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Random gauge models of the superconductor-insulator transition
in two-dimensional disordered superconductors
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We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous supercon-
ductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a
binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical
disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two
describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations
in the path-integral representation of the models are used to determine the critical exponents and the universal
conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior,
within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass
models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of
these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with
recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.
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I. INTRODUCTION

Models of phase coherence in inhomogeneous super-
conductors, which incorporate gauge disorder, have been
widely used to study the vortex glass transition of type-II
superconductors driven by thermal fluctuations [1,2]. Gauge
disorder appears as random phase shifts in the Josephson
junction coupling local superconducting islands due to the
combined effect of geometrical disorder and the applied
magnetic field. Phase shifts can also arise from the presence
of negative Josephson couplings or π junctions [3–5], even
in the absence of the magnetic field, and can lead to different
phase transitions and changes in the magnetic properties [6–9].
Although there are many recent studies of the effects of
disorder both in two-dimensional and one-dimensional [10–
12] systems, the superconductor to insulator (SI) transition
described by the quantum version of random gauge models has
been, to a certain extent, much less investigated [13–16]. The
magnetic-field-induced SI transition in thin films has actually
been studied in detail using disordered Bose-Hubbard models
[17,18], which include a random potential, but the additional
effects of gauge disorder are difficult to be included in the
numerical simulations [19]. There are, however, interesting
superconducting systems in the form of thin films with a
pattern of nanoholes [20–25] and microfabricated Josephson-
junction arrays [26–29], where gauge disorder alone should
play a dominant effect in the properties of the SI transition.
Such systems allow comparisons with the results from minimal
random gauge models.

Very recently [24,25], the effect of a controlled amount
of gauge disorder on the SI transition was investigated in
nanohole ultrathin films by introducing geometrical disorder
in the form of randomness in the positions of the nanoholes. A
minimal model describing phase coherence in these systems
consists of a Josephson-junction array defined on an appropri-
ate lattice, with the nanoholes corresponding to the dual lattice
[16,30,31]. Positional disorder of the grains or in the plaquette
areas [14,32–34] leads to disorder in the magnetic flux per
plaquette, which increases with the applied field and geo-

metrical disorder strength. Magnetoresistance oscillations near
the SI transition, resulting from commensurate vortex-lattice
states, are observed below a critical disorder strength [24].
While the resistivity at the successive field-induced transitions
varies below this critical disorder, it reaches a constant value,
independent of the critical coupling for larger disorder [25].
Recent numerical simulations of a Josephson-junction array
model suggest that the large disorder regime should correspond
to a vortex glass [16]. Random gauge models with quantum
fluctuations (quantum rotor models) should then provide the
simplest description for the SI transition in this limit. Since
the choice of the appropriate model is not unique, it should be
of interest to compare the results for different models.

In this work, we study numerically the SI transition in
two-dimensional inhomogeneous superconductors described
by random gauge models. Four different quantum rotor models
are considered: a gauge glass, a flux glass, a binary phase glass,
and a Gaussian phase glass. The first two models describe the
combined effect of geometrical disorder in the array of local
superconducting islands and a uniform external magnetic field
while the last two describe the effects of randomness in the
Josephson couplings alone, allowing for negative couplings.
Monte Carlo simulations in the path-integral representation
are used to determine the critical exponents and the electrical
conductivity at the transition. We find that the gauge- and
flux-glass models display the same critical behavior, within the
estimated numerical uncertainties. Similar agreement is found
for the binary and Gaussian phase-glass models. Despite the
different symmetries and disorder correlations, the universal
conductivity of these models is approximately the same. We
compare the results for gauge- and flux-glass models with
recent experiments on nanohole thin-film superconductors in
a magnetic field with controlled amount of gauge disorder
[24,25]. In particular, the ratio of the critical conductivity for
large gauge disorder to that of the pure model is in good
agreement with the experimental data. The results support the
experimental observation [25] that the critical conductivity
is independent of the coupling constant for large disorder,
consistent with the scenario of a universal value in this limit.

2469-9950/2017/96(18)/184510(7) 184510-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.184510


ENZO GRANATO PHYSICAL REVIEW B 96, 184510 (2017)

II. MODELS AND MONTE CARLO SIMULATION

We consider models which describe two-dimensional su-
perconductors as an array of Josephson junctions, allowing for
charging effects and gauge disorder [14,16,28,32,35], defined
by the Hamiltonian

H = EC

2

∑
i

n2
i −

∑
<ij>

Eij cos(θi − θj − Aij ). (1)

The first term in Eq. (1) describes quantum fluctuations
induced by the charging energy, ECn2

i /2, of a non-neutral
superconducting “grain,” or “island,” located at site i of a
reference square lattice, where EC = 4e2/C, e is the elec-
tronic charge, and ni = −i∂/∂θi is the operator, canonically
conjugate to the phase operator θi , representing the deviation of
the number of Cooper pairs from a constant integer value. The
effective capacitance to the ground of each grain C is assumed
to be spatially uniform, for simplicity. The second term in (1)
is the Josephson-junction coupling between nearest-neighbor
grains described by phase variables θi and phase shifts Aij .
The model in Eq. (1) can also be regarded as a quantum
rotor model [36] with the additional effects of quenched gauge
disorder. We consider four different quantum rotor models:
a gauge- and a flux-glass model [14,16,32,33] with spatially
randomness in Aij and a binary and Gaussian phase-glass
model [13] with spatial randomness in Eij including Eij < 0.
The phase-glass model can also be regarded as a quantum
version of the chiral-glass model [7,37,38] used to study the
thermal phase transition in the absence of charging effects.

For the gauge- and flux-glass models, Aij represents the

line integral of the vector potential Aij = 2π
�o

∫ j

i
A · dl, due

to an external magnetic field B = ∇ × A. For the gauge-glass
model, we set Eij = EJ (uniform) and choose Aij as a random
variable uniformly distributed in the interval [−π,π ] but
uncorrelated in space. It may describe, for example, the limit
of very large disorder in the positions of the superconducting
grains. In the flux-glass model, the variation of the magnetic
flux δfp = BδSp/�o in a plaquette of area Sp, in units of
the flux quantum �o = hc/2e, is the spatially uncorrelated
random variable, which we choose to be uniform in the
interval interval [−1,1]. This could represent a large disorder
in the size of the grains, which induces uncorrelated variations
in the magnetic flux at different plaquettes or randomness
in the plaquette areas. The flux-glass model can also be
regarded as a gauge-glass model with a particular long-range
correlated disorder [32,33] in Aij . The phase-glass model
describes the effects of disorder in Eij due to the random
location of negative Josephson coupling (Eij < 0). In this
case, we set Aij = 0 and choose Eij = ±EJ , with equal
probability (binary distribution) or with probability P (Eij ) =
e−E2

ij /2E2
J /EJ

√
2π (Gaussian distribution). Since Eij < 0 with

Aij = 0 is equivalent to a positive Josephson coupling |Eij |
with a phase shift Aij = π , the binary phase-glass model
can also be regarded as a gauge-glass model with a binary
distribution of phase shifts Aij = 0 or π .

The quantum phase transition at zero temperature can be
conveniently studied in the framework of the imaginary-time
path-integral formulation of the model [39]. In this representa-
tion, the two-dimensional (2D) quantum model of Eq. (1) maps

into a (2+1)D classical statistical mechanics problem. The
extra dimension corresponds to the imaginary-time direction.
Dividing the time axis τ into slices �τ , the ground-state energy
corresponds to the reduced free energy F of the classical
model per time slice. The classical reduced Hamiltonian can
be written as [19,35,39]

H = − 1

g

[ ∑
τ,i

cos(θτ,i − θτ+1,i)

+
∑

<ij>,τ

eij cos(θτ,i − θτ,j − Aij )

]
, (2)

where eij = Eij/EJ , and τ labels the sites in the discrete
time direction. The ratio g = (EC/EJ )1/2, which drives the
SI transition for the model of Eq. (1), corresponds to an
effective “temperature” in the 3D classical model of Eq. (2).
The particular form of the coupling of the phases θτ,j in
the time direction results from a Villain approximation,
used to obtain the phase representation of the first term in
Eq. (1). This approximation, however, should preserve the
universal aspects of the critical behavior [39]. In general, a
quantum phase transition shows intrinsic anisotropic scaling,
with different diverging correlation lengths ξ and ξτ in the
spatial and imaginary-time directions, respectively, related
by the dynamic critical exponent z as ξτ ∝ ξz. The classical
Hamiltonian of Eq. (2) can be viewed as a three-dimensional
(3D) layered XY model, where frustration effects exist only
in the 2D layers. Randomness in eij or Aij corresponds to
disorder completely correlated in the time direction.

Equilibrium Monte Carlo (MC) simulations are carried
out using the 3D classical Hamiltonian in Eq. (2) regarding
g as a “temperaturelike” parameter. The parallel tempering
method [40] is used in the simulations with periodic boundary
conditions, as in previous work [16,31]. The finite-size scaling
analysis is performed for different linear sizes L of the square
lattice with the constraint Lτ = aLz, where a is a constant
aspect ratio. This choice simplifies the scaling analysis;
otherwise an additional scaling variable Lτ/L

z would be
required to describe the scaling functions. The value of a

is chosen to minimize the deviations of aLz from integer
numbers. However, this requires one to know the value of the
dynamic exponent z in advance. Since the exact value of z is
not known, we follow a two-step approach. First, we obtain an
estimate of gc and z from simulations performed with a driven
MC dynamics method, which has been used in the context of
the 3D classical XY spin-glass model [38]. Then, these initial
estimates are improved by finding the best data collapse for the
finite-size behavior of the phase stiffness in the time direction
γτ , obtained by the equilibrium MC method.

For the driven MC method, the layered honeycomb model
of Eq. (2) is viewed as a 3D superconductor, and the
corresponding “current-voltage” scaling near the transition is
used to determine the critical coupling and critical exponents
[37]. In the presence of an external driving perturbation Jx

(“current density”), which couples to the phase difference
θτ,i+x̂ − θτ,i along the x̂ direction, the classical Hamiltonian
of Eq. (2) is modified to

HJ = H −
∑
i,τ

Jx

g
(θτ,i+x̂ − θτ,i). (3)
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FIG. 1. Scaling behavior of the phase slippage response for the
gauge-glass model in (a) the imaginary-time direction Rτ and (c)
spatial direction Rx near the SI transition. From the top down, the cou-
plings are g = 1.75, 1.73, 1.71, 1.69, 1.67, 1.65, 1.63, 1.61, 1.59,

and 1.57. (b, d) Scaling plots corresponding to (a) and (c), respec-
tively, for data near the transition with ξ = |g/gc − 1|−ν using the
same parameters gc = 1.645, zo = 2.3, z = 1.2, and ν = 0.9.

The MC simulations are carried out using the Metropolis
algorithm, and the time dependence is obtained from the
MC time tmc. When Jx �= 0, the system is out of equilibrium
since the total energy is unbounded. The lower energy minima
occur at phase differences θτ,i+x̂ − θτ,i , which increase with
time tmc, leading to a net phase slippage rate proportional to
Vx =< d(θτ,i+x̂ − θτ,i)/dtmc >, corresponding to the average
“voltage” per unit length. The measurable quantity of interest
is the phase slippage response (nonlinear resistivity) defined as
Rx = Vx/Jx . Similarly, we define Rτ as the phase slippage re-
sponse to the applied perturbation Jτ in the layered (imaginary-
time) direction. Above the phase-coherence transition, g > gc,
Rx should approach a nonzero value when Jx → 0, while it
should approach zero below the transition. From the nonlinear
scaling behavior near the transition of a sufficiently large
system, one can extract the critical coupling gc and the critical
exponents ν and z.

III. NUMERICAL RESULTS AND DISCUSSION

A first estimate of the critical coupling gc and dynamical
exponent z can be obtained using the driven MC dynamics
method presented in Sec. II for large system sizes. We illustrate
the method for the gauge-glass model. Figure 1 shows the
behavior of the nonlinear phase slippage response Rx and
Rτ for the gauge-glass model as a function of the applied
perturbation Jx and Jτ , respectively. The behavior for different
values of g is consistent with a phase-coherence transition at
an apparent critical coupling in the range gc ≈ 1.63–1.67. For
g > gc, both Rx and Rτ tend to a finite value while for g <

gc, they extrapolate to low values. Assuming the transition is
continuous, the nonlinear response behavior sufficiently close
to the transition should satisfy a scaling form in terms of Jx , Jτ ,
and g. The critical coupling gc and critical exponents ν and z

can then be obtained from the best data collapse satisfying the
scaling behavior close to the transition. Details of the scaling
theory can be found in Ref. [41]. Rx and Rτ should satisfy the

scaling forms

gRxξ
z0−z = F±(Jxξ

z+1/g),
gRτ ξ

z+z0z−2 = H±(Jτ ξ
2/g), (4)

where zo is an additional critical exponent describing the MC
relaxation times, t rmc,x ≈ ξzo and t rmc,τ ≈ ξzo

τ , in the spatial
and imaginary-time directions, respectively, and ξ = |g/gc −
1|−ν . The + and − signs correspond to g > gc and g < gc,
respectively. The two scaling forms are the same when z = 1,
corresponding to isotropic scaling. The joint scaling plots
according to Eqs. (4) are shown in Figs. 1(b) and 1(d), obtained
by adjusting the unknown parameters, providing the estimates
gc = 1.645, zo = 2.3, z = 1.2, and ν = 0.9.

To obtain the estimates above, it was implicitly assumed
that the system is sufficiently large and the coupling parameter
is not too close to gc, allowing the finite-size effects to
be neglected. Having obtained an estimate of z, we can
now consider the finite-size behavior of the phase stiffness
in the imaginary-time direction γτ , using equilibrium MC
simulations, and improve the determination of gc and ν. The
phase stiffness γτ , which is a measure of the free energy cost
to impose an infinitesimal phase twist in the time direction, is
given by [42]

γτ = 1

L2Lτg2

[
g〈ετ 〉 − 〈

I 2
τ

〉 + 〈Iτ 〉2
]
D
, (5)

where ετ = ∑
τ,i cos(θτ,i − θτ+1,i) and Iτ = ∑

τ,i sin(θτ,i −
θτ+1,i). In Eq. (5), 〈. . .〉 represents a MC average for a
fixed disorder configuration and [. . .]D represents an average
over different disorder configurations. In the superconducting
phase γτ should be finite, reflecting the existence of phase
coherence, while in the insulating phase it should vanish in
the thermodynamic limit. For a continuous phase transition,
γτ should satisfy the finite-size scaling form

γτL
2−z = F (L1/νδg), (6)

where F (x) is a scaling function and δg = g − gc. This scaling
form implies that data for γτL

2−z as a function of g, for
different system sizes L, should cross at the critical coupling
gc. Figure 2(a) shows this crossing behavior obtained near the
initial estimate of gc obtained from Fig. 1 by varying slightly
gc and ν from their initial values. In the Inset of this figure, we
show a scaling plot of the data according to the scaling form
of Eq. (6), which provides for the gauge-glass model the final
estimates gc = 1.649 and ν = 0.99. The same value of the
dynamic exponent z = 1.2 found for the gauge-glass model
also gave consistent results for the other models. Figures 3 and
4 show the scaling behavior of the phase stiffness for the flux
and binary phase-glass model. We then obtain the estimates
gc = 1.629 and ν = 0.92 (flux glass), gc = 1.58 and ν = 1.15
(binary phase glass), gc = 1.44 and ν = 1.12 (Gaussian phase
glass).

The SI transition can be further characterized by the
behavior of the finite-size correlation length, which can be
defined as [43]

ξ (L,g) = 1

2 sin(k0/2)
[S(0)/S(k0) − 1]1/2. (7)

Here S(k) is the Fourier transform of the correlation func-
tion C(r), and k0 is the smallest nonzero wave vector.
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FIG. 2. Phase stiffness in the imaginary-time direction γτ for the
gauge-glass model with different system sizes L, near the transition
point estimated from Fig. 1. Lτ = aLz, with aspect ratio a = 0.642
and z = 1.2. Inset: scaling plot of γτ with gc = 1.649 and ν = 0.99.

For g > gc, this definition corresponds to a finite-difference
approximation to the infinite system correlation length ξ (g)2 =
− 1

S(k)
∂S(k)
∂k2 |k=0, taking into account the lattice periodicity. For

the random-gauge models considered here, it is convenient to
define the correlation function in terms of the overlap order
parameter [44] qτ,j = exp[i(θ1

τ,j − θ2
τ,j )], where 1 and 2 label

two different copies of the system with the same coupling
parameters. The correlation function in the spatial direction is
obtained as

C(r) = 1

L2Lτ

∑
τ,j

〈qτ,j qτ,j+r〉, (8)

and the analogous expression is used for the correlation func-
tion Cτ (r) in the time direction. For a continuous transition,
ξ (L,g) should satisfy the scaling form

ξ/L = F (L1/νδg), (9)

where F (x) is a scaling function. Figures 5 and 6 show the
behavior of the correlation length ξτ and ξ in the time and
spatial directions, for the gauge-glass model. The curves for
ξτ /L as a function of g for different system sizes cross at
the same point, providing further evidence of a continuous

FIG. 3. Same as Fig. 2 but for the flux-glass model. Inset: Scaling
plot of γτ with gc = 1.6294 and ν = 0.92.

FIG. 4. Same as Fig. 2 but for the phase-glass model. Inset:
Scaling plot of γτ with gc = 1.58 and ν = 1.15.

transition. In the inset of Fig. 5, a scaling plot according to
Eq. (9) is shown, which gives an alternative estimate of gc =
1.646 and ν = 1.08. For the correlation length in the spatial
direction shown in Fig. 6 and the corresponding scaling plot,
we obtain gc = 1.629 and ν = 1.12. Since in this case the
crossing point is less clear, these estimates are more affected
by corrections to finite-size scaling. For the flux- and phase-
glass models the differences of the estimate of gc from the
correlation in the time and spatial directions are much larger.
We consider that the results obtained from the scaling of the
phase stiffness γτ are more accurate and use them to obtain
the final result and the associated error bar.

We have also determined the universal conductivity at the
critical point from the frequency and finite-size dependence of
the phase stiffness γ (w) in the spatial direction, following
the scaling method described by Cha et al. [36,42]. The
conductivity is given by the Kubo formula

σ = 2πσQ lim
wn→0

γ (iwn)

wn

, (10)

where σQ = (2e)2/h is the quantum of conductance and
γ (iwn) is a frequency-dependent phase stiffness evaluated at

FIG. 5. Correlation length in the imaginary-time direction ξτ for
the gauge-glass model with different system sizes L. Inset: Scaling
plot of ξτ with gc = 1.646 and ν = 1.08.
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FIG. 6. Correlation length in the spatial direction ξ for the gauge-
glass model with different system sizes L. Inset: Scaling plot of ξ

with gc = 1.629 and ν = 1.12.

the finite frequency wn = 2πn/Lτ , with n an integer. The
frequency-dependent phase stiffness in the x̂ direction is given
by

γ = 1

L2Lτg2
[g〈εx〉 − 〈|I (iwn)|2〉

+ 〈|I (iwn)|〉2]D, (11)

where

εx =
∑
τ,j

ei,j+x̂ cos(�xθτ,j ),

I (iwn) =
∑
τ,j

ei,j+x̂ sin(�xθτ,j )eiwnτ , (12)

and �xθτ,j = θτ,j − θτ,j+x̂ − Aj,j+x̂ . At the transition, γ (iwn)
vanishes linearly with frequency and σ assumes a universal
value σ ∗, which can be extracted from its frequency and finite-
size dependence as [42]

σ (iwn)

σQ

= σ∗
σQ

− c

(
wn

2π
− α

2π

wnLτ

)
· · · . (13)

FIG. 7. Scaling plot of conductivity σ (iwn) at the critical cou-
pling gc for the gauge-glass model with α = 0.2. The universal
conductivity is given by the intercept with the x = 0 dashed line,
leading to σ∗

σQ
= 0.56(3).

FIG. 8. Same as Fig. 7 but for the flux-glass model with α = 0.27.
The universal conductivity is given by the intercept with the x = 0
dashed line, leading to σ∗

σQ
= 0.61(3).

The parameter α is determined from the best data collapse
of the frequency-dependent curves for different systems sizes
in a plot of σ (iwn)

σQ
versus x = ( wn

2π
− α 2π

wnLτ
). The universal

conductivity is obtained from the intercept of these curves with
the line x = 0. The calculations were performed for different
system sizes with Lτ = aLz, using the above estimates of z

and gc. From the scaling behavior in Fig. 7 we obtain for
the gauge-glass model σ ∗/σQ = 0.56(3), where the estimated
uncertainly is mainly the result of the error in the coupling
gc. Figures 8 and 9 show the behavior for the flux and binary
phase-glass models. We then obtain σ ∗/σQ = 0.61(3) (flux
glass), σ ∗/σQ = 0.60(3) (binary phase glass), and σ ∗/σQ =
0.57(3) (Gaussian phase glass).

The results for the critical properties of the different random
gauge models are summarized in Table I, together with the
known values for the pure model. We now compare them with
available numerical work and experimental data. The value of
the universal conductivity found in the earlier work on the
gauge-glass model [14], σ ∗

σQ
= 1.06(9), differs significantly

from our result but the critical exponent z = 1.3(1) is con-

FIG. 9. Same as Fig. 7 but for the binary phase-glass model with
α = 0.06. The universal conductivity is given by the intercept with
the x = 0 dashed line, leading to σ∗

σQ
= 0.60(3).
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TABLE I. Critical exponents z,ν and critical conductivity σ ∗ for
different random gauge models and the pure model (without disorder).
gc is the critical value of the coupling parameter g = (EC/EJ )1/2. The
results for the pure case are taken from Ref. [36].

Pure Gauge Flux Binary Gaussian
glass glass phase glass phase glass

gc 2.203 1.649(1) 1.629(1) 1.580(5) 1.440(5)
z 1 1.2(1) 1.2(1) 1.2(1) 1.2(1)
ν 0.67 0.99(4) 0.92(4) 1.15(6) 1.12(4)
σ ∗/σQ 0.29(2) 0.56(3) 0.61(3) 0.60(3) 0.57(3)

sistent with our estimate. The discrepancy in the value of σ ∗
is mainly due to the different estimate of the critical coupling,
gc ≈ 1.587, which was obtained by a scaling analysis of the
dimensionless ratio of the overlap order parameter qτ,j . This
type of “Binder ratio,” however, is not very reliable for models
with continuous symmetry [45]. Since our estimate of gc is
based on the scaling behavior of the phase stiffness, which
is also consistent with the behavior of the correlation length,
we believe it should be more accurate. A different calculation
of the critical exponents [15] found ν ≈ 0.73 and estimate
z = 1.17(7), also compatible with our result for z.

The results for the gauge- and flux-glass models can be
compared with experimental observations of the SI transition
on thin superconducting films with a pattern of nanoholes
[20,24,25]. A minimal model describing phase coherence in
these systems consists of a Josephson-junction array defined
on an appropriate lattice, with the nanoholes corresponding
to the dual lattice [16,30,31]. Very recently [24,25], the effect
of a controlled amount of gauge disorder on the SI transition
was investigated by introducing geometrical disorder in the
form of randomness in the position of the nanoholes. This
leads to disorder in the magnetic flux δfp = BδSp/�o in a
plaquette of area Sp, which increases with the applied magnetic
field and degree of geometrical disorder. Magnetoresistance
oscillations near the SI transition, resulting from commen-
surate vortex-lattice states, are observed below a critical
disorder strength [24] δfc ≈ 0.3. Although the resistivity at
successive field-induced SI transitions varies below this critical
disorder, it seems to reach a constant value, independent of the
critical coupling for larger disorder [25]. Recent numerical
simulations of a Josephson-junction array model suggests that
the large disorder regime should correspond to a vortex glass
[16]. The gauge- and flux-glass models considered here should
then provide the simplest description in this limit. For weak
geometrical disorder, the nanoholes form a triangular lattice
[20] and therefore the appropriate geometry for the array
model should be a honeycomb lattice [16,46]. In the large
disorder limit, however, the lattice geometry should not be
relevant. In fact, the numerical results for the conductivity at
the transition found for a flux-glass model using a honeycomb
lattice in the large disorder limit [16] is the same, within
the estimated error bar, as found in the present work for the
square lattice. In particular, the value of conductivity at the
transition found in the experiments for large gauge disorder
[24,25] is a factor of 2 larger compared with measurements
on samples without an applied magnetic field [20]. This

ratio of the critical conductivities agrees with the results
for the gauge- or flux-glass models compared with the pure
model in Table I. Therefore, although the magnitudes of the
experimental and numerical results are different, the trend of
increasing critical conductivity with gauge disorder is correctly
given by the gauge- and flux-glass models. Notice, however,
that the opposite trend can occur when comparing the large
gauge disorder limit with the pure system in the presence of
a magnetic field [16]. Moreover, the agreement of the critical
properties obtained from the gauge- and flux-glass models and
the previous calculations for large disorder from a model on
a honeycomb lattice [16] strongly support the experimental
observation [25] that the critical conductivity is independent
of the coupling parameter in the large disorder limit.

It may appear somehow surprising that the critical con-
ductivity for the phase-glass model is essentially the same
as for the gauge-glass model. The phase-glass model has an
additional reflection symmetry property [7], where changing
θi → −θi leaves the Hamiltonian unchanged, whereas for the
gauge-glass model there is only a continuous symmetry. One
could then expect different universality classes. In the absence
of quantum fluctuations, Ec = 0, this happens to be the case. In
2D, the transition for increasing temperatures can be described
as a thermal transition with vanishing critical temperature,
Tc = 0, and a divergent thermal correlation length ξT ∝ T −νT .
In fact, the values of νT for the gauge- and phase-glass models
are quite different [9,47]. On the other hand, the SI transition at
zero temperature is actually described by an effective (2 + 1)D
classical model [Eq. (2)], with gauge disorder completely
correlated in one direction. Interestingly, numerical results for
the 3D gauge- and phase-glass models show the same critical
exponents [37,38,48], within the estimated error bar, although
such calculations have only been carried out for models with
uncorrelated disorder.

IV. CONCLUSIONS

We studied the superconductor-insulator transition in two-
dimensional inhomogeneous superconductors with gauge dis-
order, described by four different models: a gauge-glass, a flux-
glass, a binary phase-glass, and Gaussian phase-glass model.
The first two models describe the combined effect of geomet-
rical disorder in the array of local superconducting islands and
a uniform external magnetic field, while the last two describe
the effects of randomness in the Josephson couplings alone,
allowing for negative couplings. We found that the gauge- and
flux-glass models display the same critical behavior, within
the estimated uncertainties, and similar behavior is observed
for binary and Gaussian phase-glass models. The value of the
conductivity at the transition is a factor of 2 larger than for the
pure model, which agrees with recent experiments on nanohole
thin-film superconductors [24,25] in the large disorder limit,
which can be modeled by the gauge- or flux-glass models. This
agreement, together with previous results for large disorder
from a model on a honeycomb lattice [16], strongly supports
the experimental observation [25] that the critical conductivity
is independent of the coupling parameter in the large disorder
limit, consistent with the scenario of a universal value in
this limit. For a more realistic description of these systems,
dissipation effects [28], which have been neglected in the
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present models, should also be taken into account. It should
be noted that the phase-glass models considered here, which
show a direct superconductor-to-insulator transition, have a
zero mean distribution of Josephson couplings. For a nonzero
mean, an analytical work [13] has proposed an intermediate
metallic phase (a Bose metal) separating the superconducting
and insulating phases.
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