit strain, to a second-order phase transition (in the
absence of thermal fluctuations) from a commensurate state to
an incommensurate “striped” state consisting of a period array
of domain walls separating the commensurate regions. This
phenomenon can be well described by ball and spring models
such as the Frenkel-Kontarova model or by continuous models,
such as the sine-Gordon model. The situation is much more
complex in higher dimensions where the relative symmetry of
the film and substrate will influence the patterns that form and
often will lead to 2D moiré patterns.

In this work, the ordering of films of honeycomb (H) or
triangular (T) symmetry are considered on substrates where
the adsorption potential maxima for the adsorbed atoms have
either H or T symmetry. These different classes of adsorption
systems will be referred to as HH, HT, TH, and TT, respec-
tively, where the latter letter refers to the substrate symmetry.
These classes of systems include adsorption systems such as
Cu, Ni, or Co on Ru(0001) [23,26–28], Ni on Rh(111), Co on
Pd(111), Cu on Pd(111) [29–31], and Ag on Cu(111) [32–38]
or Ni(111) [39], graphene on a wide variety of metallic (111)
substrates [1–11], hexagonal boron nitride grown on Ir(111)
[12], Cu(111)[13–15], Rh(111)[16–18], and Ru(0001)[19].
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FIG. 1. (a) The characteristic moiré pattern that emerges when a
blue triangular mesh or screen is overlaid on a red one that is 5%
smaller than that of the blue one. (b) A triangular periodic array of
blue points is overlaid on a similar red set that are 5% smaller.

In the systems listed above the natural atomic spacing
of the films is close to that of the substrate, leading to
a (1 × 1) commensurate state of the film with the same
lattice constant as the substrate. When this is not the case,
higher-order commensurate states can occur, which include
the (

√
3 × √

3) R30◦, (2 × 2), and (
√

7 × √
7) R19.1◦cases, in

which the commensurate state of the film has lattice constants√
3, 2 and

√
7 times larger, respectively, than that of the

substrate and the relative orientation of the film to substrate is
30◦, 0◦, and 19.1◦, respectively. The (

√
3 × √

3) R30◦ systems
include Xe and Kr on graphite [40,41], Xe on Pt(111) [42], Ag
on Si(111) [43], Au on Ge(111) [44], and K on Al(111) [45].
Many other additional cases can be found in the literature.
As the atomic spacing of the film atoms increases relative to
the substrate, the number of degenerate commensurate states
increases leading to more complex pattern.

The purpose of this work is to present a general method
for studying the type of atomistically thin films described
above and to show how the competition between the elastic
and adsorption energies, the relative symmetry of the film
and substrate, and the degeneracy of the higher-order com-
mensurate states can influence the patterns that form. The
method incorporated here is essentially an extension of the
one used in the authors previous studies of (1 × 1)systems
[11,24,25,46] and the (

√
3 × √

3) R30◦ system [47]. The
method is based on the amplitude expansion [48–53] of the
phase field crystal (PFC) model [54–56], which describes
a field related to local number density fluctuations. This
amplitude expansion approach uses spatially varying complex
amplitudes to describe these density fluctuations in the film
and models the substrate by a rigid potential. For practical
purposes, only the amplitudes of the lowest-order Fourier
modes are included in such an approach, which would imply
that except for the (1 × 1)case, the higher-order commensurate
states would not couple to the substrate which is unphysical.
This problem does not exist in the full PFC model that
includes all the Fourier modes. As discussed in Ref. [47]
and generalized in this work, the higher-order Fourier modes
couple both to the adsorption potential and the lowest order
modes. When the higher Fourier modes are integrated out, one
obtains nonlinear coupling between the adsorption potential
and the lowest order modes. In this work, this result is
exploited to develop the simplest possible model that uses
the amplitude expansion for only the lowest Fourier modes

to study all the intricate patterns involving the higher order
commensurate systems and the transitions between various
incommensurate and commensurate states. This is achieved by
using an effective nonlinear film substrate coupling involving
the lowest power of the density that mimics the full coupling
of the density to the substrate. This new amplitude expansion
model can be used to study the ordering for a class of systems
with all types of commensurate states such as (1 × 1), (

√
3 ×√

3) R30◦, (2 × 2), (
√

7 × √
7) R19.1◦, and even higher-

order ones.
When the periodic adsorption potential is represented in the

simplest form by the lowest order Fourier components, there is
also an extra simplification. It is easy to see that by just flipping
the sign of the potential one can turn for example a triangular
(T) substrate to a honeycomb (H) substrate and vice versa. The
same applies to the symmetry of the film. As a result, from the
symmetry point of view the ordering of a H film on a T substrate
(which will be referred to as a “HT” system in what follows)
is identical to a T film on a H substrate (a “TH” system) in
this model. Similarly, a HH system is identical to a TT system.
Another advantage of the amplitude expansion method is that it
can be numerically implemented to study relatively large-scale
systems, up to micrometer length scales. The length scale
of the patterns diverges in the limit of zero misfit and very
large systems are required in this limit. Thus, for the study
of the commensurate-incommensurate transition it is essential
to have a simple model that can be used to examine large
systems, while still retaining atomistic details such as defects.
The largest system considered using the amplitude method to
date (to the best knowledge of the authors) has been for a
2D film of size 20 μm × 34 μm containing roughly 25 billion
atoms (number density maxima) [46].

In this manuscript, a general methodology is outlined
and then used to examine surface ordering in TH and
TT systems for the (1 × 1), (

√
3 × √

3) R30◦, (2 × 2), and
(
√

7 × √
7) R19.1◦structures. For completeness, the results

for the previously studied case of the TH (
√

3 × √
3) R30◦

system will be reported in addition to the HT and TT (2 × 2)
and HT and TT (

√
7 × √

7) R19.1◦systems, which were not
previously considered. Phase diagrams are presented for all
these systems to highlight the influence of symmetry on
the differences and similarities between them. As discussed
previously, there exists significant differences between the TH
(or HT) and TT (or HH) systems for the (1 × 1)structure. Not
surprisingly, similar differences appear for the higher order
structures examined in this work. There is also a noticeable
difference between the (1 × 1) and higher-order structures.
This difference is mainly due to the fact that the degenerate
commensurate sublattices in the higher-order states are closer
together, implying a smaller change in elastic energy when
a junction or a domain wall is crossed. The most striking
difference occurs in the TT case in which junctions break into
dislocation pairs as the film-substrate coupling is increased
for the (1 × 1)case, while the junctions only twist in higher
order structures. This feature may be model dependent and
more microscopic approaches are needed to determine how
generic it is. While some aspects of the patterns that form
may be model-dependent, many of the predictions of the work
presented here are consistent with many experimental results
as discussed in detail in Sec. VI.

195439-2



STRIPED, HONEYCOMB, AND TWISTED MOIRÉ . . . PHYSICAL REVIEW B 96, 195439 (2017)

The manuscript is organized as follows. In Sec. II the possi-
ble commensurate states for a given system are characterized
and the degeneracy of the states is determined. In Sec. III the
model used to describe these systems is detailed. To make a
connection with physical systems the small deformation limit
of this model is undertaken in Sec. IV and analytic results
are given for the stripe-commensurate transition. Section V
presents the results for the phase diagram of all the systems
considered here. This is followed by a comparison of the results
with experiments and other theoretical works in Sec. VI and
a discussion of the limitations of the methodology follows
in Sec. VII. Finally, some concluding remarks are made in
Sec. VIII.

II. CHARACTERIZATION AND DEGENERACY
OF COMMENSURATE STATES

A. Characterization of commensurate states

In this section, the characterization of commensurate states
for different combinations of film and adsorption potential
symmetries is examined. Consider a commensurate state in
which the distance between adatoms is

d =
√[

(j + 1/2)as
x

]2 + (
as

y

)2
, (1)

where as
x and as

y = √
3as

x/2 are defined with respect to the
substrate lattice constant as shown in Fig. 2(a) and j is
an integer [e.g., j = 3 in Fig. 2(a)]. There are two sets of
sublattices that could be defined as shown in the blue or red
set of points in this figure. For the purposes of the present
calculations only the red set will be considered. It should
also be noted that the two sets overlap for j = 0 and 1. The
dimensionless length scale L of the commensurate state can
be given in terms of j as

L(j ) = d

as
x

= 1

2

√
(2j + 1)2 + 3. (2)

This gives L(0) = 1, L(1) = √
3, L(2) = √

7, L(3) = √
13,

etc. The angle this line makes with the respect to the

FIG. 2. Schematic of the film-substrate geometry. In these figures
the black and green points represent the maxima and minima of the
adsorption potential, respectively. For convenience a substrate with
a triangular or honeycomb array of maxima will be correspondingly
referred to as a triangular (T) and honeycomb (H) substrate. In both
figures a unit cell of a commensurate state for the triangular film (T)
is shown for the parameters (j,m) = (3,0) (see text for details).

FIG. 3. Sample commensurate unit cells are shown in (a) and (b)
for the TT and TH systems, respectively. In these figures m = 1 and
j = 0,1,2, and 3 for the cyan, purple, blue, and red lines and points,
respectively.

horizontal is

θ (j ) = ± tan−1

( √
3

2j + 1

)
. (3)

The ± correspond to the two equivalent sets of sublattices.
For simplicity in what follows the + set of states will be
considered.

In Fig. 2 the j = 3 states are illustrated for both the TT and
TH systems. As discussed in the Introduction it is important to
note that in the simple model used here, the relative symmetry
of the TH system is equivalent to that of the HT system. Thus,
the results obtained for the TH system are also applicable to,
for example, graphene adsorbed on various compact fcc(111)
surfaces. It should be noted that the distance between nearest-
neighbor surface atoms is d/

√
3 for the HT system. Similarly

a HH system is equivalent to a TT system. Samples of the
various unit cells for the TT and TH systems are illustrated in
Figs. 3(a) and 3(b), respectively, for j = 0,1,2, and 3.

FIG. 4. Sample commensurate unit cells for the TT system with
j = 1 and m = 1,2, and 3 in red, blue, and purple, respectively.
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FIG. 5. Sample commensurate states for the TT system with m =
1 for j = 0 and 1 in (a) and (b), respectively. Each color represents a
different degenerate commensurate state.

It is also useful to note that adatoms located at integer
multiple number of d at the same angle θ , implying structures
with lattice constants,

d(j,m) = m

2
(
√

(2j + 1)2 + 3)as
x, (4)

where m is an integer would also form commensurate states.
Some samples or ordered structures are shown for j = 1 and
various m in Fig. 4 for the TT system.

B. Degeneracy of commensurate states

Depending on the integers j and m there can be many
equivalent commensurate states. For example for (j,m) =
(0,1) there are two equivalent commensurate states for the TT
case and one for the TH case. As j and m increase the number
of equivalent commensurate states increases. The number N

of such sublattices is

N =
{

(mL)2 = m2[(2j + 1)2 + 3]/4, for TH;
2(mL)2 = m2[(2j + 1)2 + 3]/2, for TT.

(5)

Sample sets of commensurate states are shown in Figs. 5 and 6
for the TT and TH systems, respectively. In the TT case there
are N additional states for j > 1 due to the rotation by −θ .

Table I summarizes the classification and degeneracy of the
different commensurate states for several representative values
of j and m.

FIG. 6. Sample commensurate states for the TH system with m =
1 for j = 1 and 2 in (a) and (b), respectively. Each color represents
a different degenerate commensurate state. It should be noted that in
the (j,m) = (0,1) there is only one commensurate state.

TABLE I. Table outlining the structures corresponding to the
sublattices with different j and m for the commensurate states in the
TH system. The number of sublattices (N ) is twice as large for the
TT system.

j m L NTH θ Phase

0 1 1 1 60◦ 1 × 1
0 2 2 4 60◦ 2 × 2
1 1

√
3 3 30◦ (

√
3 × √

3) 30◦

1 2 2
√

3 12 30◦ (2
√

3 × 2
√

3) R30◦

2 1
√

7 7 19.1◦ (
√

7 × √
7)R19.1◦

2 2 2
√

7 28 19.1◦ (2
√

7 × 2
√

7)R19.1◦

3 1
√

13 13 13.9◦ (
√

13 × √
13) R13.9◦

3 2 2
√

13 52 13.9◦ (2
√

13 × 2
√

13) R13.9◦

4 1
√

21 21 10.9◦ (
√

21 × √
21) R10.9◦

4 2 2
√

21 84 10.9◦ (2
√

21 × 2
√

21) R10.9◦

III. MODEL

Ideally a fully atomistic method such as molecular
dynamics (MD) or even quantum mechanical density func-
tional theory would be employed to study the structure and
energetics of ordering and patterns of surface adsorbates.
Unfortunately, only a few hundred or at best a few thousand
atoms can be handled fully quantum mechanically and even
the classical MD method is numerically restricted by atomic
length scales and phonon vibrational time scales. The phase
field crystal (PFC) method [54–57] on the other hand can
access much larger (diffusive) time scales and can be used
to find equilibrium patterns much more rapidly. However,
the PFC method resolves features at atomic scales, which is
still somewhat restrictive in terms of the computational effort.
Typically, the size of the adsorbate patterns scales as the inverse
of the misfit strain for small film-substrate couplings and
can diverge near the commensurate-incommensurate phase
transitions (in the mean field limit). For this reason it is
imperative to consider the amplitude expansion of the phase
field crystal model [48–53] (APFC), which is described in
detail below. This approach is particularly useful for systems
where deviations from a single orientation are minor. It makes
it relatively simple to construct phase diagrams of surface
ordering, since the films are often of a single orientation, with
some small deviations near domain walls and their junctions,
and the complex amplitudes that enter the approach are very
uniform allowing for relatively large grid spacings in the
numerical implementation of the APFC model.

To describe this approach it is useful to consider the original
2D PFC model in the presence of an adsorption potential V (�r).
The dimensionless PFC free energy F can be written as a
functional of the atomic number density field n as follows:

F =
∫

d�r
[
�B

2
n2 + Bx

2
n(1 + ∇2)2n− τ

3
n3 + v

4
n4 + V n

]
.

(6)

The various parameters that enter this description have been
discussed in detail in prior works [54–57]. The part of the
free energy without the adsorption potential is minimized by
a triangular pattern of density field maxima for τ > 0 and a
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honeycomb pattern of density field maxima for τ < 0. In the
APFC method, a set of complex amplitudes ηkl are used to
describe the dimensionless number density field n. For films
of triangular and honeycomb symmetry it is convenient to
expand n as

n =
∑

ηkle
iα �Gf

kl ·�r + c.c., (7)

where c.c. is the complex conjugate, �Gf

kl = k�q1 + l �q2, �q1 =
(−√

3, − 1)/2, and �q2 = (0,1). The parameter α = 1 − ε is
related to the misfit strain ε defined as ε = (as − a)/as, where
a is the natural lattice constant of the adsorbate film, and
as is the lattice constant of the substrate. In this formulation
the complex amplitudes, ηkl , are expanded around the lattice
constant of the substrate, implying that they are constant in a
perfect commensurate state and vary periodically in a perfect
incommensurate state. In the incommensurate state the lattice
constant of the film is exactly ax = 4π/

√
3 when V = 0.

For simplicity the interaction with the substrate will be
modeled by a rigid adsorption potential V described in a
similar fashion, i.e.,

V = V0

∑
kl

ei �Gs
kl ·�r + c.c., (8)

and ( �Gs
kl

)
x

= αL
[(

G
f

kl

)
x

cos θ − (
G

f

kl

)
y

sin θ
]
,

(9)( �Gs
kl

)
y

= αL
[(

G
f

kl

)
x

sin θ + (
G

f

kl

)
y

cos θ
]
,

and the same modes (kl) used for the film are used for the
substrate, and L and θ are the dimensionless length and angle
described by Eqs. (2) and (3), respectively. Thus, the potential
will be rotated with respect to the film. For V0 > 0 (<0),
Eq. (8) describes a triangular (honeycomb) array of adsorption
potential maxima and a honeycomb (triangular) array of
adsorption potential minima. Various methods, multiple scales
analysis, renormalization group theory, and even a “quick and
dirty” approach, can be used to derive the free energy in terms
of ηkl from Eq. (6) assuming that the amplitudes vary on length
scales much larger than the atomic spacing. The reader is
referred to the multiple references [48–53] for a discussion of
such derivations.

However, it is readily apparent that incorporating only the
lowest order modes in V and n will only work when the
lattice constants of the film and substrate are very similar.
When the length of scale of the film and substrate are different
the term V n integrates to zero to lowest order. For example,
in the (

√
3 × √

3) R30◦ structure it would be the set of the
second largest set of (kl) pairs that coupled to the substrate
potential. To illustrate this, it is useful to consider a simple
one-dimensional case where the commensurate state is twice
the distance between the minima in V , i.e.,

n = a1 cos(x) + a2 cos(2x), (10)

and

V = V0 cos(2x), (11)

where a1 and a2 are the amplitudes of the first two lowest
modes in n. Integrating Eq. (6) gives

F
2π

= �B

4

(
a2

1 + a2
2

) + 9

4
Bla2

2 − τ

4
a2

1a2

+ 3v

32
a4

1

(
a4

1 + 4a2
1a

2
2 + a4

2

) + 1

2
a2V0. (12)

As expected the coupling of n to V only occurs through the
term a2V0, i.e., there is no a1V0 coupling. However, minimizing
F/2π with respect to a2, substituting the solution of a2 that
minimizes F/2π , and expanding the coupling term in Eq. (12)
gives

a2V0 = V0

(
τ

4(9Bl + �B)
a2

1 + Oa4
1 + . . .

)
. (13)

Thus, a1 is effectively coupled to the potential via the
intermediate second mode a2. A coupling of this sort would
also occur if a coupling ∼V n2 were included in the free-energy
functional, since it would produce a term of the form a2

1V0/4.
Thus, a simpler and more computationally efficient approach
would be to use only the smallest modes (smallest �Gkl’s, which
in this instance would be just a1) and including the coupling
V n2 instead using the coupling term V n, and using the two
lowest sets of modes (in this case a1 and a2) to describe n.

For higher-order structures (i.e., larger values of j and
m), this strategy would require incorporating higher-order
coupling terms of the form npV , where p is some integer. After
studying a number of examples and generalizing to arbitrary
p, it turns out the minimum value required is p = (j + 1)m,
whose contribution is

FV =
∫

d�r n(j+1)m V. (14)

Thus, the appropriate free energy is to replace the nV term in
Eq. (6) with n(j+1)mV , i.e.,

F =
∫

d�r
[
�B

2
n2 + Bx

2
n(1 + ∇2)2n − τ

3
n3

+ v

4
n4 + n(j+1)mV

]
. (15)

It should be noted that in this form of the free-energy functional
the adsorption potential is an effective one with a different
amplitude compared to the true adsorption potential. For the
triangular or honeycomb films described by Eq. (7), using the
lowest-order modes [i.e., (kl) = (10),(01), and (1̄1̄)], it can be
shown that in the limit where ηkl varies on length scales much
larger than n, Eq. (15) becomes

Fη =
∫

d�r
[ ∑

kl

(
Bx |Gklηkl|2 − 3v

2
|ηkl|4

)

+ �B

2
A2 + 3v

4
A4 − 2t

(∏
kl

ηkl + c.c.

)

+Djmt({[(η∗
10)j η01]m + c.p.} + c.c.)V0

]
, (16)

where A2 ≡ 2
∑

kl |ηkl|2, Gkl ≡ ∇2 + 2iα �Gkl · �∇ + 1 − α2,
and c.p. stands for cyclic permutations [(10) → (01) →
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(1̄1̄) → (10) etc.]. The coefficient Djm is a constant
given by

Djm ≡ [(j + 1)m]!

(jm)!m!
. (17)

A nice feature of this result is that in terms of the amplitudes,
only six new terms appear for the coupling independent of
(j,m). This free energy functional can now be used to study
surface ordering in both the TH and TT systems for all values
of j and m.

IV. SMALL DEFORMATION LIMIT
AND THE SINE-GORDON MODEL

It is useful to consider the limit of small deformations of
Eq. (16) to provide insight into the fundamental dimensionless
quantities that control strain induced patterning and to make
connection with specific physical systems. In the small
deformation limit the amplitudes can be written as

ηkl = φei �Gkl ·�u, (18)

where to first order φ is a constant and �u is the displacement
vector that enters traditional continuum elasticity theory. The
value of φ can be estimated by minimizing the free energy
with respect to φ in the limit that �u is a constant and V0 is
small. This gives

φ ≈
{

(t + √
t2 − 15v�B)/(15v), (t > 0);

(t − √
t2 − 15v�B)/(15v), (t < 0),

(19)

where t > 0 (t < 0) corresponds to a film of triangular
(honeycomb) symmetry. Substitution of Eq. (18) into Eq. (16)
gives to lowest order in gradients in �u

Fu ≈
∫

d�r
{

C11

2
[(uxx − ε)2 + (uyy − ε)2]

+ 2C44u
2
xy + C12(uxx − ε)(uyy − ε)

+ 2V0Djmφ(j+1)m
∑
kl

cos �Gkl · �u
}

, (20)

where Cij are the elastic constants given in Table II and
terms independent of �u have been dropped. Note that in this
expansion ηkl have been expanded around the lattice constant
of the commensurate state, i.e., if �u is a constant there is
an elastic contribution, while if �u = ε�r there is no elastic
contribution and Fu = 0. Equation (20) is a 2D sine-Gordon
free energy functional. For the boundary conditions relevant
for this work there do not exist any analytic solutions for the
2D moiré patterns that minimize Fu at small V0. Solutions
do, however, exist for one-dimensional striped states as will

TABLE II. The elastic constants for the amplitude model, where
φ is given in Eq. (19). The elastic parameter K = (C11 + C12)2/C11

for the TT and TH systems.

C11 C12 C44 K for TH K for TT

9Bxφ2 3Bxφ2 3Bxφ2 16Bxφ2 144Bxφ2/10

FIG. 7. In (a) the seven commensurate sublattices are shown
in different colors for a (j,m) = (2,1) TH system. In (b) the six
commensurate sublattices are shown for a (j,m) = (1,1) TT system.
In both cases the parallel (or jagged) lines and hexagon encompass
the sublattices that correspond to the large-scale stripe and moiré
patterns, respectively.

be discussed in the next two subsections for the TH and TT
systems.

A. Commensurate to stripe transition in the TH system

Anisotropic one-dimensional solutions or striped states can
form along three equivalent directions and one such direction
is depicted in Fig. 7(a) for a (j,m) = (2,1) TH system. In such
states it is convenient to consider displacements (�u) along the
stripe direction and parametrize them in terms of a field 
 as

�u = av




2π
[cos(θ )x̂ + sin(θ )ŷ], (21)

where av = 4π/
√

3(as
x/L) and 
 changes by 2π from one

commensurate state to a neighboring one. This gives

2V0Djmφ(j+1)m
∑
kl

cos �Gv
kl · �u

= 2V0Djmφ(j+1)m(2 cos 
 + 1). (22)

To calculate the elastic contribution it is convenient to
go into a primed coordinate system [(x ′,y ′) = (x cos θ −
y sin θ,x sin θ + y cos θ )] that is rotated by an angle θ with
respect to the horizontal. In these coordinates �u only depends
on x ′ so the elastic terms become

uxx = cos2 θ
av

2π

∂


∂x ′ ; uyy = sin2 θ
av

2π

∂


∂x ′ ;

uxy = av

2π
sin θ cos θ

∂


∂x ′ . (23)

Using the fact that for systems of triangular or honeycomb
symmetry C11 = C12 + C44, it is straightforward to shown that
Eq. (20) reduces to

F = A2
∫

dx ′′dy ′′
[

K

2

(
∂


∂x ′′ − ε

)2

+ W cos 


]
, (24)

where a constant term has been neglected, and x ′′ =
x ′/A, y ′′ = y ′/A, A ≡ av(C11 + C12)/(2πC11),

W = 4V0Djmφ(j+1)m, (25)

and

K = (C11 + C12)2

C11
. (26)
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Equation (24) is a 1D sine-Gordon model that in the mean-field
limit has an incommensurate-commensurate phase transition
at a critical value of (W/K)c [58] given by[

W

K

]
c

= π2

16
ε2 = 4Djmφ(j+1)mC11

(C11 + C12)2
V0, (27)

such that for W/K < (W/K)c [W/K > (W/K)c] the in-
commensurate striped (commensurate) state has the lowest
energy. As the transition is approach from below (W/K)c,
the wavelength of the striped state diverges which can be
expected because a commensurate state can be thought of
as a striped state with an infinite wavelength. Although
thermal fluctuations are not considered in the present work,
it is possible that they will change the nature of this phase
transition.

B. Commensurate to stripe transition in the TT system

The striped state for the TT system is depicted in Fig. 7(b).
The displacement vector from one stripe to the next can be
written as

�u = �δ + 
(r)

2π
�δ, (28)

where

�δ
as

x

= 1

2

[(
cos θ − sin θ√

3

)
x̂ +

(
sin θ + cos θ√

3

)
ŷ

]
. (29)

It is straightforward to show that for this displacement

2V0Djmφ(k+1)m
∑
kl

cos
( �Gv

kl · �u)

= 2V0Djmφ(j+1)m

[
cos

(
2
 + 4π

3

)

+ 2 cos

(

 + 2π

3

)]
, (30)

for all k. To a good approximation this form can be fitted to
cos 
 as

2V0Djmφ(k+1)m
∑
kl

cos
( �Gv

kl · �u)

≈ −2V0Djmφ(j+1)m

4
(5 + cos 
). (31)

A comparison of this approximation and the exact solution
is shown in Fig. 8. Similar to the TH case the elastic terms
can be be simplified so that the 2D sine-Gordon model can be
transformed into a 1D model, i.e., Eq. (24) with

W = 1

2
Djmφ(j+1)mV0; K = (C11 + C12)2

C11 + C44/3
. (32)

Again, the stripe-commensurate transition occurs at the critical
value of W/K ,[

W

K

]
c

= π2

16
ε2 = Djmφ(j+1)m(C11 + C44/3)

2(C11 + C12)2
V0. (33)

To summarize the results in this section, in Table III some
tabulated critical values for the 1D sine-Gordon model for
the TH and TT are given. The dimensionless ratio W/K is

FIG. 8. The figure shows the exact potential Eq. (30) (black line)
compared to the approximate solution given in Eq. (31) (red line).

essentially the ratio of adhesion energy to elastic energy. When
it is large the commensurate states dominate and when it is
small incommensurate states (not necessarily striped states)
emerge as will be shown in the next sections. This ratio can
be used to make connection with physical realizations of the
TH and TT adsorbate systems as it can be calculated using
quantum density functional theory or classical interatomic
potentials assuming accurate potentials are available. The
ratio W/K can be calculated within a single unit cell of the
commensurate state by calculating four energies per unit area,
namely the energy density of a perfectly commensurate state
Etot, that of a perfectly incommensurate state at zero strain
Emin, that of a perfectly incommensurate state at the given
misfit strain Esl, and the surface energy of the substrate Esub.
The strain energy density is then given by Es = Esl − Emin and
the commensurate energy density is Ec = Etot − Esub − Emin.
The adhesion can then be defined as

W = Es − Ec. (34)

The value of K can be determined by measurements of the
elastic moduli. Estimates of W/K for various systems have
been given in Refs. [25,46].

TABLE III. Critical values of the effective coupling coefficient in
the sine-Gordon model.

State characterization (W/K)c/ε2

System j m Djm TH TT

(1 × 1) 0 1 1 V0/(4Bxφ) 10V0/(72Bxφ)
(2 × 2) 0 2 1 V0/(4Bx) 10V0/(72Bx)
(
√

3 × √
3) R30◦ 1 1 2 V0/(2Bx) 10V0/(144Bx)

(
√

7 × √
7) R19.1◦ 2 1 3 3V0φ/(4Bx

o ) 10V0φ/(24Bx)
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V. EQUILIBRIUM STATES AND PHASE DIAGRAMS

Phase diagrams were numerically determined as a function
of mismatch strain (ε) and adsorption strength (using the
dimensionless variable W/K) for some specific systems.
The diagrams were obtained by minimizing the free-energy
functional given in Eq. (16) for various patterns using a simple
relaxational (nonconserved) algorithm, i.e.,

∂ηkl

∂t
= −δFη

δη∗
kl

. (35)

In the case of the TH system, the patterns compared were
stripes and a 2D array of triangular commensurate regions.
For the TT systems stripes and a 2D array of honeycomb
commensurate regions were examined. In the latter case it was
found that there was a small region in phase space (between
the honeycomb and stripe regions) in which junctions in the
2D patterns break into dislocation pairs for the (1 × 1)system
or twist for all the higher order systems. While it is possible
that there exist other patterns that minimize the free-energy
functional, numerical simulations from random initial condi-
tions indicate that these are the lowest-energy patterns. In the
next subsection results are given for the TH system, followed
by an examination of the TT system in Sec. V B.

A. Triangular on honeycomb (TH) systems

The (1 × 1) and (
√

3 × √
3) R30◦ systems have been stud-

ied in prior publications [11,46,47]. In these cases the phase
diagram is dominated by 2D moiré patterns for (W/K) <

(W/K)c that consist of a honeycomb network of domain
walls and a triangular pattern of commensurate regions.
The region defined by W/K > (W/K)c is dominated by
the commensurate phase. A small sliver of a striped state
may exists in between the low and high W/K regions. In
all the cases examined here, except for the (1 × 1)structure
[i.e., (

√
3 × √

3) R30◦, (2 × 2), and (
√

7 × √
7) R19.1◦] a

stripe region always separates the 2D moiré patterns from
the commensurate state. For the (1 × 1)system the striped
state does not exist for small strains but there exists a triple
point when the stripe region appears corresponding to the
coexistence of striped, 2D moiré, and commensurate phases.
Below a number of specific systems are discussed in detail.

1. (
√

3 × √
3) R30◦, ( j,m) = (1,1)

In Sec. III it was argued that the lowest-order coupling
was given by Eq. (14), or for (j,m) = (1,1), a term of the
form

∫
d�rn2V . It is reasonable to question whether or not the

full PFC model or a different nonzero coupling would lead
to different results. For this reason numerical investigations
were also conducted using the full PFC model, and the APFC
model with a n3V coupling in addition to the n2V coupling
mentioned above. For comparison the results are presented
on the W/K versus ε|ε| plane (recalling that the sine-Gordon
prediction for the stripe-commensurate transition occurs when
W/K = π2/16ε|ε|). The relationship between W/K and the
model parameters was discussed in Sec. III for the lowest-order
coupling (i.e., n2V in this instance). The n3V coupling makes
the following contribution to the free energy:

FV = 3V0
(
η2

1η2 + η1η
2
2 + c.p. + c.c.

)
, (36)

FIG. 9. Phase diagram for TH (
√

3 × √
3) R30◦ ordering using

the full PFC model with nV coupling (green), the APFC model with
n2V (red) and n3V (blue) coupling. The black dashed lines correspond
to the sine-Gordon solution for the stripe-commensurate transition.
In each case in the hatched region the stripe state is the lowest
energy state and below (above) this region the 2DM (commensurate)
state is the lowest energy state. The n2V result is redrawn from
Ref. [47].

which contributes 24V0φ
3 cos 
 to the sine-Gordon equation,

i.e.,

W = 24V0φ
3. (37)

This coupling does not change the value of K so it is then
straightforward to calculate W/K for the n3V coupling. For
the full PFC model it is difficult to analytically derive an
expression for the values of W since it involves nonlinear
coupling of several modes. However, for small values of ε

the continuum sine-Gordon result for the stripe-commensurate
transition should be valid. At small ε the slope of V0 versus
ε|ε| was measured for both negative and positive values of ε.
For comparison with the APFC results V0 was multiplied by
π2/16 and divided by the slope measured.

Figure 9 displays the phase diagram for all three models and
very similar results are obtained. In these phase diagrams three
specific phases are observed, namely the 2D moiré, striped, and
commensurate states. Examples of the 2D moiré and striped
patterns are shown in Fig. 10. These figures were obtained
by first reconstructing the dimensionless density difference n

using Eq. (7) and then finding all the maxima in n. In Fig. 10
(and in all the sample patterns to follow) the positions of
these maxima are plotted as points whose color is determined
from the distance of the point from the various sublattices.
More specifically, the color is an average of the colors
shown in Fig. 6(a) with a weighting inversely proportional
to the distance to the closest neighbor of the corresponding
sublattice.
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FIG. 10. Sample 2D moiré (a and b), and stripe (c and d),
patterns for ε = −3 % (a and c) and ε = +3 % (b and d),
obtained from the n3V coupling in the TH (

√
3 × √

3) R30◦ sys-
tem. In (a) (W/K,Lx,Ly) = (−0.05432 × 10−2,364.0,630.5), (b)
(W/K,Lx,Ly) = (−0.05160 × 10−2,380.0,658.2), (c) (W/K,Ly) =
(−0.05786 × 10−2,584.0), and (d) (W/K,Ly) = (−0.05378 ×
10−2,588.0).

It is interesting to note that the triangular pattern exactly
matches the sublattice pattern on a larger scale which can be
see by comparing Figs. 10(a) and 10(b) with Fig. 6(a). Moving
across a stripe or through a hexagonal region in the 2D patterns,
the change in color depends on the sign of ε. For example, for
ε = −3%, the colors change from red to blue to green (also
note that the systems are periodic) as seen in Figs. 10(a) and
10(c). In contrast for ε = +3%, the colors change from red
to green to blue as seen in Figs. 10(b) and 10(d). When the
commensurate state corresponds to a tensile (compressive)
strain on the film, domain walls appear when the atoms slip

FIG. 11. Free-energy density difference from an incommensurate
(W/K = 0) state as a function of W/K for 2D moiré (blue), stripe
(red), and commensurate (black) phases at ε = 3%. In the bottom left
inset is a blowup showing that the free energy of the striped phase
never becomes higher than that of the commensurate phase indicating
a continuous phase transition. In the top inset the periodicity of the
2D moiré (blue) and striped (red) states is shown.

FIG. 12. Free-energy density difference from an incommensurate
(W/K = 0) state as a function of W/K for 2D moiré (blue), striped
(red), and commensurate (black) phases at ε = 8%. In the bottom
left inset is a blowup showing that the free energy of the stripes
becomes higher than that of the commensurate phase indicating a
discontinuous phase transition. In the top inset the periodicity of the
2D moiré (blue) and striped (red) states is shown.

to the closest degenerate commensurate state that is a further
(nearer) away.

The transition from the 2D moiré to a striped incommen-
surate phase is a discontinuous transition as it is not possible
for the 2D pattern to continuously deform into a stripe. This is
illustrated in Figs. 11 and 12 for ε = 3% and 8%, respectively,
for the n2V coupling (similar behavior is observed for the full
PFC model and the n3V coupling). In these figures it is clear
that the lowest free energy density changes discontinuously as
a function of W/K when the lowest energy states changes from
2D moiré to striped states. For small values of ε the transition
from striped to commensurate states appears to be continuous
(in the absence of thermal fluctuations) as predicted by the 1D
sine-Gordon model. This can be seen in the bottom left inset
in Fig. 11 as the slope free energy density of the stripe state
approaches that of the commensurate state at the transition,
and as shown in the top right inset in the figure the stripe
wavelength diverges. A continuous transition is possible as
a stripe can continuously change into a commensurate state,
i.e., the commensurate state is a stripe of infinite wavelength.
This behavior is in contrast to the large ε behavior where
the stripe - commensurate transition becomes discontinuous.
This is illustrated in the bottom left inset in Fig. 12 as there
exists above the transition a metastable stripe phase that has
a higher energy than the commensurate phase. In addition the
figure also shows that the stripe periodicity does not diverge
at the transition. It is likely that the discrete nature of the
system starts to play a larger role at larger strains causing
this effect.
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FIG. 13. Phase diagram for the (2 × 2) and (
√

7 ×√
7) R19.1◦systems in blue and red, respectively. The hatched

regions correspond to parameter ranges where the stripe phase is the
ground state.

2. Higher-order systems (2 × 2), ( j,m) = (0,2) and
(
√

7 × √
7) R19.1◦, ( j,m) = (2,1).

The (2 × 2) and (
√

7 × √
7) R19.1◦orderings have four and

seven commensurate sublattices, respectively. Despite this
complication the phase diagrams look very similar to the
(
√

3 × √
3) R30◦ one as shown in Fig. 13. The (2 × 2)system

has a smaller stripe region than the (
√

7 × √
7) R19.1◦but

in both cases the stripe region appears to exist for all
values of ε. Sample configurations for the 2D moiré and 1D
stripe patterns are shown for both systems in Fig. 14. As
with the (

√
3 × √

3) R30◦ both the 1D and 2D patterns are
determined by the ordering of the degenerate sublattice states.

FIG. 14. Sample 2D moiré and striped ordering patterns in (a) and
(b), respectively, for the TH (2 × 2)system with a misfit strain of ε =
2% at W/K = 0.242 × 10−3 and 0.244 × 10−3, respectively. The
widths of the systems in (a) and (b) are 382 ax and 56 ax , respectively.
2D moiré and striped patterns in (c) and (d), respectively, for the TH
(
√

7 × √
7) R19.1◦system with W/K = 1.358 × 10−3 and ε = 5%.

Figure (a) has a lower free energy per unit area than (b). The widths
of the systems here are 49 ax and 53 ax in (c) and (d), respectively.

FIG. 15. Phase diagrams for various TT systems. The white,
yellow, red, cyan, and blue regions correspond to the commensurate,
striped, twisted 2D moiré, 2D moiré, and zigzag phases, respectively.
The dashed line corresponds to the sine-Gordon prediction for
the stripe-commensurate transition. See text for details. (a) 1 × 1;
(b)

√
3 × √

3 R30◦; (c) 2 × 2; and (d)
√

7 × √
7 R19.1◦.

In addition the nature of the phase transitions are identical
to the (

√
3 × √

3) R30◦ system, i.e., the 2D moiré to stripe
transition is discontinuous and the stripe to commensurate
transition is continuous at small ε and discontinuous at large
ε.

B. Triangular on triangular (TT) systems

The phase diagram for a film of triangular symmetry
adsorbed on a substrate that has a triangular pattern of
maxima (or honeycomb pattern of minima) gives rise to
much richer features than the TH system. The case of
a (1 × 1)or (j,m) = (0,1) system was explored in prior

FIG. 16. Sample configurations for the TT (1 × 1)system show-
ing 2D moiré, zigzag and striped phases in (a), (b), and (c),
respectively at ε = 7%. Here W/K = 0.399 × 10−3, 0.599 × 10−3,
and 4.051 × 10−3 in (a), (b), and (c), respectively.
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FIG. 17. Sample configurations for the TT (
√

3 × √
3) R30◦

system showing 2D moiré, twisted 2D moiré, and striped states in
(a), (b), and (c), respectively, at ε = 3%. Here W/K = 0.574 × 10−3,
0.112 × 10−3, and 0.574 × 10−3 in (a), (b), and (c), respectively.

publications [24,25], but has not been examined for higher-
order systems. Detailed phase diagrams were calculated for
the (

√
3 × √

3) R30◦ [(j,m) = (1,1)], (2 × 2)[(j,m) = (0,2)],
and (

√
7 × √

7) R19.1◦[(j,m) = (2,1)] systems and compared
with the (1 × 1)case. The phase diagrams for all these systems
are shown in Fig. 15. The typical 1D and 2D patterns
that emerge in these systems are shown in Figs. 16, 17,
18, and 19 for the (1 × 1), (

√
3 × √

3) R30◦, (2 × 2), and
(
√

7 × √
7) R19.1◦systems, respectively.

In all cases as W/K is decreased there exists a transition
from a commensurate to a striped incommensurate state that
for small ε is well predicted by the sine-Gordon prediction
given in Eq. (33). In all cases except for the (1 × 1),
this is followed by a transition from the incommensurate
striped state to an incommensurate 2D twisted moiré pattern,
which is illustrated in Figs. 17(b), 18(b), and 19(b) for the
(
√

3 × √
3) R30◦, (2 × 2), and (

√
7 × √

7) R19.1◦orderings,
respectively. As W/K is lowered further this is followed by a
transition from the incommensurate 2D twisted moiré pattern

FIG. 18. Sample configurations for the TT (2 × 2)case showing
2D moiré, twisted 2D moiré, and striped states in (a), (b), and (c),
respectively, at W/K = 0.039 × 10−3 and ε = 2%. Figure (b) has
a lower free energy per unit area than (a) or (c). The widths of the
figures are 440ax , 448ax , and 288ax in (a), (b), and (c), respectively.
The black hexagons at the junctions in a) and b) contain 61 density
maxima in n. The average distance where these maxima lie from
the potential maxima is 0.67ax and 0.80ax implying that the twisted
junctions have a lower potential energy.

FIG. 19. Sample configurations for the TT (
√

7 ×√
7) R19.1◦case with 2D moiré, twisted 2D moiré, and striped

states in (a), (b), and (c), respectively, at ε = 3%. Here
W/K = 0.0377 × 10−3, 0.0566 × 10−3, and 0.377 × 10−3 in
(a), (b), and (c), respectively.

to an untwisted 2D moiré pattern. This latter transition is
continuous as the twisted pattern continuously untwists as the
transition is approached from above as shown in Fig. 20. This
is also shown in Fig. 21(a), which displays the free-energy
density difference per area A (�F/A) of the twisted and
untwisted states as a function of W/K . As can been seen in this
figure, �F/A for the twisted state continuously approaches the
slope of �F/A for the untwisted state. The transition from the
twisted 2D moiré state to the stripe phase is discontinuous as
there is no continuous deformation from a twisted 2D pattern
to a stripe. This is also verified in Fig. 21(b) which shows
�F/A of the 2D twisted state to cross �F/A for the striped
state as the transition is approached from small to large W/K .

Similar to the TH systems the stripe-to-commensurate
transition was observed to be continuous for small ε and
discontinuous for large ε for the (

√
3 × √

3) R30◦ system.
In this instance the discontinuity in the free energy is very
small and challenging to detect when plotting �F/A versus
W/K for the two phases. It is, however, easier to see when
plotting �F/A versus ax/λ, where λ is the periodicity of the
striped state and ax/λ = 0 corresponds to the commensurate
state. As shown in Fig. 21(c), �F/A has only one minima
that approaches zero as the transition is approached at at
ε = 3% indicating a continuous transition. This is in contrast

FIG. 20. Series of configurations for the TT
(
√

7 × √
7) R19.1◦system showing colored density maxima

plots of the 2D twisted moiré state. In panel (a) the honeycomb state
is at (V0,ε,Lx) = (0.00076,3%,130), and the twisted honeycomb
states in (b)–(d) correspond to (V0,ε,Lx) = (0.00078,3%,132),
(0.00081,3%,138), and (0.00150,3%,170).
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FIG. 21. The free-energy density difference from the incommen-
surate (W/K = 0) state is shown as a function of W/K for twisted
and untwisted 2D moiré patterns in red and cyan, respectively, in
panel (a), and for twisted 2D moiré and striped states in red and
blue, respectively, in panel (b). In panels (c) and (d) the free-energy
density difference from the commensurate state is show as a function
of inverse stripe wavelength (λ) at ε = 3% and 8%, respectively.
In panel (c) the lines from bottom to top correspond to W/K =
5.7115 × 10−4,5.7132 × 10−4, and 5.7150 × 10−4, respectively. In
panel (d) the lines from bottom to top correspond to 1.89413 ×
10−2,1.89449 × 10−2, and 1.89484 × 10−2, respectively.

to ε = 10% where, as seen in Fig. 21(d), where there exists
two minima in �F/A, one at ax/λ = 0 and the other at a
finite value of ax/λ. As the transition is approached from
below, the minimum that is lowest changes discontinuously
indicating a discontinuous phase transition. In the (2 × 2) and
(
√

7 × √
7) R19.1◦systems it was difficult to obtain reliable

results for large ε indicating the model may not be applicable
in this limit for these systems and hence the change from a
continuous to a discontinuous transition could not be verified.

It should be noted that the results differ for the (1 × 1)case
where for small ε there is a transition from the striped state
into an untwisted 2D moiré pattern, while at large ε there
exists a zigzag state [illustrated in Fig. 15(b)], which contains
a periodic array of dislocations. The transition from the 2D
moiré patterns to the zigzag state is discontinuous.

C. Energy considerations

The phase diagrams of the TH and TT systems are
remarkably different, the latter being much more complex and
containing an extra phase (zigzag or twisted 2D moiré states).
The reason for this was discussed in a previous publication
[11] that examined the (1 × 1)system. The difference can be
ascribed to the large difference in junction versus domain
wall energies. If the junction energy is much larger than the
domain wall energy one would expect that the transition to

FIG. 22. Spatial plot of the local free energy densities for (a) TH
(
√

3 × √
3) R30◦ system at (ε,W/K) = (3%,0.5357 × 10−3); (b) and

(c), TT (
√

3 × √
3) R30◦ system at (ε,W/K) = (3%,0.0574 × 10−3)

and (ε,W/K) = (3%,0.1063 × 10−3), respectively; and (d) a (1 ×
1)system at (ε,W/K) = (7%,1.997 × 10−3). The energy scale from
low (blue) to high (red) is shown on the right in arbitrary units.

the striped states would occur at a much lower value of W/K .
The spatial free energy density plots for the 2D moiré patterns
in the TH and TT (

√
3 × √

3) R30◦ cases are compared in
Figs. 22(a) and 22(b) just below the transition to this state
[from either striped (TH) or twisted 2D (TT) states]. In the
TH case the domain walls and junctions (in red) form a
honeycomb network, while the commensurate regions (in blue
or light blue) form a triangular pattern. In contrast, in the TT
case the domain walls (in light blue) and junctions (in red)
for a triangular network and the commensurate regions (in
dark blue) form a honeycomb pattern. These figures clearly
show that the relative junction to domain wall energy is
much larger in the TT case. In the TH case the junction and
domain wall energies are comparable and in some cases the
junction energies can be lower than the domain wall energies.
Similar comparison also applies to the (1 × 1)[11], (2 × 2),
and (

√
7 × √

7) R19.1◦systems. As explained in Ref. [11] the
difference arises as the change in the displacement vector �u is
larger going through a junction than a domain wall in the TT
case.

The very large relative junction energy in the TT case
is the reason why the stripe phase appears at much lower
values of W/K than the TH case. It is also the reason
why the new 2D twisted moiré and zigzag patterns appear
in the TT phase diagrams, whose free energy landscapes
are shown in Figs. 22(c) and 22(d), respectively. In the
(
√

3 × √
3) R30◦, (2 × 2), and (

√
7 × √

7) R19.1◦systems the
twisted state increases the total length of the domain walls,
which implies that the “twist” must lead to a lowering of
the junction energies. A close examination of the maxima
of the density near the junction reveals that these maxima
are further from the maxima of the potential energy V (�r) in
the twist case. More specifically, in the (2 × 2)TT case the
average distance where the 61 maxima closest to the junction
(see Fig. 18) are from the maxima in V (�r), is 0.67ax for the
twisted case as compared to 0.80ax for the untwisted case.
Thus, the system twists to lower the potential energy of the
junctions even though this increases the length of the domain
walls connecting the junctions.

In the (1 × 1)case the change in the magnitude of the
displacement vector across both domain walls and the junction
is larger than in the other systems since the degenerate
sublattices are further apart relative to the preferred lattice
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constant of the film (typically the relative distance decreases
as j and m are increased). In the TT (1 × 1)case the junction
energy becomes so large that it splits into two dislocation pairs.
The creation of the pairs will probably depend on the energy
of the dislocation cores.

The (1 × 1)TH system also differs from the other TH
systems in that for small ε there exists a direct transition
from the 2D moiré patterns with no stripe state in between
(to the accuracy of the numerical calculations). The stripe
states only appear for large values of ε[11]. This is somewhat
similar to the (1 × 1)TT case in which the zigzag state only
appears at large values of ε. This effect must be due to a subtle
interplay between the junction and domain wall energies. In
the (1 × 1)TH case it was found that for small (large) ε the
junction energy was slightly lower (higher) than the domain
wall energy which may explain this phenomenom. However, as
shown in Ref. [47] this also occurs in the TH (

√
3 × √

3) R30◦
system and a stripe region in the phase diagram exists for all
values of ε within our numerical accuracy.

VI. COMPARISON WITH EXPERIMENTS

An important initial motivation for this work was to
understand the patterns that form in the Cu/Ru(0001) system,
which is a TT (1 × 1)system in the notation used in this work.
Experiments in that system reveal that the patterns that the
film form depend strongly on the number of monolayers that
are adsorbed, such that one monolayer is commensurate, two
monolayers are in a zigzag state, three monolayers are in
a striped state, and finally four layers are in a honeycomb
state. While the simplistic approach used in this work only
considers 2D monolayers it can be argued—and has been
verified in density functional calculations on the Cu/Pd(111)
system—that the effective W/K decreases with increasing
number of layers as the effective adhesion energy decreases
with increasing layer thickness, and the total strain energy per
unit area increases in the commensurate state.

To compare with experiments, simulations were done on
micron sized systems where W/K was decreased from a value
in the commensurate region to a value in the striped, zigzag or
2D moiré regions and then held fixed to observe subsequent
ordering. These simulations were meant to mimic the experi-
mental procedure of adding layers (lowering W/K) and then
annealing the system for some time at a given coverage. As
shown in our earlier works [24,25], the results are remarkably
consistent with experimental results of Gunther et al. [23] in
both the nature of the patterns and the selected length scales.
In the present work additional simulations were conducted to
examine the dynamics of ordering in the large W/K commen-
surate region or the monolayer or submonolayer limit. The
patterns that emerge in this limit were also consistent with ex-
periments performed by Schmid et al. [27] as shown in Fig. 23.

The HT (1 × 1)system is relevant for graphene ordering
on a wide range of metallic substrates and has been analyzed
in some detail in Refs. [11,46]. In the latter work quantum
mechanical density functional theory calculations (DFT) were
used to parametrize specific systems, i.e., to calculate W/K for
a given graphene-substrate system. For most of the graphene
on (111) substrates (Pd, Pt, Al, Ag, and Au), the value of
W/K is well below the transition to striped or commensurate

FIG. 23. Comparison between numerically simulated ordering in
the large W/K limit for the (1 × 1)TT system with experimental
results of Schmid et al. [27] on the ordering of a partially filled
monolayer in the Cu/Ru(0001) system. The experimentally observed
pattern is shown as an overlay on a typical configuration (number
density plot) from the simulations.

states, implying that 2D moiré patterns should be observed
experimentally, which is also the case. The value of W/K

calculated for graphene on Cu(111) is just below the transition
line also implying 2D moiré patterns. Finally, the value for
graphene on Ni(111) is well above the transition line (i.e.,
in the commensurate region) implying that no moiré patterns
should occur, which is consistent with experiments [59,60].

The influence of the film-substrate misorientation was also
examined [46]. It was found that the periodicity λ of the
2D moiré patterns decreases with the misorientation angle
θm although surprisingly the state with the lowest energy
was not at θm = 0. It was found to be at θm = 0.88◦ for
Cu(111) and 3.22◦ for Pt(111). The behavior of the λ as a
function of θm was found to be consistent with experiments
although the experimental data of Merino et al. [3] is somewhat
inconclusive.

The (
√

3 × √
3) R30◦ TH class of systems includes Xe on

graphite [40], Kr on graphite [41], and Xe/Pt(111)[42]. As
discussed in Ref. [47], the appearance of striped and 2D moiré
patterns is consistent with experimental observations in the
Xe/Pt(111) system while only the latter pattern has been seen
in Kr on graphite and Xe on graphite.

One of the unexpected predictions of this work is the
appearance of the twisted 2D pattern that emerges in TT
(or HH) systems. Even though the region of the phase
diagram where such pattern would be observed is relatively
small there is experimental and theoretical evidence of these
patterns in a number of systems as illustrated in Fig. 24.
They include experiments of TiOx ordering on Au(111)
surfaces [61,62], simulations of Au on Ru(0001)[63] and in
misoriented graphene bilayers [64]. In addition to these system
twisted 2D moiré patterns have also been observed in surface

195439-13



ELDER, ACHIM, GRANATO, YING, AND ALA-NISSILA PHYSICAL REVIEW B 96, 195439 (2017)

FIG. 24. Experimental evidence for twisted states in microscopy
images. (a) TiOx on Au(111) taken from Ref. [61] (also observed by
Tumino et al.[62]). (b) Ag on Ru(0001) taken from Ref. [63] where
the system was numerically relaxed with a Frenkel-Kontorova model
with an initial condition provided by the experiments. (c) Patterns
observed in misoriented graphene bilayers taken from Ref. [64]. (d)
Surface reconstruction of Au(111) after exposing the surface to Gd for
approximately 20 s, taken from Ref. [65]. (e) Surface reconstruction
of Pt (111) after additional density added to surface, taken from
Ref. [66].

reconstruction experiments on Au(111) exposed to Gd, and
simulations of Pt(111) surfaces with excess density. While
most of these systems may not be compatible with the 2D
model systems considered in this work, where the substrate is
approximated by a simple rigid adsorption potential, the basic
underlying cause of formation of the twisted state is likely the
same. The relative symmetry of the film or surface compared to
the bulk state gives rise to a triangular network of domain walls
with the junctions in very high potentially energy locations.
Energy can be released by twisting the junctions such that the
surface atoms move slightly away from the potential maxima,
giving rise to the twisted 2D moiré state.

VII. LIMITATIONS OF MODELING

The approach proposed in this work is perhaps the simplest
method that incorporates elasticity, crystal symmetries, and
dislocations on the long length and time scales needed to
study surface ordering. It is also clear that the approach does
not include many physical features that could influence the
strain-induced patterning. Two obvious limitations are the lack
of out of plane deformations and approximating the substrate
as a rigid periodic potential with the simplest lowest order
harmonics. In the former case it is likely that the deformations
will play a role at defects, such as domain walls and junctions.
In the latter case substrate relaxation may play a role if
the substrate-film coupling is strong as would be the case
for metal-on-metal systems, but may not be as important in
graphene or hexagonal boron nitride on metallic surfaces since

the coupling is relatively weak in most cases (Cu and Ni being
the exceptions [46]).

Another important feature that was not included in this
work is the influence of thermal fluctuations. It is well known
that they play an important role in determining the order of
the phase transitions. It is quite likely that the characteristics
of the mean field phase transitions discussed in this work will
be altered by the inclusion of thermal fluctuations. While it
is relatively straightforward to include such fluctuations in
the amplitude expansion approach (see, for example, Huang
et al.[53]) or in the original PFC model [67,68], it maybe
computationally challenging to examine all the transitions
discussed in this manuscript. In particular, an interesting
question is whether or not a liquid phase can intervene
between the commensurate and incommensurate phases due
to thermally induced dislocation pairs [69].

In principle, the limitations discussed in the previous para-
graphs could be incorporated into the methodology presented
in this work. However, there are some other effects that are
much more diffcult to model using this technique. It can be
difficult to incorporate higher order harmonics and to model
the very large deformation limit. The former case is possible,
however, the computational cost can be quite significant. In the
latter case the amplitude expansion explicitly breaks down in
the limit that the amplitude varying on too small length scales,
which occurs in this limit. Clearly when the size of the patterns
becomes very small this becomes a problem.

VIII. SUMMARY AND CONCLUSIONS

The modeling approach used in this manuscript as described
by the simple complex amplitude approach [i.e., the free func-
tional given in Eq. (15)], while perhaps missing some features,
provides a basis for examining a broad class of systems with
relative computational ease. Compared to quantum mechanical
density functional theory, molecular dynamics, or even the
relatively simple Frenkel-Kontorova model, this method can
examine systems orders magnitude larger on much longer time
scales. In this manuscript phase diagrams were computed in
the mean field limit for five different systems (in addition to
three others previously considered) illustrating the power of
the approach.

While there are many possible physical features that could
be added to the existing approach, perhaps the most interesting
extension would be films that contain more than one type of
atom. Of specific interest in recent years are 2D films such as
hexagonal boron nitrite (hBN), molybdenum disulfide, and
other transition metal dichalcogenides which are distinctly
different from graphene and have many potential applications.
It would be very interesting to see how, for example, inversion
boundaries in these systems can be used to relieve strain and
potential lead to different patterns, such as the pinwheel type
structure delineated by inversion boundaries as observed in
hBN [70].
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